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Abstract

This document defines the Modelica language, version 2.1, which is developed by the Modelica
Association, a non-profit organization with seat in Linkdping, Sweden. Modelica is a freely available,
object-oriented language for modeling of large, complex, and heterogeneous physical systems. It is
suited for multi-domain modeling, for example, mechatronic models in robotics, automotive and
aerospace applications involving mechanical, electrical, hydraulic and control subsystems, process
oriented applications and generation and distribution of electric power. Models in Modelica are
mathematically described by differential, algebraic and discrete equations. No particular variable
needs to be solved for manually. A Modelica tool will have enough information to decide that
automatically. Modelica is designed such that available, specialized algorithms can be utilized to
enable efficient handling of large models having more than one hundred thousand equations. Modelica
is suited and used for hardware-in-the-loop simulations and for embedded control systems. More
information is available at http://www.Modelica.org/

Modelica® is a registered trademark of the "Modelica Association".
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1 Introduction

1.1 Overview of Modelica

Modelica is a language for modeling of physical systems, designed to support effective library development and
model exchange. It is a modern language built on non-causal modeling with mathematical equations and object-
oriented constructs to facilitate reuse of modeling knowledge.

1.2 Scope of the specification

The semantics of the Modelica language is specified by means of a set of rules for translating a model described
in the Modelica language to the corresponding model described as a flat hybrid DAE. The key issues of the
translation (or instantiation in object-oriented terminology) are:

e Expansion of inherited base classes

e Parameterization of base classes, local classes and components

e  Generation of connection equations from connect statements
The flat hybrid DAE form consists of:

e Declarations of variables with the appropriate basic types, prefixes and attributes, such as "parameter
Real v=5".

e Equations from equation sections.

Function invocations where an invocation is treated as a set of equations which involves all input and
all result variables (number of equations = number of basic result variables).

Algorithm sections where every section is treated as a set of equations which involves the variables
occurring in the algorithm section (number of equations = number of different assigned variables).

When clauses where every when clause is treated as a set of conditionally evaluated equations, also
called instantaneous equations, which are functions of the variables occurring in the clause (number of
equations = number of different assigned variables).

Therefore, a flat hybrid DAE is seen as a set of equations where some of the equations are only conditionally
evaluated (e.g. instantaneous equations are only evaluated when the corresponding when-condition becomes
true).

The Modelica specification does not define the result of simulating a model or what constitutes a mathematically
well-defined model.

1.3  Definitions and glossary

The semantic specification should be read together with the Modelica grammar. Non-normative text, i.e.,
examples and comments, are enclosed in / /, comments are set in italics.
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Term Definition

Component An element defined by the production component-clause in the Modelica
grammar.

Element Class definitions, extends-clauses and component-clauses declared in a class.

Instantiation The translation of a model described in Modelica to the corresponding model
described as a hybrid DAE, involving expansion of inherited base classes,
parameterization of base classes, local classes and components, and generation of
connection equations from connect statements.
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2 Modelica syntax

2.1 Lexical conventions

The following syntactic meta symbols are used (extended BNF):

[ 1] optional
{ } repeat zero or more times

The following lexical units are defined:
IDENT = NONDIGIT { DIGIT | NONDIGIT } | Q-IDENT

Q-IDENT = "’" ( Q-CHAR | S-ESCAPE ) { Q-CHAR | S-ESCAPE } "’"
NONDIGIT = " " | letters "a" to "z" | letters "A" to "z"
STRING = """ { S-CHAR | S-ESCAPE } "wn
S-CHAR = any member of the source character set except double-quote """, and backslash "\"
Q-CHAR = any member of the source character set except single-quote "’ ", and backslash "\ "
S-ESCAPE = Il\lll | Il\llll | u\?u | u\\u |
"\a" | u\bu | u\fu | u\nu | u\ru | u\tu | u\vu

DIGIT = "Q" | nqn | non | n3n | ngn | ngn | ngn | ngn | ngn | ngn
UNSIGNED INTEGER = DIGIT { DIGIT }
UNSIGNED NUMBER = UNSIGNED INTEGER [ "." [ UNSIGNED INTEGER ] ]

[ ("e" | "E" ) [ "+" | "-" ] UNSIGNED INTEGER ]

[The single quotes are part of an identifier. E.g. ' x' and x are different IDENTS].
Note: string constant concatenation "a" "b" becoming "ab" (as in C) is replaced by the "+" operator in Modelica.
Modelica uses the same comment syntax as C++ and Java, and also has structured comments in the form of

annotations and string comments. Inside a comment, the sequence <HTML> . ... </HTML> indicates HTML
code which may be used by tools to facilitate model documentation.

Bold face denotes keywords of the Modelica language. Keywords are reserved words and may not be used as
identifiers, with the exception of initial which is a keyword in section headings, but it is also possible to call
the function initial().

2.2  Grammar

2.2.1 Stored definition

stored definition:
[ within [ name ] ";" ]
{ [ final ] class definition ";" }

2.2.2 Class definition

class_definition
[ encapsulated ]
[ partial ]
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( class | model | record | block | connector | type |
package | functiomn )
class_specifier

class_specifier
IDENT string comment composition end IDENT

| IDENT "=" base prefix name [ array subscripts ]
[ class modification ] comment
| IDENT "=" enumeration " (" ( [enum list] | ":" ) ")" comment
| extends IDENT [ class modification ] string comment composition
end IDENT

base prefix
type prefix

enum_list : enumeration literal { "," enumeration literal}
enumeration literal : IDENT comment
composition

element list
{ public element list |
protected element list |
equation clause |
algorithm clause
}
[ external [ language specification ]
[ external function call ] [ annotation ";" ]
[ annotation ";" 1 ]

language specification
STRING

external function_call
[ component reference "=" ]
IDENT " (" [ expression { "," expression } ] ")"

element list
{ element ";" | annotation ";" }

element
import clause |
extends clause |
[ redeclare ]
[ final ]
[ inner | outer ]
( ( class _definition | component clause) |
replaceable ( class definition | component clause)
[constraining clause comment])
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import clause
import ( IDENT "=" name name ["." "*"] ) comment

2.2.3 Extends

extends clause
extends name [ class modification ] [annotation]

constraining clause
extends name [ class modification ]

2.2.4 Component clause

component_clause:

type prefix type specifier [ array subscripts ] component list
type prefix

[ flow ]

[ discrete | parameter | constant ] [ input | output ]

type specifier
name

component list
component declaration { "," component declaration }

component declaration
declaration comment

declaration
IDENT [ array subscripts ] [ modification ]

2.2.5 Modification

modification
class modification [ "=" expression ]
| "=" expression
| ":=" expression

class modification
"(" [ argument list ] ")"

argument list
argument { "," argument }

argument
element modification

| element redeclaration

element modification
[ each ] [ final ] component reference [ modification ] string comment

element redeclaration
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redeclare [ each ] [ final ]
( ( class definition | component clausel) |
replaceable ( class definition | component clausel)
[constraining clausel)

component clausel
type prefix type specifier component declaration

2.2.6 Equations

equation clause
[ initial ] equation { equation ";" | annotation ";" }

algorithm clause

[ initial ] algorithm { algorithm ";" | annotation ";" }
equation
( simple expression "=" expression

| conditional equation e
| for clause e

| connect clause

| when clause e

| IDENT function call )

comment
algorithm
( component reference ( ":=" expression | function call )
| "(" output expression list ")" ":=" component reference function call
break
return

for clause a
while clause
| when clause a )
comment

|
|
| conditional equation a
|

conditional equation e
if expression then

{ equation ";" }

{ elseif expression then
{ equation ";" }

[ else
{ equation ";" }

]

end if

conditional equation_a
if expression then
{ algorithm ";" }

{ elseif expression then
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{ algorithm ";" }
}
[ else

{ algorithm ";" }
]
end if

for clause_ e
for for indices loop
{ equation ";" }
end for

for clause_a
for for indices loop
{ algorithm ";" }
end for

for_indices

for index {"," for index}

for index:

IDENT [ in expression ]

while clause
while expression loop
{ algorithm ";" }
end while

when_clause_e
when expression then
{ equation ";" }

{ elsewhen expression then

{ equation ";" } }
end when

when clause a
when expression then

{ algorithm ";" }

{ elsewhen expression then
{ algorithm ";" } }

end when

connect_clause

Modelica Language Specification

connect " (" component reference "," component reference ")"

2.2.7 Expressions

expression
simple expression

Modelica 2.1
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| if expression then expression { elseif expression then expression } else

expression

simple expression

logical expression [ ":" logical expression [ ":" logical expression ] ]

logical expression
logical term { or logical term }

logical term
logical factor { and logical factor }

logical factor
[ not ] relation

relation

arithmetic expression [ rel op arithmetic expression ]

rel op
nen | Ne—n | non | ny—n | (] | nesn

arithmetic expression
[ add op ] term { add op term }

add_op

nmyn | n_n

term
factor { mul op factor }

mul op

nmen i Il/ll

factor
primary [ "*" primary ]

primary
UNSIGNED_ NUMBER

| STRING

| false

| true
| component reference [ function call ]
| "(" output expression list ")"
| "[" expression list { ";" expression list } "]"
| "{" function arguments "}"
| end

name
IDENT [ "." name ]

Modelica 2.1
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component reference
IDENT [ array subscripts ] [ "." component reference ]

function call
"(" [ function arguments ] ")"

function arguments
expression [ "," function arguments | for for indices ]
| named arguments
named_arguments: named argument [ "," named arguments ]

named_argument: IDENT "=" expression

output expression list:
[ expression ] { "," [ expression ] }

expression list
expression { "," expression }

array_ subscripts

"[" subscript { "," subscript } "1"
subscript

":" | expression
comment

string comment [ annotation ]

string comment
[ STRING { "+" STRING } ]

annotation
annotation class modification
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3 Modelica semantics

3.1 Fundamentals
Instantiation is made in a context which consists of an environment and an ordered set of parents.

3.1.1 Scoping and name lookup

3.1.1.1 Parents

The classes lexically enclosing an element form an ordered set of parents. A class defined inside another class
definition (the parent) precedes its enclosing class definition in this set.

Enclosing all class definitions is an unnamed parent that contains all top-level class definitions, and not-yet read
classes defined externally as described in section 3.1.4. The order of top-level class definitions in the unnamed
parent is undefined.

During instantiation, the parent of an element being instantiated is a partially instantiated class. /[For example,
this means that a declaration can refer to a name inherited through an extends clause.]

[Example:

class Cl1 ... end C1;
class C2 ... end C2;
class C3

Real x=3;

Cl y;

class C4

Real z;

end C4;

end C3;

The unnamed parent of class definition C3 contains C1, C2, and C3 in arbitrary order. When instantiating class
definition C3, the set of parents of the declaration of x is the partially instantiated class C3 followed by the
unnamed parent with C1, C2, and C3. The set of parents of z is C4, C3 and the unnamed parent in that order.]

3.1.1.2 Static name lookup

Names are looked up at class instantiation to find names of base classes, component types, etc. Implicitly defined
names of record constructor functions are ignored during type name lookup /since a record and the implicitly
created record constructor function, see section 3.4.8.3, have the same name]. Names of record classes are
ignored during function name lookup.

For a simple name /not composed using dot-notation] lookup is performed as follows:

e  First look for implicitly declared iteration variables if inside the body of a for-loop, section 3.3.3, or if
inside the body of a reduction expression, section 3.4.3.1.
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e  When an element, equation or algorithm is instantiated, any name is looked up sequentially in each member
of the ordered set of parents until a match is found or a parent is encapsulated. In the latter case the lookup
stops except for the predefined types, functions and operators defined in this specification. For these cases
the lookup continues in the global scope, where they are defined. [E.g. abs is searched upwards in the
hierarchy as usual. If an encapsulated boundary is reached, abs is searched in the global scope instead. The
operator abs cannot be redefined in the global scope, because an existing class cannot be redefined at the
same level ]
Reference to variables successfully looked up in an enclosing parent class is only allowed for variables
declared as constant. If the use is in a modifier on a short class definition, see section 3.2.7.

[Example:
package A
constant Real x=2;
model B
Real x;
function foo
output Real vy
algorithm y:=x; //lllegal since reference to non-constant x in B.]

e This lookup in each scope is performed as follows

1.  Among declared named elements (class_definition and component declaration) of the class (including
elements inherited from base-classes).

2. Among the import names of qualified import statements in the lexical scope. The import name of
import A.B.C; is C and the import name of import D=A.B.C; is D.

3. Among the public members of packages imported via unqualified import-statements in the lexical
scope. It is an error if this step produces matches from several unqualified imports.

[Note, that import statements defined in inherited classes are ignored for the lookup, i.e. import statements are
not inherited.]

For a composite name of the form A.B for A.B.C, etc.] lookup is performed as follows:
e The first identifier /4] is looked up as defined above.

e If the first identifier denotes a component, the rest of the name /e.g., B or B.C] is looked up among the
declared named component elements of the component.

e Ifthe identifier denotes a class, that class is temporarily instantiated with an empty environment (i.e. no
modifiers, see section 3.1.2) and using the parents of the denoted class. The rest of the name [e.g., B or B.C]
is looked up among the declared named elements of the temporary instantiated class. If the class does not
satisfy the requirements for a package, the lookup is restricted to encapsulated elements only.

[The temporary class instantiation performed for composite names follow the same rules as class instantiation
of the base class in an extends clause, local classes and the type in a component clause, except that the
environment is empty.]

Lookup of the name of an imported package or class, e.g. A.B.C in the statements import A.B.C; import
D=A.B.C; import A.B.C.*, deviates from the normal lexical lookup by starting the lexical lookup of the first
part of the name at the top-level.

Qualified import statements may only refer to packages or elements of packages, i.e. in "import A.B.C;" or
"import D=A.B.C" A.B must be a package. Unqualified import statements may only import from packages, i.e.
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in "import A.B.*;" A.B must be a package. [Note, "import A;" A can be any class as element of the unnamed
top-level package]

3.1.1.3 Dynamic name lookup

An element declared with the prefix outer references an element instance with the same name but using the
prefix inner which is nearest in the enclosing instance hierarchy of the outer element declaration.

There shall exist at least one corresponding inner element declaration for an outer element
reference./Inner/outer components may be used to model simple fields, where some physical quantities, such as
gravity vector, environment temperature or environment pressure, are accessible from all components in a
specific model hierarchy. Inner components are accessible throughout the model, if they are not “shadowed” by
a corresponding non-inner declaration in a nested level of the model hierarchy.]

[Simple Example:

class A
outer Real TO;

end A;

class B

inner Real TO;

A al, a2; // B.TO, B.al.T0 and B.a2.T0 is the same variable
end B;

More complicated example:

class A
outer Real TI;
class B
Real TI;
class C
Real TI;
class D
outer Real TI; //
end D;
D d;
end C;
C c;
end B;
B b;
end A;
class E
inner Real TI;
class F
inner Real TI;
class G

Modelica 2.1 18



Modelica Language Specification

Real TI;
class H
A a;
end H;
H h;
end G;
G g;
end F;
F f£;
end E;

class I
inner Real TI;
E e;
// e.f.g.h.a.TI, e.f.g.h.a.b.c.d.TI, and e.f£.TI is the same variable
// But e.f.TI, e.TI and TI are different wvariables
A a; // a.TI, a.b.c.d.TI, and TI is the same variable
end I;

7

Outer element declarations shall not have modifications. The inner component shall be a subtype of the
corresponding outer component. [If the two types are not identical, the type of the inner component defines the
instance and the outer component references just part of the inner component].

[Example:

class A
outer parameter Real p=2; // error, since modification
end A;

class A
inner Real TI;
class B
outer Integer TI; // error, since A.TI is no subtype of A.B.TI
end B;
end A;

Inner declarations can be used to define field functions, such as position dependent gravity fields, e.g.:

function A
input Real u;
output Real y;
end A;

function B // B is a subtype of A
extends A;

algorithm

end B;

class C
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inner function fc = B; // define function to be actually used
class D
outer function fc = A;

equation

y = fc(u); // function B is used.
end D;
end C;

7

3.1.2 Environment and modification

3.1.2.1 Environment

The environment contains arguments which modify elements of the class (e.g., parameter changes). The
environment is built by merging class modifications, where outer modifications override inner modifications.

3.1.2.2 Merging of modifications

Merging of modifiers means that outer modifiers override inner modifiers. The merging is hiearchical, and a
value for an entire non-simple overrides value modifiers for all components., and it is an error if this overrides a
final attribute for a component. When merging modifiers each modification keeps its own each-attribute.

[The following larger example demonstrates several aspects:

class C1l
class C1l1
parameter Real Xx;
end Cl1;
end C1;
class C2
class C21

end C21;
end C2;
class C3
extends C1;
Cll t(x=3); // ok, Cl1l has been inherited from C1
c21 u; // ok, even though C21 is inherited below
extends C2;
end C3;

The environment of the declaration of t is (x=3). The environment is built by merging class modifications, as
shown by:
class C1l
parameter Real a;
end C1;
class C2
parameter Real b,c;
end C2;
class C3
parameter Real x1; // No default wvalue

Modelica 2.1 20



Modelica Language Specification

parameter Real x2 = 2; // Default wvalue 2
parameter Cl x3; // No default value for x3.a
parameter C2 x4 (b=4) ; // x4.b has default value 4
parameter Cl1 x5 (a=5) ; // x5.a has default value 5
extends C1l; // No default value for inherited element a
extends C2 (b=6,c=77) ; // Inherited b has default value 6
end C3;
class C4

extends C3 (x2=22, x3(a=33), x4 (c=44), x5=x3, a=55, b=66);
end C4;

Outer modifications override inner modifications, e.g., b=66 overrides the nested class modification of
extends C2 (b=6). This is known as merging of modifications: merge ( (b=66), (b=6)) becomes

(b=66).

An instantiation of class C4 will give an object with the following variables:
Variable Default value
x1 none

x2 22

x3.a 33

x4.b 4

x4.c 44

x5.a x3.a

a 55

b 66

c 77

/

3.1.2.3 Single modification

Two arguments of a modification shall not designate the same primitive attribute of an element. When using
qualified names the different qualified names starting with the same identifier are merged into one modifier.

[Example:

class C1

Real x[3];
end C1;
class C2 = Cl(x=ones(3), x[2]1=2); // Error: x[2] designated twice
class C3

class C4

Real x;

end C4;

C4 a(x.unit = "V", x.displayUnit="mv", x=5.0);
// Ok, different attributes designated (unit, displayUnit and value)
// identical to:
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C4 b(x(unit = "V", displayUnit="mvV") = 5.0));
end C3;

7

3.1.2.4 Instantiation order

The name of a declared element shall not have the same name as any other element in its partially instantiated
parent class. A component shall not have the same name as its type specifier.

Variables and classes can be used before they are declared.

[In fact, declaration order is only significant for:

= Functions with more than one input variable called with positional arguments, section 3.4.8.
= Functions with more than one output variable, section 3.4.8.

»  Records that are used as arguments to external functions, section 6.2.3

= Enumeration literal order within enumeration types, section 3.2.7.1.

7

In order to guarantee that elements can be used before they are declared and that elements do not depend on the
order of their declaration in the parent class, the instantiation proceeds in the following steps:

Flattening

First the names of declared local classes and components are found. Here modifiers are merged to the local
elements and redeclarations take effect. Then base-classes are looked up, flattened and inserted into the class.
The lookup of the base-classes should be independent [The lookup of the names of extended classes should give
the same result before and after flattening the extends clauses. One should not find any element used during this
flattening by lookup through the extends clauses. It should be possible to flatten all extends clauses in a class
before inserting the result of flattening. Local classes used for extends should be possible to flatten before
inserting the result of flattening the extends clauses.]

Instantiation

Flatten the class, apply the modifiers and instantiate all local elements.

Check of flattening

Check that duplicate elements /due to multiple inheritance] are identical after instantiation.
Modifiers for array elements

The each keyword on a modifier requires that it is applied in an array declaration/modification, and the modifier
is applied individually to each element of the array. If the modified element is a vector and the modifier does not
contain the each-attribute, the modification is split such that the first element in the vector is applied to the first
element of the vector of elements, the second to the second element, etc. Matrices and general arrays of elements
are treated by viewing those as a vectors of vectors etc.

If the modified element is a vector with subscripts the subscripts must be Integer literals.

If a nested modifier is split, the split is propagated to all elements of the nested modifier, and if they are modified
by the each-keyword the split is inhibited for those elements. If the nested modifier that is split in this way

Modelica 2.1 22



Modelica Language Specification

contains re-declarations that are split it is illegal.

[ Example:

model C
parameter Real a [3];
parameter Real d;
end C;
model B
C c[5] (each a ={1,2,3}, d={1,2,3,4,5});
end B;

This implies that c[i].a[j]=j, and c[i].d=i.]
3.1.3 Subtyping and type equivalence

3.1.3.1 Subtyping of classes

For any classes S and C, S is a supertype of C and C is a subtype of S if they are equivalent or if:
e every public declaration element of S also exists in C (according to their names)
e those element types in S are supertypes of the corresponding element types in C.

A base class is the class referred to in an extends clause. The class containing the extends clause is called the
derived class. [Base classes of C are typically supertypes of C, but other classes not related by inheritance can
also be supertypes of C.]

3.1.3.2 Subtyping of components

Component B is subtype of A if:
e Both are scalars or arrays with the same number of dimensions
e The type of B is subtype of the base type of A (base type for arrays)
e For every dimension of an array
e The size of A is indefinite, or
e  The value of expression (size of B) - (size of A) is constant equal to 0 (in the environment of B)
3.1.3.3 Type equivalence
Two types T and U are equivalent if:

e T and U denote the same built-in type (one of RealType, IntegerType, StringType or BooleanType), or

e Tand U are classes, T and U contain the same public declaration elements (according to their names),
and the elements types in T are equivalent to the corresponding element types in U.

3.1.3.4 Type identity
Two elements T and U are identical if:
e Tand U are equivalent,

e they are either both declared as final or none is declared final,
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e for a component their type prefixes (see section 3.2.1) are identical, and

e if T and U are classes, T and U contain the same public declaration elements (according to their names),
and the elements in T are identical to the corresponding element in U.

3.1.3.5 Ordered type identity

Two elements T and U are ordered type identical if and only if:
e TandU are type identical
e IfTandU are classes

e T and U have the same number of elements

e The i:th declaration element of T and the i:th declaration element of U are ordered type identical

3.1.3.6 Function Type Identity

Two functions T and U have identical type if and only if
e T and U have the same number of input and output elements
e For each input or output element

e The corresponding elements have the same name

e The corresponding elements are ordered type identical
3.1.3.7 Enumeration Type Equivalence

Two enumeration types S and E are equivalent if:

e S and E have the same number of enumeration literals

e the i:th enumeration literal of S has the same name as the i:th enumeration literal of E.
3.1.3.8 Subtyping of enumeration types

For any enumeration types S and E, S is a supertype of E and E is a subtype of S if they are equivalent or if S is
the type enumeration(:).

[Example:
El = enumeration (one, two, three) ; // E1 not subtype of E2
E2 = enumeration (one, two,three,four); // E2 is not a subtype of El
E3 = enumeration (one, two, three, four); // E3 subtype of E2
E4 = enumeration(:); // El, E2, E3 subtypes of E4

3.1.4 External representation of classes

Classes may be represented in the hierarchical structure of the operating system [the file system or a database].
For classes with version information see also section 7.4.3. The nature of such an external entity falls into one of
the following two groups:
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= Structured entities [e.g. a directory in the file system]

= Non-structured entities [e.g. a file in the file system]
3.1.4.1 Structured entities

A structured entity [e.g. the directory A] shall contain a node. In a file hierarchy, the node shall be stored in file
package .mo. The node shall contain a stored-definition that defines a class /A] with a name matching the
name of the structured entity. [The node typically contains documentation and graphical information for a
package, but may also contain additional elements of the class A.]

A structured entity may also contain one or more sub-entities (structured or non-structured). The sub-entities are
mapped as elements of the class defined by their enclosing structured entity. /[For example, if directory A
contains the three files package . mo, B.mo and C.mo the classes defined are A, A.B, and A . C.] Two sub-
entities shall not define classes with identical names [for example, a directory shall not contain both the sub-
directory A and the file A.mo].

3.1.4.2 Non-structured entities

A non-structured entity /e.g. the file A. mo] shall contain only a model-definition that defines a class /A with a
name matching the name of the non-structured entity.

3.1.4.3 Within clause

A non-top level entity shall begin with a within-clause which for the class defined in the entity specifies the
location in the Modelica class hierarchy. A top-level class may contain a within-clause with no name.

For a sub-entity of an enclosing structured entity, the within-clause shall designate the class of the enclosing
entity.
3.1.4.4 Use of MODELICAPATH

The top-level scope implicitly contains a number of classes stored externally. If a top-level name is not found at
global scope, a Modelica translator shall look up additional classes in an ordered list of library roots, called
MODELICAPATH. [On a typical system, MODELICAPATH is an environment variable containing a
semicolon-separated list of directory names.]

[The first part of the path A.B. C (i.e., A) is located by searching the ordered list of roots in MODELICAPATH.
If no root contains A the lookup fails. If A has been found in one of the roots, the rest of the path is located in A;
if that fails, the entire lookup fails without searching for A in any of the remaining roots in MODELICAPATH.]

3.2 Declarations

3.2.1 Component clause

If the type specifier of the component denotes a built-in type (RealType, IntegerType, etc.), the instantiated
component has the same type.

If the type specifier of the component does not denote a built-in type, the name of the type is looked up (3.1.1).
The found type is instantiated with a new environment and the partially instantiated parent of the component. It
is an error if the type is partial. The new environment is the result of merging

e the modification of parent element-modification with the same name as the component
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e the modification of the component declaration
in that order.

An environment that defines the value of a component of built-in type is said to define a declaration equation
associated with the declared component. For declarations of vectors and matrices, declaration equations are
associated with each element. [This makes it possible to override the declaration equation for a single element in
a parent modification, which would not be possible if the declaration equation is regarded as a single matrix
equation.]

Array dimensions shall be non-negative parameter expressions, or the colon operator denoting that the array
dimension is left unspecified.

Variables declared with the flow type prefix shall be a subtype of Real.

Type prefixes (i.e., flow, discrete, parameter, constant, input, output) shall only be applied for type, record and
connector components. The type prefixes flow, input and output of a structured component are also applied to
the elements of the component. The type prefixes flow, input and output shall only be applied for a structured
component, if no element of the component has a corresponding type prefix of the same category. [For example,
input can only be used, if none of the elements has an input or output type prefix]. The corresponding rules for
the type prefixes discrete, parameter and constant are described in section 3.2.2.1.

The rules for components of function types and components in functions are described in section 3.2.13.

3.2.2 Variability prefix

The prefixes discrete, parameter, constant of a component declaration are called variability prefixes and define
in which situation the variable values of a component are initialized (see section 3.5) and when they are changed
in transient analysis (= solution of initial value problem of the hybrid DAE):

e A variable vc declared with the parameter or constant prefixes remains constant during transient analysis.

e A discrete-time variable vd has a vanishing time derivative (informally der(vd)=0, but it is not legal to
apply the der() operator to discrete-time variables) and can change its values only at event instants during
transient analysis (see section 3.5).

e A continuous-time variable vn may have a non-vanishing time derivative (der(vn)=0 possible) and may
change its value at any time during transient analysis (see section 3.5).

If a Real variable is declared with the prefix discrete it must be assigned in a when-clause, either by an
assignment or an equation.

A Real variable assigned in a when-clause is a discrete-time variable, even though it was not declared with the
prefix discrete. A Real variable not assigned in any when-clause and without any type prefix is a continuous-
time variable.

The default variability for Integer, String, Boolean, or enumeration variables is discrete-time, and it is not
possible to declare continuous-time Integer, String, Boolean, or enumeration variables. /4 Modelica translator is
able to guarantee this property due to restrictions imposed on discrete expressions, see section 3.4.9]

The variability of expressions and restrictions on variability for definition equations is given in section 3.4.9.

[A discrete-time variable is a piecewise constant signal which changes its values only at event instants during
simulation. Such types of variables are needed in order that special algorithms, such as the algorithm of
Pantelides for index reduction, can be applied (it must be known that the time derivative of these variables is
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identical to zero). Furthermore, memory requirements can be reduced in the simulation environment, if it is
known that a component can only change at event instants.

A parameter variable is constant during simulation. This prefix gives the library designer the possibility to
express that the physical equations in a library are only valid if some of the used components are constant
during simulation. The same also holds for discrete-time and constant variables. Additionally, the parameter
prefix allows a convenient graphical user interface in an experiment environment, to support quick changes of
the most important constants of a compiled model. In combination with an if-clause, a parameter prefix allows
to remove parts of a model before the symbolic processing of a model takes place in order to avoid variable
causalities in the model (similar to #ifdef'in C). Class parameters can be sometimes used as an alternative.
Example:

model Inertia

parameter Boolean state = true;
equation
J*¥a = tl1l - t2;
if state then // code which is removed during symbolic
der (v) = a; // processing, if state=false
der(r) = v;
end if;

end Inertia;

A constant variable is similar to a parameter with the difference that constants cannot be changed after they
have been given a value. It can be used to represent mathematical constants, e.g.

constant Real PI=4*arctan(l);

There are no continuous-time Boolean, Integer or String variables. In the rare cases they are needed they can be
faked by using Real variables, e.g.:

Boolean offl, offla;

Real off2;
equation
offl = s1 < 0;
offla = noEvent (sl < 0); // error, since offla is discrete
off2 = if noEvent(s2 < 0) then 1 else 0; // possible
ul = if offl then sl else 0; // state events
u2 = if noEvent (off2 > 0.5) then s2 else 0; // no state events

Since off1 is a discrete-time variable, state events are generated such that off1 is only changed at event instants.
Variable off2 may change its value during continuous integration. Therefore, ul is guaranteed to be continuous
during continuous integration whereas no such guarantee exists for u2.

/
3.2.2.1 Variability of structured entities

For elements of structured entities with variability prefixes the most restrictive of the variability prefix and the
variability of the component wins (using the default variability for the component if there is no variability prefix
on the component).

[Example:
record A
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constant Real pi=3.14;
Real vy;
Integer i;
end A;
parameter A a;
// a.pl is a constant
// a.y and a.i are parameters
A Db;
// b.pi is a constant
// b.y is a continuous-time variable
// b.1i is a dicrete-time wvariable

/
3.2.3 Parameter bindings

The declaration equations for parameters and constants in the translated model must be acyclical after
instantiation. Thus it is not possible to introduce equations for parameters by cyclic dependencies.

[Example:

constant Real p=2*q;
constant Real g=sin(p); // Illegal since p=2*qg, g=sin(p) are cyclical

model ABCD
parameter Real A[n,n];
parameter Integer n=size(A,1);
end ABCD;

final ABCD a;
// Illegal since cyclic dependencies between size(a.A,1l) and a.n

ABCD b (redeclare Real A[2,2]1=[1,2;3,4]1);
// Legal since size of A is no longer dependent on n.

ABCD c¢(n=2); // Legal since n is no longer dependent on the size of A.

7
3.2.4 Protected elements

Protected element cannot be accessed via dot notation. They may not be modified or
redeclared in class modification.

All elements defined under the heading protected are regarded as protected. All other
elements [i.e., defined under the heading public, without headings or in a separate
file] are public [i.e. not protected].

If an extends clause is used under the protected heading, all elements of the base class
become protected elements of the current class. If an extends clause is a public
element, all elements of the base class are inherited with their own protection. The
eventual headings protected and public from the base class do not affect the
consequent elements of the current class (i.e. headings protected and public are not
inherited).
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3.2.5 Array declarations

The Modelica type system includes scalar number, vector, matrix (number of dimensions, ndim=2), and arrays
of more than two dimensions. [There is no distinguishing between a row and column vector.]

The following table shows the two possible forms of declarations and defines the terminology. C is a placeholder
for any class, including the builtin type classes Real, Integer, Boolean, String, and enumeration types. The type
of a dimension upper bound expression, e.g. n, m, p,... in the table below, need to be a subtype of Integer or the
name E for an enumeration type E, or Boolean. Colon (:) indicates that the dimension upper bound is unknown
and is a subtype of Integer. The lower bound of a dimension is 1 if the dimension index type is a subtype of
Integer, or E.el, if the dimension index type is an enumeration type E=enumeration(el, ..., en), or false if the
index type is Boolean. The upper bound is E.en if the dimension index type is the enumeration type
E=enumeration(el, ..., en), or true if the index type is Boolean.

An array indexed by Boolean or enumeration type can only be used in the following ways:
e  Subscripted using expressions of the appropriate type (i.e. Boolean or the enumerated type)

e Declaration equations of the form x1 = x2 as well as declaration assignments of the form x1 :=x2 are
allowed for arrays independent of whether the index types of dimensions are subtypes of Integer,
Boolean, or enumeration types.

Modelica form 1 [Modelica form 2 # dimensions [Designation  [Explanation

C x; C x; 0 Scalar Scalar

C[n] x; C x[n]; 1 'Vector n — Vector

C[E] x; C x[E] 1 'Vector Vector index by enumeration type E
C[n, m] x; C x[n, m]; 2 Matrix nx m Matrix

Cln,m,p,..]x; [Cx[mnp,..]; k IArray |Array with k dimensions (k>=0).

[The number of dimensions and the dimensions sizes are part of the type, and shall be checked for example at
redeclarations. Declaration form 1 displays clearly the type of an array, whereas declaration form 2 is the
traditional way of array declarations in languages such as Fortran, C, C.

Real[:] wv1, v2 // vectors v1 and v2 have unknown sizes. The actual sizes may be different.
1t is possible to mix the two declaration forms, but it is not recommended

Real[3,2] x[4,5]; // x has type Real[4,5,3,2];

A vector y indexed by enumeration values
type TwoEnums = enumeration (one, two) ;

Real[TwoEnums] y;
/

Zero-valued dimensions are allowed, so C x[0] ; declares an empty vector and C x [0, 3] ; an empty matrix.

[Special cases:
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Modelica form 1  [Modelica form 2 # dimensions |Designation  |[Explanation

C[1] x; C x[1]; 1 'Vector 1 — Vector, representing a scalar
C[1,1] x; Cx[1, 1]; 2 Matrix 1 x 1 — Matrix, representing a scalar
C[n,1] x; C x[n, 1]; 2 Matrix n x 1 — Matrix, representing a column
C[1,n] x; C x[1, n]; 2 Matrix 1 x n — Matrix, representing a row

/

The type of an array of array is the multidimensional array which is constructed by taking the first dimensions
from the component declaration and subsequent dimensions from the maximally expanded component type. A
type is maximally expanded, if it is either one of the built-in types (Real, Integer, Boolean, String, enumeration
type) or it is not a type class. Before operator overloading is applied, a type class of a variable is maximally
expanded.

[Example:

type Voltage Real (unit = “Vv”);
type Current = Real (unit = “ A “);
connector Pin

Voltage v; // type class of v = Voltage, type of v =Real
flow Current i; // type class of 1= Current, type of i = Real
end Pin;

type MultiPin = Pin[5];
MultiPin[4] ©p; // type class of p is MultiPin, type of p is Pin[4,5];

type Point = Reall[3];
Point pl[10];
Real p2l[10,3];

The components pl and p2 have identical types.
p2I[5] = pll2]+ p21[4]; // equivalent to p2[5,:]=pl[2,:] + p2[4,:]
Real r[3] = pll[2]; // equivalent to r[3]=pl[2,:]

]

[Automatic assertions at simulation time:

Let A be a declared array and i be the declared maximum dimension size of the d-dimension, then an assert
statement “assert(i >=0, ...)" is generated provided this assertion cannot be checked at compile time. It is a
quality of implementation issue to generate a good error message if the assertion fails.

Let A be a declared array and i be an index accessing an index of the di-dimension. Then for every such index-
access an assert statement “assert(i >= 1 and i <= size(4,d,),, ... )’ is generated, provided this assertion
cannot be checked at compile time.

For efficiency reasons, these implicit assert statement may be optionally suppressed.]

3.2.6 Final element modification

An element defined as final in an element modification or declaration cannot be modified by a modification or
by a redeclaration. All elements of a final element are also final. [Setting the value of a parameter in an
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experiment environment is conceptually treated as a modification. This implies that a final modification equation
of a parameter cannot be changed in a simulation environment].

[Examples:

type Angle = Real (final quantity="Angle”, final unit ="rad”,
displayUnit="deg”) ;

Angle al (unit="deg”) ; // error, since unit declared as final!

Angle a2 (displayUnit="rad”) ; // fine

model TransferFunction
parameter Real b[:] = {1} "numerator coefficient vector”;
parameter Real al:] {1,1} "denominator coefficient vector”;

end TransferFunction;

model PI ”"PI controller”;
parameter Real k=1 "gain”;
parameter Real T=1 ”"time constant”;
TransferFunction tf (final b=k*{T,1}, £final a={T,0});
end PI;

model Test

PI cl1(k=2, T=3); // fine
PI c2(b={1}); // error, b is declared as final
end Test;

3.2.7 Short class definition

A class definition of the form

class IDENT; = IDENT, class modification ;

is identical, except for the lexical scope of modifiers, where the short class definition does not introduce an
additional lexical scope for modifiers, to the longer form

class IDENT,;
extends IDENT, class _modification ;
end IDENT,;

[Example: demonstrating the difference in scopes.

model Resistor

parameter Real R;

end Resistor;

model A

parameter Real R;
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replaceable model Load=Resistor (R=R) extends TwoPin;

// Correct, sets the R in Resistor to R from model A.

replaceable model LoadError
extends Resistor (R=R) ;
// Gives the singular equation R=R, since the right-hand side R
// is searched for in LoadError and found in its base-class Resistor.
end LoadError extends TwoPin;
Load a,b,c;

ConstantSource ...;

end A;

A short class definition of the form
type TN = T[N] (optional modifier) ;
where N represents arbitrary array dimensions, conceptually yields an array class

‘array’ TN
T[n] _ (optional modifiers);
"end’ TN;

Such an array class has exactly one anonymous component (). When a component of such an array class type is
instantiated, the resulting instantiated component type is an array type with the same dimensions as _ and with
the optional modifier applied

[Example:

type Force = Real[3] (unit={“Nm*,”Nm”,”Nm“}) ;
Force f1;
Real f2[3] (unit={“Nm”,”Nm”,”Nm“}) ;

the types of £1 and £2 are identical.]

A base-prefix applied in the short-class definition does not influence its type, but is applied to components
declared of this type or types derived from it. It is not legal to combine other components with an extends from
an array class, a class with non-empty base-prefix, or a simple type.

[Example:
type InArgument=input Real;
type OutArgument=output Real [3];
function foo

InArgument u; // Same as ‘input Real u’
OutArgument y; // Same as ‘output Real [3] vy’
algorithm

y:=£ill(u,3);
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end foo;
Real x[:]1=foo(time) ;

]
3.2.7.1 Enumeration types

A declaration of the form
type E = enumeration([enum list]);

defines an enumeration type E and the associated enumeration literals of the enum-list. This is the only legal use
of the enumeration keyword. The enumeration literals shall be distinct within the enumeration type. The names
of the enumeration literals are defined inside the scope of E. Each enumeration literal in the enum_list has type
E.

[Example:
type Size = enumeration(small, medium, large, xlarge):;
Size t_shirt size = Size.medium;
]
An optional comment string can be specified with each enumeration literal:
[Example:
Eype Size2 = enumeration(small “1°%7, medium “2°%, large “3*¥, xlarge
\\4t ") :

An enumeration type is a simple type and the attributes are defined in section 3.6. The Boolean type name or an
enumeration type name can be used to specify the dimension range for a dimension in an array declaration and to
specify the range in a for loop range expression. An element of an enumeration type can be accessed in an
expression [e.g. an array index value].

[Example:
type DigitalCurrentChoices = enumeration (zero, one);
// Similar to Real, Integer

Setting attributes:

type DigitalCurrent = DigitalCurrentChoices (quantity="Current”,

start = one, fixed = true);
DigitalCurrent c(start = DigitalCurrent.one, fixed = true);
DigitalCurrentChoices c(start = DigitalCurrentChoices.one, fixed = true);

/

Accessing attribute values in expressions:
Real x[DigitalCurrentChoices];

// Example using the type name to represent the range
for e in DigitalCurrentChoices loop

x[e] := 0.;
end loop;
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for e loop // Equivalent example using short form
x[e] := 0.;
end loop;

// Equivalent example using the colon range constructor

for e in DigitalCurrentChoices.zero : DigitalCurrentChoices.one loop
x[e] := 0.;

end loop;

model Mixingl ”"Mixing of multi-substance flows, alternative 1”
replaceable type E=enumeration(:)”Substances in Fluid”;
input Real cl[E], c2[E], mdotl, mdot2;
output Real c¢3[E], mdot3;

equation
0 = mdotl + mdot2 + mdot3;
for e in E loop

0 = mdotl*cl[e] + mdot2*c2[e]+ mdot3*c3[e];

end for;

/* Array operations on enumerations are NOT (yet) possible:
zeros (n) = mdotl*cl + mdot2*c2 + mdot3*c3 // error

*/

end Mixingl;

model Mixing2 ”Mixing of multi-substance flows, alternative 2”
replaceable type E=enumeration(:)”Substances in Fluid”;
input Real cl[E], c2[E], mdotl, mdot2;
output Real c¢3[E], mdot3;

protected
// No efficiency loss, since ccl, cc2, cc3
// may be removed during translation
Real ccl[:]1=cl, cc2[:]=c2, cc3[:]=c3;
final parameter Integer n = size(ccl,l);

equation

0 = mdotl + mdot2 + mdot3;
zeros (n) = mdotl*ccl + mdot2*cc2 + mdot3*cc3
end Mixing2;

7
3.2.8 Local class definition

The local class should be statically instantiable with the partially instantiated parent of the local class apart from
local class components that are partial or outer. The environment is the modification of any parent class element
modification with the same name as the local class, or an empty environment.

The uninstantiated local class together with its environment becomes an element of the instantiated parent class.

[The following example demonstrates parameterization of a local class:
class C1l
class Voltage = Real (nominal=1) ;
Voltage v1, v2;
end C1;
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class C2
extends C1 (Voltage (nominal=1000)) ;
end C2;

Instantiation of class C2 yields a local class Voltage with nominal-modifier 1000. The variables vl and v2
instantiate this local class and thus have a nominal value of 1000.]

3.2.9 Extends clause

The name of the base class is looked up in the partially instantiated parent of the extends clause. The found base
class is instantiated with a new environment and the partially instantiated parent of the extends clause. The new
environment is the result of merging

1. arguments of all parent environments that match names in the instantiated base class
2. the optional class modification of the extends clause
in that order.

[Examples of the three rules are given in the following example:
class A
parameter Real a, b;
end A;
class B
extends A (b=2); // Rule #2
end B;
class C
extends B(a=1) ; // Rule #1
end C;

/
The elements of the instantiated base class become elements of the instantiated parent class.

[From the example above we get the following instantiated class:
class Cinstance
parameter Real a=1;
parameter Real b=2;
end Cinstance;
The ordering of the merging rules ensures that, given classes A and B defined above,
class C2
B bcomp (b=3) ;
end C2;

yields an instance with bcomp . b=3, which overrides b=2.]
The declaration elements of the instantiated base class shall either
e Not already exist in the partially instantiated parent class [i.e., have different names] .

e Be exactly identical to any element of the instantiated parent class with the same name and the same
level of protection (public or protected) and same contents. In this case, one of the elements is ignored
(since they are identical it does not matter which one).

Otherwise the model is incorrect.
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Equations of the instantiated base class that are syntactically equivalent to equations in the instantiated parent
class are discarded. [Note: equations that are mathematically equivalent but not syntactically equivalent are not
discarded, hence yield an overdetermined system of equations.]

3.2.10 Redeclaration

A redeclare construct in a modifier replaces the declaration of a local class or component in the modified
element with another declaration. A redeclare construct as an element replaces the inherited declaration of a local
class or component with another declaration.

A class declaration of the type ‘class extends B(...)’ replaces the inherited class B with another declaration that
extends the inherited class where the optional class-modification is applied to the inherited class. /Since this
implies that all declarations are inherited with modifications applied there is no need to apply modifiers to the
new declaration.]

For ‘class extends B(...)’ the inherited class is subject to the same restrictions as a redeclare of the inherited
element and the new element is only replaceable if the new definition is replaceable.

[Example:

class A
parameter Real x;
end A;
class B
parameter Real x=3.14, y; // B 1s a subtype of A
end B;
class C
replaceable A a(x=1);
end C;
class D
extends C(redeclare B a(y=2));
end D;

which effectively yields a class D2 with the contents

class D2
B a(x=1, y=2);
end D2;

Example to extend from existing packages:
package PowerTrain // library from someone else

replaceable package GearBoxes

end GearBoxes;
end PowerTrain;

package MyPowerTrain
extends PowerTrain; // use all classes from PowerTrain

package extends Gearboxes // add classes to sublibrary

end Gearboxes;
end MyPowerTrain;
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Example for an advanced type of package structuring with constraining types:
partial package PartialMedium "Generic medium interface”
constant Integer nX "number of substances”;

replaceable partial model BaseProperties

end BaseProperties;

replaceable partial function dynamicViscosity

end dynamicViscosity;
end PartialMedium;

package Air "Special type of medium”
extends PartialMedium(nX = 1);

model extends BaseProperties (T (stateSelect=StateSelect.prefer))
// extends from Baseproperties with modification
// note, nX = 1 (!)

end BaseProperties

function extends dynamicViscosity
// extends from dynamicViscosity

end dynamicViscosity;
or
redeclare function dynamicViscosity

// replaces dynamicViscosity by a new implementation

end dynamicsViscosity;
end Air;

]
3.2.10.1 Constraining type

In a replaceable declaration the optional constraining_clause defines a constraining type. Any modifications
following the constraining type name are applied both for the purpose of defining the actual constraining type
and they are automatically applied in the declaration and in any subsequent redeclaration. If the
constraining_clause is not present in the original declaration (i.e., the non-redeclared declaration), the type of the
declaration is also used as a constraining type and modifications affect the constraining type and are applied in
subsequent redeclarations.

[Example:

A modification of the constraining type is automatically applied in subsequent redeclarations:

model ElectricalSource
replaceable Sine source extends MO (final n=5);

end ElectricalSource;

Modelica 2.1 37



Modelica Language Specification

model TrapezoidalSource
extends ElectricalSource (
redeclare Trapezoidal source); // source.n=5
end TrapezoidalSource;

A modification of the base type without a constraining type is automatically applied in subsequent
redeclarations:
model Circuit
replaceable model NonlinearResistor = Resistor (R=100) ;

end Circuit;

model Circuit2
extends Circuit (
redeclare replaceable model NonlinearResistor
= ThermoResistor (T0=300)) ;
// As a result of the modification on the base type,
// the default value of R is 100
end Circuit2;

model Circuit3
extends Circuit2 (
redeclare replaceable model NonlinearResistor
= Resistor (R=200));
// The TO modification is not applied because it did not
// appear in the original declaration
end Circuit3;

A redeclaration can redefine the constraining type:
model Circuit4
extends Circuit2 (
redeclare replaceable model NonlinearResistor

= ThermoResistor extends ThermoResistor) ;
end Circuit4;

model Circuith
extends Circuit4 (
redeclare replaceable model NonlinearResistor
= Resistor); // illegal
end Circuiths;

]

The class or type of component shall be a subtype of the constraining type. In a redeclaration of a replaceable
element, the class or type of a component must be a subtype of the constraining type. The constraining type of a
replaceable redeclaration must be a subtype of the constraining type of the declaration it redeclares. In an
element modification of a replaceable element, the modifications are applied both to the actual type and to the
constraining type.

In an element redeclaration of a replaceable element the modifiers of the replaced constraining type are merged
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to both the new declaration and to the new constraining type, using the normal rules where outer modifiers
override inner modifiers.

When a class is instantiated as a constraining type, the instantiation of its replaceable elements will use the
constraining type and not the actual default types.

3.2.10.2 Restrictions on redeclarations

The following additional constraints apply to redeclarations:

e only classes and components declared as replaceable can be redeclared with a new type, which must be
a subtype of the constraining type of the original declaration, and to allow further redeclarations one
must use “redeclare replaceable”

e areplaceable class used in an extends clause shall only contain public components [otherwise, it
cannot be guaranteed that a redeclaration keeps the protected variables of the replaceable default
class]

e an element declared as constant cannot be redeclared

e an element declared as parameter can only be redeclared with parameter or constant

e an element declared as discrete can only be redeclared with discrete, parameter or constant
e a function can only be redeclared as function

e an element declared as flow can only be redeclared with flow

e an element declared as not flow can only be redeclared without flow

e an element declared as input can only be redeclared as input

e an element declared as output can only be redeclared as output

Modelica does not allow a protected element to be redeclared as public, or a public element to be redeclared as
protected.

Array dimensions may be redeclared.
3.2.10.3 Suggested redeclarations and modifications

A declaration can have an annotation “choices” containing modifiers on choice, where each of them indicates a
suitable redeclaration or modifications of the element.

This is a hint for users of the model, and can also be used by the user interface to suggest reasonable
redeclaration, where the string comments on the choice declaration can be used as textual explanations of the
choices. The annotation is not restricted to replaceable elements but can also be applied to non-replaceable
elements, enumeration types, and simple variables.

[Example:

replaceable model MyResistor=Resistor
annotation (choices (
choice (redeclare MyResistor=1ib2.Resistor (a={2}) “..”),
choice (redeclare MyResistor=1ib2.Resistor2 “..”)));

replaceable Resistor Load(R=2) extends TwoPin
annotation (choices (
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choice (redeclare lib2.Resistor Load(a={2}) “..”),
choice (redeclare Capacitor Load(L=3) “.”")));

replaceable FrictionFunction a(func=exp) extends Friction
annotation (choices (
choice (redeclare ConstantFriction af(c=1) “.”),
choice (redeclare TableFriction a(table="..") “..”),
choice (redeclare FunctionFriction a(func=exp) “..”))));

It can also be applied to non-replaceable declarations, e.g. to describe enumerations.
type KindOfController=Integer (min=1,max=3)
annotation (choices (
choice=1 “p”,
choice=2 “PI”,
choice=3 “PID”));

model A
KindOfController x;

end A;

A a(x=3 “PID”");

]
3.2.11 Derivatives of functions

A function declaration can have an annotation derivative specifying the derivative function. This can influence
simulation time and accuracy and can be applied to both functions written in Modelica and to external functions.
A derivative annotation can state that it is only valid under certain restrictions on the input arguments. These
restrictions are defined using the following optional attributes: order (only a restriction if order>1, the default for
order is 1), noDerivative, and zeroDerivative. The given derivative-function can only be used to compute the
derivative of a function call if these restrictions are satisfied. There may be multiple restrictions on the
derivative, in which case they must all be satisfied. The restrictions also imply that some derivatives of some
inputs are excluded from the call of the derivative (since they are not necessary). A function may supply multiple
derivative functions subject to different restrictions.

[Example:

function foo0 annotation(derivative=fool); end foo0;
function fool annotation(derivative (order=2)=foo2); end fool;
function foo2 end foo2;

/
The inputs to the derivative function of order 1 are constructed as follows:

First are all inputs to the original function, and after all them we will in order append one derivative for each
input containing reals.

The outputs are constructed by starting with an empty list and then in order appending one derivative for each
output containing reals.

If the Modelica function call is a nth derivative (n>=1), i.e. this function call has been derived from an (n-1)th
derivative, an annotation(order=n+1)=..., specifies the (n+1)th derivative, and the (n+1)th derivative call is
constructed as follows:
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The input arguments are appened with the (n+1)th derivative, which are constructed in order from the nth order
derivatives.

The output arguments are similar to the output argument for the nth derivative, but each output is one higher in
derivative order.

[Example: Given the declarations
function foo0

input Real x;

input Boolean linear;
input ...;

output Real y;

annotation (derivative=fool) ;
end foo0;

function fool

input Real x;

input Boolean linear;
input ...;

input Real der x;

output Real der y;

annotation (derivative (order=2)=foo2) ;
end fool;

function foo2

input Real x;

input Boolean linear;
input ...;

input Real der x;

input Real der 2 x;

output Real der 2 y;

the equation
(esy(©),...)=f000(...,x(t),b,...);
implies that:
(...d y(0)/dt,...)=fo01(...,x(1),b,..., ...,d X(t)/dt,...);
(..,d™2 y(t)/dt2,...)=f002(...,x(t),b,...,d x(t)/dt,..., ...,d"2 x(t)/dt"2,...);
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An input or output to the function may be any simple type (Real,Boolean,Integer, String and enumeration types)
or a record, provided the record does not contain both reals and non-reals predefined types. The function must
have at least one input containing reals. The output list of the derivative function may not be empty.

zeroDerivative=input_varl

The derivative function is only valid if input _varl is independent of the variables the function call is
differentiated with respect to (i.e. that the derivative of input_varl is “zero”). The derivative of input varl is
excluded from the argument list of the derivative-function.

[Assume that function f takes a matrix and a scalar. Since the matrix argument is usually a parameter expression
it is then useful to define the function as follows (the additional derivative = [ general _der is optional and can
be used when the derivative of the matrix is non-zero).

function f “Simple table lookup”

input Real x;

input Real y[:, 2];

output Real z;

annotation(derivative(zeroDerivative=y) = f_der, derivative=f general der);
algorithm ...
end f;

function f der “Derivative of simple table lookup”
input Real x;
input Real y[:, 2];
input Real x_der;
output Real z_der;
algorithm ...
end f der;

function f general der “Derivative of table lookup taking into account varying tables”
input Real x;
input Real y[:, 2];
input Real x_der;
input Real y_derf[:, 2];
output Real z_der;
algorithm ...
end f general der;

]
noDerivative(input_var2 = f(input varl, ...))

The derivative function is only valid if the input argument input_var2 is computed as f(input_varl, ...). The
derivative of input_var2 is excluded from the argument list of the derivative-function.

[Assume that function fg is defined as a composition f(x, g(x)). When differentiating f'it is useful to give the
derivative under the assumption that the second argument is defined in this way:

function fg
input Real x;
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output Real z;
algorithm

z =1(x, g(x));
end fg;

function f
input Real x;
input Real y;

output Real z;
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annotation(derivative(noDerivative(y = g(x))) = {_der);

algorithm ...
end f;

function f der
input Real x;

input Real x_der;

input Real y;

output Real z _der;

algorithm ...
end f der;

This is useful if g represents the major computational effort of fg).]

3.2.12 Restricted classes

The keyword class can be replaced by one of the following keywords: record, type, connector, model, block,
package or function. Certain restrictions will then be imposed on the content of such a definition. The following
table summarizes the restrictions. The predefined types are described in section 3.6.

INo equations are allowed in the definition or in any of its components. May not be used in

record connections. May not contain protected components.

type May only be extension to the predefined types, enumerations, records or array of type.

connector INo equations are allowed in the definition or in any of its components.

model May not be used in connections.

block Fixed causality, input-output block. Each component of an interface must either have
causality equal to input or output. May not be used in connections.

package May only contain declarations of classes and constants.
Same restrictions as for block. Additional restrictions: no equations, no initial algorithm, at
most one algorithm clause. Calling a function requires either an algorithm clause or an

function external function interface. A function can not contain calls to the Modelica built-in

operators der, initial, terminal, sample, pre, edge, change, reinit, delay and cardinality
land to the operators of the built-in package Connections.
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3.2.13 Components of function type

A function can be called, 3.4.8, or a component of function type can be instantiated. It is also possible to modify
and extend a function class e.g. to add default values for input variables.

When a function is called components of a function do not have start-attributes, but a binding assignment (“:=”
expression) is an expression such that the component is initialized to this expression at the start of every function
invocation (before executing the algorithm section or calling the external function). Binding assignments can
only be used for components of a function. If no binding assignment is given for a non-input component its value
at the start of the function invocation is undefined. It is a quality of implementation issue to diagnose this for
non-external functions. Binding assignment for input arguments are interpreted as default arguments, as
described in section 3.4.8. The size of each non-input array component of a function must be given by the inputs.
Components of a function will inside the function behave as though they had discrete-time variability.

When instantiating a component of function type it behaves as though the following rules were followed:
= All binding assignments in the function to its components are ignored.

= The algorithm/external section of the function component is replaced by
equation
(outl,out2,..)=function call (inpl=inpl, inp2=1inp2,..) ;
where this function call behaves as described above.

=  Protected components of the component of function type are ignored, since they are not given a value by the
above-mentioned function-call.

[Example:

connector InPort = input Real;
connector OutPort = output Real;
function sin

input InPort u;

output OutPort y;

protected Real x;

external “C”;

annotation(...);
end sin;

It can then be used as:

Real y=sin(time); // Direct call
sin sinl; // Component of function type
Clock clock;
equation
connect (clock.y, sinl.u); // Connect to the object.
// Can use: sinl.y,
// Cannot use: sinl.x since x is protected and thus ignored

This can be called as a normal function and since InPort/OutPort are connectors we can also connect to
components of the function type.

/
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3.3 Equations and Algorithms

3.3.1 Equation and Algorithm clauses

The instantiated equation or algorithm is identical to the non-instantiated equation or algorithm.

Names in an equation or algorithm shall be found by looking up in the partially instantiated parent of the
equation or algorithm.

Equation equality = shall not be used in an algorithm clause. The assignment operator : = shall not be used in an
equation clause.

3.3.2 Ifclause

The expression of an if and elseif-clause must be scalar boolean expression. One if-clause, and zero or more
elseif-clauses, and an optional else-clause together form a list of branches. One or zero of the bodies of these if-,
elseif- and else-clauses is selected, by evaluating the conditions of the if- and elseif-clauses sequentially until a
condition that evaluates to true is found. If none of the conditions evaluate to true the body of the else-clause is
selected (if an else-clause exists, otherwise no body is selected). In an algorithm section, the selected body is
then executed. In an equation section, the equations in the body are seen as equations that must be satisfied. The
bodies that are not selected have no effect on that model evaluation.

If clauses in equation sections which do not have exclusively parameter expressions as switching conditions
shall have an else clause and each branch shall have the same number of equations. [If this condition is violated,
the single assignment rule would not hold, because the number of equations may change during simulation
although the number of unknowns remains the same].

3.3.3 For clause

The following construct
for IDENT in expression loop
is one example of a prefix of a for clause.

The expression of a for clause shall be a vector expression. It is evaluated once for each for clause, and is
evaluated in the scope immediately enclosing the for clause. In an equation section, the expression of a for clause
shall be a parameter expression. The loop-variable (IDENT) is in scope inside the loop-construct and shall not be
assigned to. The loop-variable has the same type as the type of the elements of the vector expression.

[Example:
for i in 1:10 loop // 1 takes the values 1,2,3,...,10
for r in 1.0 : 1.5 : 5.5 loop //rtakes the values 1.0,2.5,4.0,5.5
for i in {1,3,6,7} loop // i takes the values 1, 3, 6, 7
for i in TwoEnums loop // 1 takes the values TwoEnums.one, TwoEnums.two

// for TwoEnums = enumeration(one,two)
The loop-variable may hide other variables as in the following example. Using another name for the loop-

variable is, however, strongly recommended.

constant Integer j=4;
Real x[j];
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equation
for j in 1:j loop // The loop-variable j takes the values 1,2,3,4
x[jl=3j; // Uses the loop-variable j
end for;

]
3.3.3.1 Deduction of ranges

An iterator IDENT in range-expr withoutthe ‘in range-expr’ requires that the IDENT appear as
the subscript of one or several subscripted expressions. The dimension size of the array expression in the
indexed position is used to deduce the range -expr as 1:size(array-expression,indexpos) if the indices are a
subtype of Integer, or as E.e1: E. en if the indices are of an enumeration type E=enumation(el, ..., en), or as
false:true if the indices are of type Boolean. Ifit is used to subscript several expressions, their ranges
must be identical. The IDENT may also, inside a reduction-expression, array constructor expression, or for-
clause, occur freely outside of subscript positions, but only as a reference to the variable IDENT, and not for
deducing ranges.

[Example:
Real x[4];
Real xsquared[:]={x[i]*x[1i] for i};
// Same as: {x[i]l*x[i] for i in 1:size(x,1)}
Real xsquared2[size(x,1)];
equation
for i1 loop // Same as: for i in 1l:size(x,1) loop ..
xsquared2 [i]=x[1i]"2;
end for;

type FourEnums=enumeration (one, two, three, four) ;
Real xe[FourEnums]= X;
Real xsquared3 [FourEnums]={xe[i] *xe[i] for i};
Real xsquared4 [FourEnums]={xe[i]*xe[i] for i in FourEnums};
Real xsquared5 [FourEnums]={x[i]*x[i] for i};

/

3.3.3.2 Several iterators

The notation with several iterators is a shorthand notation for nested for-clauses (or reduction-expressions). For
for-clauses it can be expanded into the usual form by replacing each “,” by *loop for’ and adding extra ‘end
for’. For reduction-expressions it can be expanded into the usual form by replacing each *,” by ©) for’and
prepending the reduction-expression with ‘function-name (°.

[Example:
Real xI[4,3];
equation
for j, i in 1:2 loop
// The loop-variable j takes the values 1,2,3,4 (due to use)
// The loop-variable i takes the values 1,2 (given range)
x[j,il=7+1;
end for;
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3.3.4 When clause

The expression of a when clause shall be a discrete-time Boolean scalar or vector expression. The equations and
algorithm statements within a when clause are activated when the scalar or any one of the elements of the vector
expression becomes true. When-clauses in equation sections are allowed, provided the equations within the
when-clause have one of the following forms:

"V =expr;

= (outl, out2, out3, ...) = function_call(inl, in2, ...);

=  operators assert(), terminate(), reinit()

=  For and if-clause if the equations within the for and if-clauses satisfy these requirements.

= In an equation section, the different branches of when/elsewhen must have the same set of component
references on the left-hand side.

= In an equation section, the branches of an if-then-else clause inside when-clauses must have the same set of
component references on the left-hand side, unless the if-then-else have exclusively parameter expressions
as switching conditions.

A when clause shall not be used within a function class.
[Example:
Algorithms are activated when x becomes > 2:

when x > 2 then

vyl := sin(x);
y3 = 2*x + yl4y2;
end when;

Algorithms are activated when either x becomes > 2 or sample(0,2) becomes true or x becomes less than 5:

when {x > 2, sample(0,2), X < 5} then

vyl := sin(x);
y3 1= 2*x + yl+y2;
end when;

For when in equation sections the order between the equations does not matter, e.g.

equation
when x > 2 then

y3 = 2*x +yl+y2; // Order of yl and y3 equations does not matter
yl = sin(x);
end when;

y2 = sin(yl);

The needed restrictions on equations within a when-clause becomes apparent with the following example:

Real x, vy;
equation
X +y =5;
when condition then
2*xX + y = 7; // error: not valid Modelica
end when;
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When the equations of the when-clause are not activated it is not clear which variable to hold constant, either x
ory. A corrected version of this example is:

Real x,vy;
equation
X +y =5;
when condition then
y = 7 - 2*x; // fine
end when;

Here, variable y is held constant when the when-clause is de-activated and x is computed from the first equation
using the value of y from the previous event instant.

For when in algorithm sections the order is significant and it is advisable to have only one assignment within the
when-clause and instead use several algorithms having when-clauses with identical conditions, e.g..
algorithm
when x > 2 then
yl := sin(x);
end when;
equation
y2 = sin(yl);
algorithm
when x > 2 then
y3 1= 2*x +yl+y2;
end when;

Merging the when-clauses can lead to less efficient code and different models with different behaviour
depending on the order of the assignment to y1 and y3 in the algorithm.]

A when clause
algorithm
when {x>1, ..., y>p} then

elsewhen x > y.start then

end when;

is equivalent to the following special if-clause, where Boolean b1[N]; and Boolean b2 are necessary because the
edge() operator can only be applied to variables
Boolean bl [N] (start={x.start>1, ..., y.start>p});
Boolean b2 (start=x.start>y.start) ;
algorithm
bl:={x>1, ..., y>p};
b2:=x>y.start;

if edge(bl[1l]) or edge(bl[2]) or ... edge(bl[N]) then

elseif edge(b2) then

end if;

Modelica 2.1 48



Modelica Language Specification

with “edge (A) = A and not pre (A)” and the additional guarantee, that the algorithms within this special
if clause are only evaluated at event instants.

A when-clause

equation
when x>2 then
vl = exprl ;
V2 = expr2 ;
end when;

is equivalent to the following special if-expressions

Boolean b (start=x.start>2) ;

equation
b = x>2;
vl = if edge(b) then exprl else pre(vl);

v2 = 1if edge(b) then expr2 else pre(v2);

The start-values of the introduced boolean variables are defined by the taking the start-value of the when-
condition, as above where p is a parameter variable. The start-values of the special functions initial, terminal,
and sample is false.

When clauses cannot be nested.
[Example:
The following when clause is invalid.

when x > 2 then
when y1 > 3 then
y2 = sin(x);
end when;
end when;

7
3.3.5 Wahile clause

The expression of a while clause shall be a scalar boolean expression. The while-clause corresponds to while-
statements in programming languages, and is formally defined as follows

1. The expression of the while clause is evaluated.
2. If the expression of the while-clause is false, the execution continues after the while-clause.

3. Ifthe expression of the while-clause is true, the entire body of the while clause is executed (except if a break
statement, see section 3.3.6, or return statement, see section 3.3.7, is executed), and then execution proceeds
at step 1.

3.3.6 Break statement

The break statement breaks the execution of the innermost while or for-loop enclosing the break statement and
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continues execution after the while or for-loop. It can only be used in a while or for-loop in an algorithm section.

[Example (note this could alternatively use return):

function findvValue “Returns position of val or 0 if not found”
input Integer x[:];
input Integer val;
output Integer index;

algorithm
index := size(x,1);
while index >= 1 loop
if x[index]== val then
break;
else
index := index - 1;
end if;

end while;
end findvValue;

]
3.3.7 Return statement

The return statement terminates the current function call, see section 3.4.8. It can only be used in an algorithm
section of a function.

[Example (note this could alternatively use break):
function findvValue “Returns position of val or 0 if not found”
input Integer x[:];
input Integer val;
output Integer index;
algorithm
for i in 1l:size(x,1) loop
if x[i] == val then
index := 1i;
return;
end for;
index := 0;
return;
end findvValue;

]
3.3.8 Connections

Connections between objects are introduced by the connect statement in the equation part of a class. The
connect construct takes two references to connectors, each of which is either of the following forms:

= cl.c2.... .cn, where cl is a connector of the class, n>=1 and ci+1 is a connector element of ci for i=1:(n-1).
= m.c, where m is a non-connector element in the class and c is a connector element of m.

There may optionally be array subscripts on any of the components; the array subscripts shall be parameter
expressions. If the connect construct references array of connectors, the array dimensions must match, and each
corresponding pair of elements from the arrays is connected as a pair of scalar connectors.
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[Example of array use:

connector InPort=input Real;
connector OutPort=output Real;
block MatrixGain
input InPort ulsize(A,1)];
output OutPort yl[size(A,2)]
parameter Real A[:,:]1=[11];
equation
y=A*u;
end MatrixGain;

sin sinSource[5];

MatrixGain gain (A=5*identity(5)) ;
MatrixGain gain2 (A=ones(5,2));
OutPort x([2];

equation
connect (sinSource.y, gain.u); // Legal
connect (gain.y, gain2.u) ; // Legal
connect (gain2.y, X); // Legal

The two main tasks are to:
e Build connection sets from connect statements.
e  Generate equations for the complete model.
Definitions:
Connection sets

A connection set is a set of variables connected by means of connect clauses. A connection set shall
contain either only flow variables or only non-flow variables.

Inside and outside connectors

In an element instance M, each connector element of M is called an outside connector with respect to
M. All other connector elements that are hierarchically inside M, but not in one of the outside
connectors of M, is called an inside connector with respect to M.

[Example: in connect(a,b.c) ‘a’ is an outside connector and ‘b.c’ is an inside connector, unless ‘b’ is a
connector.]

3.3.8.1 Generation of connection equations

Before generating connection equations outer elements are resolved to the corresponding inner elements in the
instance hierarchy (see Dynamic name lookup 3.1.1.3). The arguments to each connect-statement are resolved to
two connector elements, and the connection is moved up zero or more times in the instance hierarchy to the first
element instance that both the connectors are hierarchically contained in it.

For every use of the connect statement
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connect (a, b);

the primitive components of a and b form a connection set. If any of them already occur in a connection set
from previous connections with matching inside/outside, these sets are merged to form one connection set.
Composite connector types are broken down into primitive components. Each connection set is used to generate
equations for across and through (zero-sum) variables of the form

al = a2 = ... = an;

zl + 22 + (-23) + ... + 2zn = 0;

In order to generate equations for through variables [using the £1ow prefix], the sign used for the connector
variable z; above is +1 for inside connectors and -1 for outside connectors [z 3 in the example above].

For each flow (zero-sum) variable in a connector that is not connected as an inside connector in any element
instance the following equation is implicitly generated:

z=0;
The bold-face 0 represents an array or scalar zero of appropriate dimensions (i.e. the same size as z).

3.3.8.2 Restrictions

A component of a connector declared with the input type prefix shall not occur as inside connector in more than
one connect statement. A component of a connector declared with the output type prefix shall not occur as
outside connector in more than one connect statement. If two components declared with the input type prefix
are connected in a connect statement one must be an inside connector and the other an outside connector. If two
components declared with the output type prefix are connected in a connect statement one must be an inside
connector and the other an outside connector.

Subscripts in a connector reference shall be constant expressions.

If the array sizes do not match, the original variables are filled with one-sized dimensions from the left until the
number of dimensions match before the connection set equations are generated.

Constants or parameters in connected components yield the appropriate assert statements; connections are not
generated.

3.3.8.3 Overdetermined connection equations and virtual connection graphs

[Connectors may contain redundant variables. For example, the orientation between two coordinate systems in
3 dimensions can be described by 3 independent variables. However, every description of orientation with 3
variables has at least one singularity in the region where the variables are defined. It is therefore not possible to
declare only 3 variables in a connector. Instead n variables (n > 3) have to be used. These variables are no
longer independent from each other and there are n-3 constraint equations that have to be fulfilled. A proper
description of a redundant set of variables with constraint equations does no longer have a singularity. A model
that has loops in the connection structure formed by components and connectors with redundant variables, may
lead to a differential algebraic equation system that has more equations than unknown variables. The
superfluous equations are usually consistent with the rest of the equations, i .e., a unique mathematical solution
exists. Such models cannot be treated with the currently known symbolic transformation methods. To overcome
this situation, operators are defined in order that a Modelica translator can remove the superfluous equations.
This is performed by replacing the equality equations of non-flow variables from connection sets by a reduced
number of equations in certain situations.

This section handles a certain class of overdetermined systems due to connectors that have a redundant set of
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variables. There are other causes of overdetermined systems, e.g., explicit zero-sum equations for flow variables,
that are not handled by the method described below.]

A type or record declaration may have an optional definition of function “equalityConstraint(..)” that shall have
the following prototype:
type Type // overdetermined type
extends <base types>;

function equalityConstraint // non-redundant equality
input Type T1;
input Type T2;
output Real residue[ <n> ];

algorithm

residue := .

end equalityConstraint;

end Type;

record Record
< declaration of record fields>

function equalityConstraint // non-redundant equality
input Record R1;
input Record R2;
output Real residuel <n> 1];

algorithm
residue := .

end equalityConstraint;

end Record;

The “residue” output of the equalityConstraint(..) function shall have known size, say constant n. The
function shall express the equality between the two type instances T1 and T2 or the record instances R1 and R2,
respectively, with a non-redundant number n > 0 of equations. The residues of these equations are returned in
vector “residue” of size n. The set of n non-redundant equations stating that R1 = R2 is given by the equation
(0 characterizes a vector of zeros of appropriate size):

Record R1, R2;
equation
0 = Record.equalityConstraint (R1,R2) ;

[if the elements of a record Record are not independent from each other, the equation “R1 = R2” contains
redundant equations]. A type class with an equalityConstraint function declaration is called overdetermined
type. A record class with an equalityConstraint function definition is called overdetermined record. A connector
that contains instances of overdetermined type and/or record classes is called overdetermined connector. An
overdetermined type or record may neither have flow components nor may be used as a type of flow
components.

Every instance of an overdetermined type or record in an overdetermined connector is a node in a virtual
connection graph that is used to determine when the standard equation “R1 = R2” or when the equation “0 =
equalityConstraint(R1,R2)has to be used for the generation of connect(...) equations. The branches of the
virtual connection graph are implicitly defined by “connect(..)” and explicitly by “Connections.branch(..)”
statements, see table below. “Connections” is a built-in package in global scope containing built-in operators.
Additionally, corresponding nodes of the virtual connection graph have to be defined as roots or as potential
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roots with functions “Connections.root(..)” and “Connections.potentialRoot(..)”, respectively. In the following
table, A and B are connector instances that may be hierarchically structured, e.g., A may be an abbreviation for

“EnginePort.Frame”.

connect(A,B);

Defines breakable branches from the overdetermined type or record
instances in connector instance A to the corresponding overdetermined type
or record instances in connector instance B for a virtual connection graph.
The types of the corresponding overdetermined type or record instances
shall be the same.

Connections.branch(A.R,B.R);

Defines a non-breakable branch from the overdetermined type or record
instance R in connector instance A to the corresponding overdetermined
type or record instance R in connector instance B for a virtual connection
graph. This function can be used at all places where a connect(..) statement
is allowed [e.g., it is not allowed to use this function in a when clause. This
definition shall be used if in a model with connectors A and B the
overdetermined records A.R and B.R are algebraically coupled in the
model, e.g., due to B.R = f(A.R, <other unknowns>)].

Connections.root(A.R);

The overdetermined type or record instance R in connector instance A is a
(definite) root node in a virtual connection graph. [This definition shall be
used if in a model with connector A the overdetermined record A.R is
(consistently) assigned, e.g., from a parameter expressions]

Connections.potentialRoot(A.R)
Connections.potentialRoot
(AR, priority = p);

The overdetermined type or record instance R in connector instance A is a
potential root node in a virtual connection graph with priority “p” (p > 0).
If no second argument is provided, the priority is zero. “p” shall be a
parameter expression of type Integer. In a virtual connection subgraph
without a Connections.root definition, one of the potential roots with the
lowest priority number is selected as root [This definition may be used if in
a model with connector A the overdetermined record A.R appears
differentiated — der(A.R) — together with the constraint equations of A.R,
i.e., a non-redundant subset of A.R maybe used as states]

b = Connections.isRoot(A.R);

Returns true, if the overdetermined type or record instance R in connector
instance A is selected as a root in the virtual connection graph.

[Note, that Connections.branch, Connections.root, Connections.potentialRoot do not generate equations. They
only generates nodes and branches in the virtual graph for analysis purposes.]

Before connect(..) equations are generated, the virtual connection graph is transformed into a set of spanning
trees by removing breakable branches from the graph. This is performed in the following way:

1. Every root node defined via the “Connections.root(..)” statement is a definite root of one spanning tree.

2. The virtual connection graph may consist of sets of subgraphs that are not connected together. Every
subgraph in this set shall have at least one root node or one potential root node. If a graph of this set
does not contain any root node, then one potential root node in this subgraph that has the lowest
priority number is selected to be the root of that subgraph. The selection can be inquired in a class with
function Connections.isRoot(..), see table above.
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3. [If there are n selected roots in a subgraph, then breakable branches have to be removed such that the
result shall be a set of n spanning trees with the selected root nodes as roots.

After this analysis, the connect equations are generated in the following way:

1. For every breakable branch /, i.e., connect(4,B) statement,] in one of the spanning trees, the connect
equations are generated according to section 3.3.8.1.

2. For every breakable branch net in any of the spanning trees, the connect equations are generated
according to section 3.3.8.1, except for overdetermined type or record instances R. Here the equations
“0 = R.equalityConstraint(A.R,B.R)” are generated instead of “A.R = B.R”.

[Example for virtual connection graph:

selected (potential) root

O node
O root
82

potential root

nonbreakable branch
(Connections.branch)

-------- breakable branch
(connect)

removed breakable
branch to get tree

selected root

selected root

Here are more complete examples for using the operators:

An overdetermined connector for power systems based on the transformation theory of Park may be defined as:

type AC_Angle ”"Angle of source, e.g., rotor of generator”
extends Modelica.SIunits.Angle; // AC Angle is a Real number
// with unit = "rad”

function equalityConstraint
input AC Angle thetal;
input AC_Angle theta2;
output Real residue[0] ”No constraints”
algorithm
/* make sure that thetal and theta2 from
joining branches are identical */

Modelica 2.1 55



Modelica Language Specification

assert (abs (thetal - theta2) < 1.e-10);
end equalityConstraint;
end AC Angle;

connector AC Plug "3-phase alternating current connector"
import SI = Modelica.SIunits;
AC Angle theta;
SI.Voltage v[3] ”"Voltages resolved in AC_Angle frame”;
flow SI.Current i[3] “Currents resolved in AC_Angle frame”;
end AC Plug;

The currents and voltages in the connector are defined relatively to the harmonic, high-frequency signal of a
power source that is essentially described by angle theta of the rotor of the source. This allows much faster
simulations, since the basic high frequency signal of the power source is not part of the differential equations.
For example, when the source and the rest of the line operates with constant frequency (= nominal case), then
AC Plug.v and AC_Plug.i are constant. In this case a variable step integrator can select large time steps. An
element, such as a 3-phase inductor, may be implemented as:
model AC Inductor
parameter Real X[3,3], YI[3,3]; // component constants
AC_plug p;
AC plug n;
equation
Connections.branch (p.theta,n.theta); //branch in virtual graph
// since n.theta = p.theta

n.theta = p.theta; // pass angle theta between plugs
omega = der (p.theta) ; // frequency of source
zeros(3) = p.i + n.i;

X*der (p.1) + omega*Y*p.i = p.v - n.v;
end AC_ Inductor

At the place where the source frequency, i.e., essentially variable theta , is defined, a Connections.root(..) must
be present:

AC_plug p;
equation
Connections.root (p.theta) ;
der (p.theta) = 2*Modelica.Constants.pi*50 // 50 Hz;

The graph analysis performed with the virtual connection graph identifies the connectors, where the AC_Angle
needs not to be passed between components, in order to avoid redundant equations.

An overdetermined connector for 3-dimensional mechanical systems may be defined as:
type TransformationMatrix = Real[3,3];

type Orientation ”“Orientation from frame 1 to frame 2”
extends Real [3,3];

function equalityConstraint
input Orientation R1 ”"Rotation from inertial frame to frame 1”;
input Orientation R2 ”"Rotation from inertial frame to frame 2”;
output Real residue[3];

protected
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Orientation R rel ”"Relative Rotation from frame 1 to frame 2”;
algorithm
R_rel = R2*transpose (R1) ;
/* If frame 1 and frame 2 are identical, R_rel must be
the unit matrix. If they are close together, R rel can be
linearized yielding:

R rel = [ 1, phi3, -phi2;
-phi3, 1, phil;
phi2, -phiil, 11;

where phil, phi2, phi3 are the small rotation angles around
axis x, y, z of frame 1 to rotate frame 1 into frame 2
*/
residue := {R rel([2, 3], R rel[3, 1], R rel[l, 21};
end equalityConstraint;
end Orientation;

connector Frame ”“3-dimensional mechanical connector”
import SI = Modelica.SIunits;
SI.Position r[3] "Vector from inertial frame to Frame”;
Orientation R "Orientation from inertial frame to Frame”;
flow SI.Force f[3] "Cut-force resolved in Frame”;
flow SI.Torque t[3] ”Cut-torque resolved in Frame”;

end Frame;

A fixed translation from a frame A to a frame B may be defined as:

model FixedTranslation
parameter Modelica.SIunits.Position r[3];
Frame frame a, frame b;

equation
Connections.branch (frame a.R, frame b.R);
frame b.r = frame a.r + transpose(frame a.R)*r;

frame b.R = frame_a.R;

zeros (3) frame a.f + frame b.f;

zeros (3) = frame a.t + frame b.t + cross(r, frame b.f);
end FixedTranslation;

Since the transformation matrix frame_a.R is algebraically coupled with frame_b.R, a branch in the virtual
connection graph has to be defined. At the inertial system, the orientation is consistently initialized and therefore
the orientation in the inertial system connector has to be defined as root:
model InertialSystem
Frame frame b;

equation
Connections.root (frame b.R) ;
frame b.r = zeros(3);

frame b.R = identity(3);
end InertialSystem;
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3.3.9 [Initialization

Before any operation is carried out with a Modelica model [e.g., simulation or linearization], initialization takes
place to assign consistent values for all variables present in the model. During this phase, also the derivatives,
der(..), and the pre-variables, pre(..), are interpreted as unknown algebraic variables. The initialization uses all
equations and algorithms that are utilized in the intended operation [such as simulation or linearization]. The
equations of a when clause are active during initialization, if and only if they are explicitly enabled with the
“initial()” operator. In this case, the when-clause equations remain active during the whole initialization phase.
[1f a when-clause equation v = expr;” is not active during the initialization phase, the equation “v = pre(v)” is
added for initialization. This follows from the mapping rule of when-clause equations].

Further constraints, necessary to determine the initial values of all variables, can be defined in the following
ways:

e Asequations in an “initial equation” section or as assignments in an “initial algorithm” section. The
equations and assignments in these initial sections are purely algebraic, stating constraints between the
variables at the initial time instant. It is not allowed to use when-clauses in these sections.

e Implicitly by using the attributes start=value and fixed=true in the declaration of variables:
For all non-discrete Real variables v, the equation “v = startExpression” is added to the initialization
equations, if “start = startExpression” and “fixed = true”.
For all discrete variables vd, the equation “pre(vd) = startExpression” is added to the initialization
equations, if “start = startExpression” and “fixed = true.
For constants and parameters, the attribute fixed is by default true. For other variables fixed is by default
false.

[A Modelica translator may first transform the continuous equations of a model, at least conceptually, to state
space form. This may require to differentiate equations for index reduction, i.e., additional equations and, in
some cases, additional unknown variables are introduced. This whole set of equations, together with the
additional constraints defined above, should lead to an algebraic system of equations where the number of
equations and the number of all variables (including der(..) and pre(..) variables) is equal. Often, this is a
nonlinear system of equations and therefore it may be necessary to provide appropriate guess values (i.e., start
values and fixed=false) in order to compute a solution numerically.

It may be difficult for a user to figure out how many initial equations have to be added, especially if the system
has a higher index. A tool may add or remove initial equations automatically such that the resulting system is
structurally nonsingular. In these cases diagnostics are appropriate since the result is not unique and may not be
what the user expects. A missing initial value of a discrete variable which does not influence the simulation
result, may be automatically set to the start value or its default without informing the user. For example,
variables assigned in a when-clause which are not accessed outside of the when-clause and where the pre()
operator is not explicitly used on these variables, do not have an effect on the simulation.

Examples:

Continuous time controller initialized in steady-state:
Real y(fixed = false); // fixed=false is redundant
equation
der (y) = a*y + b*u;
initial equation
der(y) = 0;

This has the following solution at initialization:
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der(y) = 0;
y = -b/a *u;

Continuous time controller initialized either in steady-state or by providing a start value for state y:

parameter Boolean steadyState = true;
parameter Real y0 = 0 “start value for y, if not steadyState”;
Real vy;

equation

der(y) = a*y + b*u;
initial equation
if steadyState then
der (y)=0;
else
Yy = y0;
end if;

This can also be written as follows (this form is less clear):
parameter Boolean steadyState=true;

Real y (start=0, fixed=not steadyState);
Real der y(start=0, fixed=steadyState) = der(y);
equation

der(y) = a*y + b*u;

Discrete time controller initialized in steady-state:

discrete Real y;

equation
when {initial(), sampleTrigger} then

y = a*pre(y) + b*u;

end when;

initial equation
y = pre(y);

This leads to the following equations during initialization:
Y a*pre(y) + b*u;
y = pre(y);
With the solution:
y := (b*u)/(1-a)
pre(y) := y;
]

3.4 Expressions

Modelica equations, assignments and declaration equations contain expressions.

Expressions can contain basic operations, +, -, ¥, /, *, etc. with normal precedence as defined in the grammar in
section 2.2.7. The semantics of the operations is defined for both scalar and array arguments in section 3.4.6.
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It is also possible to define functions and call them in a normal fashion. The function call syntax for both normal
and named arguments is described in section 3.4.8 and for vectorized calls in section 3.4.6.10. The built-in array
functions are given in section 3.4.3 and other built-in operators in section 3.4.2.

3.4.1 Evaluation

A tool is free to solve equations, reorder expressions and to not evaluate expressions if their values do not
influence the result (e.g. short-circuit evaluation of boolean expressions). If-statements and if-expressions
guarantee that their clauses are only evaluated if the appropriate condition is true, but relational operators
generating state or time events will during continuous integration have the value from the most recent event.
[Example. If one wants to guard an expression against evaluation, it should be guarded by an if

Boolean vI[n];
Boolean b;
Integer I;

equation

x=v[I] and (I>=1 and I<=n); // Invalid

x=1if (I>=1 and I<=n) then vI[I] else false; // Correct
To guard square against square root of negative number use noEvent:

der (h)=if h>0 then -c*sqgrt(h) else 0; // Incorrect

der (h) =if noEvent (h>0) then -c*sqgrt(h) else 0; // Correct
]

3.4.1.1 Pure functions

Modelica functions are pure, i.e. are side-effect free with respect to the Modelica state (the set of all Modelica
variables in a total simulation model), apart from the exceptional case specified further below. This means that:

e Modelica functions are mathematical functions, i.e. calls with the same input argument values always give
the same results.

e A Modelica function is side-effect free with respect to the internal Modelica simulation state. Specifically,
the ordering of function calls and the number of calls to a function shall not influence the simulation state.

[Comment 1: This property enables writing declarative specifications using Modelica. It also makes it possible
for Modelica compilers to freely perform algebraic manipulation of expressions containing function calls while
still preserving their semantics.]

[Comment 2: The Modelica translator is responsible for maintaining this property for pure non-external
functions. Regarding external functions, the external function implementer is responsible. Note that external
functions can have side-effects as long as they do not influence the internal Modelica simulation state, e.g.
caching variables for performance or printing trace output to a log file.]

e Exception: An impure function is either an impure external function or a Modelica function calling an
impure function. An impure function (that may return different values at different calls despite having the
same input argument values), may be called from within an impure function, from within a when-clause and
during initialization.

[Comment:The semantics are undefined if the function call is part of an algebraic loop.
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This exceptional case allows, e.g. calling impure external functions at events in when-clauses during hardware-
in-the-loop simulation, to obtain input from the external hardware component, and/or provide output to be
communicated to such a component.

The above implies that if all external functions that are used are pure then all Modelica functions are pure.]

3.4.2 Modelica built-in operators

Built-in operators of Modelica have the same syntax as a function call. However, they do not behave as a
mathematical function, because the result depends not only on the input arguments but also on the status of the
simulation. The following operators are supported (see also the list of array function in section 3.4.3):

The time derivative of x. Variable x need to be a subtype of Real, and may not
be a discrete-time variable. If x is an array, the operator is applied to all elements

r .
der(x) of the array. For Real parameters and constants the result is a zero scalar or array
of the same size as the variable.
initial() Returns true during the initialization phase and false otherwise.
terminal() Returns true at the end of a successful analysis.

smooth(p, expr)

If p>=0 smooth(p, expr) returns expr and states that expr is p times continuously
differentiable, i.e.: expr is continuous in all real variables appearing in the
expression and all partial derivatives with respect to all appearing real variables
exist and are continuous up to order p.

The only allowed types for expr in smooth are: real expressions, arrays of
allowed expressions, and records containing only components of allowed
expressions. See also section 3.4.2.2.

noEvent(expr)

Real elementary relations within expr are taken literally, i.e., no state or time
event is triggered. See also sections 3.4.2.2, and 3.5.

sample(start,interval)

Returns true and triggers time events at time instants “start +
i*interval” (i=0,1, ...).During continuous integration the operator
returns always false. The starting time “start” and the sample interval “interval”
need to be parameter expressions and need to be a subtype of Real or Integer.

pre(y)

Returns the “left limit” y(t”°) of variable y(t) at a time instant t. At an event
instant, y(t") is the value of y after the last event iteration at time instant t (see
comment below). The pre operator can be applied if the following three
conditions are fulfilled simultaneously: (a) variable y is a subtype of a simple
type, (b) y is a discrete-time expression (c) the operator is not applied in a
function class. The first value of pre(y) is determined in the initialization phase.
See also section 3.4.2.1.

edge(b)

Is expanded into “(b and not pre(b))” for Boolean variable b. The same
restrictions as for the pre operator apply (e.g. not to be used in function classes).

change(v)

Is expanded into “(v<>pre(v))”. The same restrictions as for the pre() operator
apply.

reinit(x, expr)

Reinitializes state variable x with expr at an event instant. Argument x need to be
(a) a subtype of Real and (b) the der-operator need to be applied to it. expr need

to be an Integer or Real expression. The reinit operator can only be applied once
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for the same variable x. It can only be applied in the body of a when-clause. See
also section 3.4.2.3

assert(condition, message)

The condition shall be true for successful model evaluations. For full description
see section 3.4.2.4.

terminate(message)

Successfully terminates the current analysis. For full description see section
3.4.2.5.

abs(v)

Is expanded into “(if v >= 0 then v else —v)”. Argument v needs to be an Integer
or Real expression. [Note, outside of a when clause state events are triggered].

sign(v)

Is expanded into “(if v > 0 then 1 else if v <0 then —1 else 0)”. Argument v
needs to be an Integer or Real expression. [Note, outside of a when clause state
events are triggered]

sqre(v)

Returns the square root of v if v>=0, otherwise an error occurs. Argument v
needs to be an Integer or Real expression.

div(x,y)

Returns the algebraic quotient x/y with any fractional part discarded (also
known as truncation toward zero). [Note: this is defined for / in C99; in C89 the
result for negative numbers is implementation-defined, so the standard function
div () must be used.]. Result and arguments shall have type Real or Integer If
either of the arguments is Real the result is Real otherwise Integer.

mod(x,y)

Returns the integer modulus of x /vy, i.e. mod(x,y)=x-floor(x/y)*y. Result and
arguments shall have type Real or Integer. If either of the arguments is Real the
result is Real otherwise Integer. [Note, outside of a when clause state events are
triggered when the return value changes discontinuously. Examples
mod(3,1.4)=0.2, mod(-3,1.4)=1.2, mod(3,-1.4)=-1.2]

rem(x,y)

Returns the integer remainder of x /vy, such that div (x,y) * y + rem(x,
v) = x.Result and arguments shall have type Real or Integer. If either of the
arguments is Real the result is Real otherwise Integer. [Note, outside of a when

clause state events are triggered when the return value changes discontinuously.
\Examples rem(3,1.4)=0.2, rem(-3,1.4)=-0.2]

ceil(x)

Returns the smallest integer not less than x. Result and argument shall have type
Real. [Note, outside of a when clause state events are triggered when the return
value changes discontinuously.]

floor(x)

Returns the largest integer not greater than x. Result and argument shall have
type Real. [Note, outside of a when clause state events are triggered when the
return value changes discontinuously.].

integer(x)

Returns the largest integer not greater than x. The argument shall have type Real.,
The result has type Integer.

/Note, outside of a when clause state events are triggered when the return value
changes discontinuously.].

Integer(e)

Returns the ordinal number of the enumeration value E.enumvalue, where
Integer(E.el) =1, Integer(E.en) =size(E), for an enumeration type

E=enumeration(el, ..., en).
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String(b, <options>)

String(i, <options>)

String(r, significantDigits=d,
<options>)

String(r, format, <options>)

String(e, <options>)

Convert a scalar non-String expression to a String representation. The first
argument maybe a Boolean b, an Integer i, a Real r or an Enumeration e. The
optional <options> are:

Integer minimumLength=0: minimum length of the resulting string. If necessary,
the blank character is used to fill up unused space.

\Boolean leftJustified=true: if true, the converted result is left justified in the
string; if false it is right justified in the string.

For Real expressions the output shall be according to the Modelica grammar. If
no format is given the C format “.Ng” is used, where N = significant Digits. The
default is N=6, i.e., “.6g”.

Integer significantDigits=6: defines the number of significant digits in the result
string. [Examples: “12.34567, “0.0123456", “12345600", “1.23456E-10"].
String format: According to ANSI-C without “%” character and “*” is not
supported [Examples: “.6g”, “14.5¢”, “+6f].

delay(expr,delayTime,delayMax)
delay(expr,delayTime)

Returns "expr (time - delayTime) " for

time > time.start + delayTime and "expr (time.start)" for
time <= time.start + delayTime. The arguments, i.e., expr,
delayTime and delayMax, need to be subtypes of Real. DelayMax needs to be
additionally a parameter expression. The following relation shall hold: 0 <=
delayTime <= delayMax, otherwise an error occurs. If delayMax is
not supplied in the argument list, delayTime need to be a parameter
expression. See also section 3.4.2.7.

cardinality(c)

Returns the number of (inside and outside) occurrences of connector instance ¢
in a connect statement as an Integer number. See also section 3.4.2.8.

isPresent(ident)

Boolean isPresent(ident) returns true if the formal input or output argument ident
is present as an actual argument of the function call. If the argument is not
present, isPresent(ident) may return false /but may also return true e.g. for
implementations that always compute all results]. isPresent() should be used for
optimisation only and should not influence the results of outputs that are present
in the output list. It can only be used in functions.

semiLinear(x, positiveSlope,
negativeSlope)

Returns “if x >= 0 then positiveSlope*x else negativeSlope*x”. The result is of
type Real. See section 3.4.2.9 [especially in the case when x = (]. For non-
scalar arguments the function is vectorized according to section 3.4.6.11.

3.4.2.1 pre

A new event is triggered if at least for one variable v “pre(v) <> v” after the active model equations are
evaluated at an event instant. In this case the model is at once reevaluated. This evaluation sequence is called
“event iteration”. The integration is restarted, if for all v used in pre-operators the following condition holds:

“pre(v) ==v".

[If v and pre(v) are only used in when clauses, the translator might mask event iteration for variable v since v
cannot change during event iteration. It is a “quality of implementation” to find the minimal loops for event
iteration, i.e., not all parts of the model need to be reevaluated.

The language allows mixed algebraic systems of equations where the unknown variables are of type Real,
Integer, Boolean, or an enumeration. These systems of equations can be solved by a global fix point iteration
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scheme, similarly to the event iteration, by fixing the Boolean, Integer, and/or enumeration unknowns during
one iteration. Again, it is a quality of implementation to solve these systems more efficiently, e.g., by applying the
fix point iteration scheme to a subset of the model equations.]

3.4.2.2 noEvent and smooth

The noEvent operator implies that real elementary expressions are taken literally instead of generating crossing
functions, section 3.5. The smooth operator should be used instead of noEvent, in order to avoid events for
efficiency reasons. A tool is free to not generate events for expressions inside smooth. However, smooth does
not guarantee that no events will be generated, and thus it can be necessary to use noEvent inside smooth. /Note
that smooth does not guarantee a smooth output if any of the occurring variables change discontinuously.]
[Example:

Real x,vy,z;

parameter Real p;
equation

x = 1if time<l then 2 else time-2;

z smooth (0, if time<0 then 0 else time) ;

Y smooth (1, noEvent (if x<0 then 0 else sqrt(x) *x));

// noEvent 1is necessary.

]
3.4.2.3 reinit

The reinit operator does not break the single assignment rule, because reinit(x,expr) makes the previously
known state variable x unknown and introduces the equation “x = expr”.

[1f a higher index system is present, i.e. constraints between state variables, some state variables need to be
redefined to non-state variables. If possible, non-state variables should be chosen in such a way that states with
an applied reinit operator are not utilized. If this is not possible, an error occurs, because the reinit operator is
applied on a non-state variable.

Example for the usage of the reinit operator:

Bouncing ball:
der (h) v;
der (v) -g;

when h < 0 then
reinit (v, -e*v);
end when;

7
3.4.2.4 assert

A statement
assert (condition, message) ;
is an assert-statement, where condition is a boolean expression and message is a string expression.
If the condition of an assert statement is true, message is not evaluated and the procedure call is ignored. If the

condition evaluates to false the current evaluation is aborted. The simulation may continue with another
evaluation.

Failed assertions takes precedence over successful termination, such that if the model first triggers the end of
successful analysis by reaching the stop-time or explicitly with terminate(), but the evaluation with
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terminal()=true triggers an assert, the analysis failed. [The intent is to perform a test of model validity and to
report the failed assertion to the user if the expression evaluates to false. The means of reporting a failed
assertion are dependent on the simulation environment. The intention is that the current evaluation of the model
should stop when an assert with a false condition is encountered, but the tool should continue the current
analysis (e.g. by using a shorter stepsize).]

3.4.2.5 terminate

The terminate function successfully terminates the analysis which was carried out, see also section 3.4.2.4. The
function has a string argument indicating the reason for the success. [The intention is to give more complex
stopping criteria than a fixed point in time. Example:

model ThrowingBall
Real x(start=0);
Real y(start=1);
equation
der (x) =...
der (y) =..
algorithm
when y<0 then
terminate ("The ball touches the ground") ;
end when;

end ThrowingBall;
7/

3.4.2.6 Event triggering operators

[The div, rem, mod, ceil, floor, integer, abs and sign operator trigger state events if used outside of a when
clause. If this is not desired, the noEvent function can be applied to them. E.g. noEvent(abs(v)) is |v|

3.4.2.7 delay

The delay operator allows a numerical sound implementation by interpolating in the (internal) integrator
polynomials, as well as a more simple realization by interpolating linearly in a buffer containing past values of
expression expr. Without further information, the complete time history of the delayed signals need to be
stored, because the delay time may change during simulation. To avoid excessive storage requirements and to
enhance efficiency, the maximum allowed delay time has to be given via delayMax. This gives an upper bound
on the values of the delayed signals which have to be stored. For realtime simulation where fixed step size
integrators are used, this information is sufficient to allocate the necessary storage for the internal buffer before
the simulation starts. For variable step size integrators, the buffer size is dynamic during integration. In
principal, a delay operator could break algebraic loops. For simplicity, this is not supported because the
minimum delay time has to be give as additional argument to be fixed at compile time. Furthermore, the
maximum step size of the integrator is limited by this minimum delay time in order to avoid extrapolation in the
delay buffer.
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The cardinality operator allows the definition of connection dependent equations in a model, for example:

connector Pin

Real V;
flow Real 1i;
end Pin;

model Resistor

Pin p, n;
equation
// Handle cases if pins are not connected
if cardinality(p) == 0 and cardinality (n)
p.v = 0; n.v = 0;
elseif cardinality(p) == 0 then
p.i = 0;
elseif cardinality(n) == 0 then
n.i = 0;
end if;

// Equations of resistor

end Resistor;
]

3.4.2.9 semiLinear

== 0 then

In some situations, equations with the semiLinear function become underdetermined if the first argument (x)
becomes zero, i.e., there are an infinite number of solutions. It is recommended that the following rules are used
to transform the equations during the translation phase in order to select one meaningful solution in such cases:

Rule 1: The equations

y = semiLinear(x, sa, sl);
y = semiLinear(x, sl, s2);
y = semiLinear(x, s2, s3);

y = semiLinear(X, sy, sb);

may be replaced by
sl =if m_dot >= 0 then sa else sb
s2=sl;
s3 =s2;
SN = SN-15

y = semiLinear(X, sa, sb);
Rule 2: The equations

x=0;
y=0;
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y = semiLinear(x, sa, sb);
may be replaced by

x=0
y=0;
sa = sb;

[For symbolic transformations, the following property is useful (this follows from the definition):
semiLinear(m_dot, port_h, h);
is identical to

-semiLinear(-m_dot, h, port_h),

The semiLinear function is designed to handle reversing flow in fluid systems, such as
H dot =semiLinear(m_dot, port.h, h);

i.e., the enthalpy flow rate H _dot is computed from the mass flow rate m_dot and the upstream specific enthalpy
depending on the flow direction.

/
3.4.3 Vectors, Matrices, and Arrays Built-in Functions for Array Expressions

The following function cannot be used in Modelica, but is utilized below to define other operators

promote(A,n) Fills dimensions of size 1 from the right to array A upto dimension n, where "n
>= ndims(A)" is required. Let C = promote(A,n), with nA=ndims(A), then
ndims(C) = n, size(C,j) = size(A,j) for 1 <=j <=nA, size(C,j) = 1 for nA+1 <=
<=n,C[i_1,..,1inA1,..,1]=A[1,..1inA]

[Function promote could not be used in Modelica, because the number of dimensions of the return array cannot
be determined at compile time if n is a variable. Below, promote is only used for constant n].

The following built-in functions for array expressions are provided:

Modelica Explanation

ndims(A) Returns the number of dimensions k of array expression A, with k >= 0.

size(A,1) Returns the size of dimension i of array expression A where i shall be > 0 and <=
ndims(A).

size(A) Returns a vector of length ndims(A) containing the dimension sizes of A.

scalar(A) Returns the single element of array A. size(A,i) = 1 is required for 1 <=1 <= ndims(A).

vector(A) Returns a 1-vector, if A is a scalar and otherwise returns a vector containing all the

elements of the array, provided there is at most one dimension size > 1.

matrix(A) Returns promote(A,2), if A is a scalar or vector and otherwise returns the elements of the
first two dimensions as a matrix. size(A,i) = 1 is required for 2 < i <= ndims(A).

transpose(A) Permutes the first two dimensions of array A. It is an error, if array A does not have at
least 2 dimensions.
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outerProduct(vl,v2)

Returns the outer product of vectors vl and v2 ( = matrix(v)*transpose( matrix(v) ) ).

identity(n) Returns the n x n Integer identity matrix, with ones on the diagonal and zeros at the other
places.
diagonal(v) Returns a square matrix with the elements of vector v on the diagonal and all other

elements zero.

zeros(n;,ny,ns,...)

Returns the n; x n, X n; X ... Integer array with all elements equal to zero (n; >= 0).

ones(n;,ny,ns,...)

Return the n; x n, X n3 X ... Integer array with all elements equal to one (n; >=0 ).

fill(s,n;,ny,ns, ...)

Returns the n; x n, X n; x ... array with all elements equal to scalar or array expression s
(n; >= 0). The returned array has the same type as s.
Recursive definition: fill(s,n;,n,,ns, ...)= fill(fill(s,n,,n3, ...), ny); fill(s,n)={s,s,..., s}

linspace(x1,x2,n)

Returns a Real vector with n equally spaced elements, such that v=linspace(x1,x2,n),
v[i] = x1 + (x2-x1)*(i-1)/(n-1) for 1 <=1 <=n. It is required that n >= 2. The arguments
x1 and x2 shall be numeric scalar expressions.

min(A)

Returns the smallest element of array expression A.

min(x,y)

Returns the smallest element of the scalars x and y.

min(e(i, ..., j) for i in

Described in section 3.4.3.1.

u,...,jinv) Returns the smallest value of the scalar expression e(i, ..., j) evaluated for all
combinations of i inu, ..., j in v:

max(A) Returns the largest element of array expression A.

max(x,y) Returns the largest element of the scalars x and y.

max(e(i, ..., j) for iin

Described in section 3.4.3.1.

u,...,jinv) Returns the largest value of the scalar expression e(i, ..., j) evaluated for all combinations
ofiinu, ..., jinv:
sum(A) Returns the scalar sum of all the elements of array expression:

A[L,.. . 11+A[2,...,1]+... +A[end,...,1]+A[end,....end]

sum(e(i, ..., j) for iin

Described in section 3.4.3.1.

u,..,jinv) Returns the sum of theexpression e(i, ..., j) evaluated for all combinations ofiinu, ...,
jinv:
e(u[1],...,v[1D+e(u[2],...,v[1])+...+e(u[end],...,v[1])*...+e(u[end]....,v[end])
The type of sum(e(i, ..., j) for iin u, ..., j in v) is the same as the type of e(i,...j).
product(A) Returns the scalar product of all the elements of array expression A.

A[L,...,1]*A[2,...,1]*... *A[end,...,1]*A[end,....end]

product(e(i, ..., j) for
iinu,..,jinv)

Described in section 3.4.3.1.

Returns the product of the scalar expression e(i, ..., j) evaluated for all combinations of i
inu,..,jinv:

e(u[1],....,v[1D*e(u[2],...,v[1]D*...*(u[end],...,v[1])*...*e(u[end]....,v[end])

The type of product(e(i, ..., j) foriin u, ..., j in v) is the same as e(i,...j).
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symmetric(A) Returns a matrix where the diagonal elements and the elements above the diagonal are
identical to the corresponding elements of matrix A and where the elements below the
diagonal are set equal to the elements above the diagonal of A, i.e., B := symmetric(A) -
> Blij] == Afiyj], if i <=j, B[i,j] := A[j,i], if i > ].
cross(x,y) Returns the cross product of the 3-vectors x and y, i.e.
cross(x,y) = vector( [ x[2]*y[3]-x[3]*y[2]; x[3]*y[1]-x[1]*y[3]; x[1]*y[2]-x[2]*y[1]]);
skew(x) Returns the 3 x 3 skew symmetric matrix associated with a 3-vector, i.e.,
cross(x,y) = skew(x)*y; skew(x) = [0, -x[3], x[2]; x[3], 0, -x[1]; -x[2], x[1], OF;
[Example:
Real x[4,1,6];
size(x,1) = 4;
size (x); // vector with elements 4, 1, 6

size (2*x+x )

Real[3] Vvl =
Real[3,1] m =
Real[3] v2 =

= size(x);

£fil1(1.0, 3);
matrix(vl) ;
vector (m) ;

Boolean check([3,4] = fill(true, 3, 4);

]

3.4.3.1 Reduction expressions

An expression

function-name " (" expressionl for iterators ")"

is a reduction-expression. The expressions in the iterators of a reduction-expression shall be vector expressions.
They are evaluated once for each reduction-expression, and are evaluated in the scope immediately enclosing the

reduction-expression.
For an iterator

IDENT in e

Xpression?2

the loop-variable, IDENT, is in scope inside expressionl. The loop-variable may hide other variables, as in for-

clauses. The result depends on the function-name, and currently the only legal function-names are the built-in
operators array, sum, product, min, and max. For array, see section 3.4.4.2. If function-name is sum,

product, min, or max the result is of the same type as expressionl and is constructed by evaluating

expression] for each value of the loop-variable and computing the sum, product, min, or max of the
computed elements. For deduction of ranges, see section 3.3.3.1.

Function-name Restriction on expressionl Result if expression2 is empty
sum None zeros(...)

product Scalar 1

min Scalar Modelica.Constants.inf

max Scalar -Modelica.Constants.inf
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[Example:

10 .
sum(i for 1 in 1:10) // Gives E'1l=1+2+"'+10=55
i

// Read it as: compute the sum of i for i in the range 1 to 10.
2
sum(i*2 for i in {1,3,7,6}) // Gives Zie{l y gl =1+9+49+436=95

{product (j for j in 1:i) for i in 0:4} // Gives {1,1,2,6,24}
max (i*2 for i in {3,7,6}) // Gives 49

]

3.4.4 Vector, Matrix and Array Constructors

3.4.4.1 Array Construction

The constructor function array(A,B,C,...) constructs an array from its arguments according to the following
rules:

e  Size matching: All arguments must have the same sizes, i.e., size(A) = size(B) = size(C) = ...

e  All arguments must be type equivalent. The datatype of the result array is the maximally expanded type of
the arguments. The maximally expanded types should be equivalent. Real and Integer subtypes can be
mixed resulting in a Real result array where the Integer numbers have been transformed to Real numbers.

e Each application of this constructor function adds a one-sized dimension to the left in the result compared to
the dimensions of the argument arrays, i.e., ndims(array(A,B,C)) = ndimes(A) + 1 = ndims(B) + 1, ...

e {A,B,C, ..} is a shorthand notation for array(A, B, C, ...).
e  There must be at least one argument [i.e., array() or {} is not defined].
[Examples:

{1,2,3} is a 3 vector of type Integer.
{{11,12,13}, {21,22,23} } is a 2x3 matrix of type Integer
{{{1.0, 2.0, 3.0}}} is a I1x1x3 array of type Real.

Real[3] v = array(l, 2, 3.0);
type Angle = Real(unit="rad”);
parameter Angle alpha = 2.0;  // type of alpha is Real.
// array(alpha, 2, 3.0) is a 3 vector of type Real.
Angle[3] a = {1.0, alpha, 4}, //type of a is Real[3].

/

3.4.4.2 Array constructor with iterators
An expression
"{" expression for iterators "}"

or

array " (" expression for iterators ")"
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is an array constructor with iterators. The expressions inside the iterators of an array constructor shall be vector
expressions. They are evaluated once for each array constructor, and is evaluated in the scope immediately
enclosing the array constructor.

For an iterator
IDENT in array expression

the loop-variable, IDENT, is in scope inside expression in the array construction. The loop-variable may hide
other variables, as in for-clauses. The loop-variable has the same type as the type of the elements of
array expression. For deduction of ranges, see section 3.3.3.1.

Array constructor with one iterator

If only one iterator is used, the result is a vector constructed by evaluating expression for each value of the loop-
variable and forming an array of the result.

[Example:
array(i for i in 1:10)
// Gives the vector 1:10={1,2,3,...,10}

{r for r in 1.0 : 1.5 : 5.5}
// Gives the vector 1.0:1.5:5.5={1.0, 2.5, 4.0, 5.5}

{i*2 for i in {1,3,7,6}}
// Gives the vector {1, 9, 49, 36}

Array constructor with several iterators

The notation with several iterators is a shorthand notation for nested array constructors. The notation can be
expanded into the usual form by replacing each ',' by '} for 'and prepending the array constructor with a '{'.

[Example:
Real hilb[:,:1= {(1/(i+j-1) for i imn 1:n, j in 1:n};
Real hilb2[:,:1={{(1/(i+j-1) for j imn 1l:n} for i in 1:n}

3.4.4.3 Array Concatenation
The function cat(k,A,B,C,...) concatenates arrays A,B,C.,... along dimension k according to the following rules:
e Arrays A, B, C, ... must have the same number of dimensions, i.e., ndims(A) = ndims(B) = ...

e Arrays A, B, C, ... must be type equivalent. The datatype of the result array is the maximally expanded type
of the arguments. The maximally expanded types should be equivalent. Real and Integer subtypes can be
mixed resulting in a Real result array where the Integer numbers have been transformed to Real numbers.

e khas to characterize an existing dimension, i.e., 1 <=k <= ndims(A) = ndims(B) = ndims(C); k shall be an
integer number.

e Size matching: Arrays A, B, C, ... must have identical array sizes with the exception of the size of dimension
k, i.e., size(A,)) = size(B,j), for 1 <=j <=ndims(A) and j <> k.

[Examples:
Real[2,3] rl = cat(1i, {{1.0, 2.0, 3}}, {{4, 5, 6}});
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Real[2, 6] r2 = cat(2, rl, 2*rl);

/

Concatenation is formally defined according to:

Let R = cat(k,A,B,C,...), and let n = ndims(A) = ndims(B) = ndims(C) = ...., then
size(R,k) = size(A k) + size(B,k) + size(C,k) + ...
size(R,j) = size(A,j) = size(B,j) = size(C,j) = ...., for 1 <=j<=nand j <> k.
R[i1l,..,ik ...,in]=A[i 1,..,1k,..1in] fori k<=size(Ak),
R[i 1,..,1k, .., in]=B[i1,..1 k-size(A,), ..., i n], fori k <= size(A,k) + size(B,k),

where | <=1 j <=size(R,j) for | <=j <=n.
3.4.4.4 Array Concatenation along First and Second Dimensions

For convenience, a special syntax is supported for the concatenation along the first and second dimensions.

e Concatenation along first dimension:
[A; B; C; ...] = cat(1, promote(A,n), promote(B,n), promote(C,n), ...) where
n =max(2, ndims(A), ndims(B), ndims(C), ....). If necessary, 1-sized dimensions are added to the right of A,
B, C before the operation is carried out, in order that the operands have the same number of dimensions
which will be at least two.

e  Concatenation along second dimension:
[A, B, C, ...] = cat(2, promote(A,n), promote(B,n), promote(C,n), ...) where
n = max(2, ndims(A), ndims(B), ndims(C), ....). If necessary, 1-sized dimensions are added to the right of A,
B, C before the operation is carried out, especially that each operand has at least two dimensions.

[c,d]].

e [A]=promote(A,max(2,ndims(A))), i.e., [A] = A, if A has 2 or more dimensions, and it is a matrix with the
elements of A, if A is a scalar or a vector.

e There must be at least one argument (i.e. [] is not defined)

[Examples:

Real sl1, s2, v1l[nl], v2[n2], M1l[ml,n],
M2 [m2,n], M3[n,ml], M4[n,m2], Kl[ml,n,k], K2[m2,n,k];

[vIv2] isa (nl+n2) x 1 matrix
[MI;M2] is a (ml+m2) x n matrix
[M3,M4] is anx (ml+m2) matrix
[K1;K2] isa (ml+m2)x nx k array
[sl;s2] is a2 x I matrix

[s1,s1] isa Il x 2 matrix

[s1] is a I x I matrix

[vl] is a nl x 1 matrix

Real[3] v1 array(1l, 2, 3);

Real[3] v2 = {4, 5, 6};

Real[3,2] ml = [v1l, v2];

Real([3,2] m2 = [vl, [4;5;6]1]1; // ml = m2
Real[2,3] m3 = [1, 2, 3; 4, 5, 6];
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Real[1l,3] m4
Real[3,1] m5

[1, 2, 31;
[1; 2; 31;

/

3.4.4.5 Vector Construction

Vectors can be constructed with the general array constructor, e.g., Real [3] v = {1,2,3}.

The range vector operator or colon operator of simple-expression can be used instead of or in combination with
this general constructor to construct Real, Integer, Boolean or enumeration type vectors. Semantics of the colon
operator:

e j:k isthe Integer vector {j, j+1, ..., k}, if j and k are of type Integer.

e j:k isthe Real vector {j, j+1.0, ... n}, with n = floor(k-j), if j and/or k are of type Real.

e j:k is aReal, Integer, Boolean, or enumeration type vector with zero elements, if j > k.

e j:d:k isthe Integer vector {j, j+d, ..., jtn*d}, with n = (k —j)/d, if j, d, and k are of type Integer.
e j:d:k isthe Real vector {j, j+d, ..., jtn*d}, with n = floor((k-j)/d), if j, d, or k are of type Real.
e j:d:k isaReal or Integer vector with zero elements, if d >0 and j >k orifd <0 and j <k.

e false : true is the Boolean vector {false, true}.

e j:;jis {j} ifjis Real, Integer, Boolean, or enumeration type.

e E.ci: E.¢j is the enumeration type vector { E.ei, ... E.ej} where E.ej> E.ei, and ei and ¢j belong to some
enumeration type E=enumeration(...¢i,...¢j,...).

[Examples:
Real v1[5] = 2.7 : 6.8;
Real v2([5] = {2.7, 3.7, 4.7, 5.7, 6.7}; // = same as vl

Boolean bl[2] = false:true;
Colors = enumeration(red,blue,green) ;

Colors ec[3] = Colors.red : Colors.green;

]
3.4.5 Array access operator

Elements of vector, matrix or array variables are accessed with []. A colon is used to denote all indices of one
dimension. A vector expression can be used to pick out selected rows, columns and elements of vectors,
matrices, and arrays. The number of dimensions of the expression is reduced by the number of scalar index
arguments. The expression end may only appear inside array subscripts, and if used in the i:th subscript of an
array expression A it is equivalent to size(A,1) provided indices to A are a subtype of Integer. If used inside
nested array subscripts it refers to the most closely nested array.

It is also possible to use the array access operator to assign to element/elements of an array in algorithm sections.
If the index is an array the assignments take place in the order given by the index array. For assignments to
arrays and elements of arrays, the entire right-hand side and the index on the left-hand side is evaluated before
any element is assigned a new value.
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e af:,j] is a vector of the j-th column of a,

* afj:k]is {[a[j],

a[j+1], ...,
o a[.j:k]is[a[:j], a[:j*+1], ...,
o v[2:2:8] =v[ {2,4,6,8} ] .

afk]}

af+k]],

o v[{j,k}]:={2,3}; // Same as v[j]:=2; v[k]:=3;
o v[{1,1}]:={2,3}; // Same as v[1]:=3;
e Alend-1,end] is A[size(A,1)-1,size(A,2)]

Modelica Language Specification

e Alv[end],end] is A[v[size(v,1)],size(A,2)] // since the first end is referring to end of v.

e ifxisavector,x[1] is a scalar, but the slice x [1:5] is a vector (a vector-valued or colon index
expression causes a vector to be returned). ]

[Examples given the declaration x[n, m], v[k], z[i, J, p]:

[Expression # dimensions Type of value

x[1, 1] 0 Scalar

x[:, 1] 1 n — Vector

x[1, :] 1 m — Vector

v[1:p] 1 p — Vector

x[1:p, :] 2 p x m — Matrix

x[1:1, :] 2 1 x m - "row" matrix
x[{1, 3,5}, :] 2 3 x m — Matrix

x[:, V] 2 n x k — Matrix

z[:, 3, ] 2 i X p— Matrix
x[scalar([1]), :] 1 m — Vector
x[vector([1]), :] 2 1 x m - "row" matrix

/

3.4.6 Scalar, vector, matrix, and array operator functions

The mathematical operations defined on scalars, vectors, and matrices are the subject of linear algebra.

In all contexts that require an expression which is a subtype of Real, an expression which is a subtype of Integer
can also be used; the Integer expression is automatically converted to Real.

The term numeric class is used below for a subtype of the Real or Integer type class.

3.4.6.1 Equality and Assignment of type classes

Equality “a=b” and assignment “a:=b” of scalars, vectors, matrices, and arrays is defined element-wise and
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require both objects to have the same number of dimensions and corresponding dimension sizes. The operands
need to be type equivalent. This is legal for the simple types and all types satisfying the requirements for a
record, and is in the latter case applied to each component-element of the records.

Type of a Type of b Resultofa=Db Operation (j=1:n, k=1:m)
Scalar Scalar Scalar a=Db

\Vector[n] Vector[n] Vector[n] a[j]="b[j]

Matrix[n, m] Matrix[n, m] Matrix[n, m] a[j, k] =b[j, k]

Array[n, m, ...] Array[n, m, ...] Array[n, m, ...] alj, k,...]=0[j, k, ...]

3.4.6.2 Addition and Subtraction of numeric type classes and concatenation of strings

Addition “a+b” and subtraction “a-b” of numeric scalars, vectors, matrices, and arrays is defined element-wise
and require size(a) = size(b) and a numeric type class for a and b. Addition “a+b” of string scalars, vectors,
matrices, and arrays is defined as element-wise string concatenation of corresponding elements from a and b, and
require size(a) = size(b).

Type of a Type of b Result of a +/- b Operation ¢ :=a +/- b (j=1:n, k=1:m)
Scalar Scalar Scalar c:=a+t/-b
'Vector[n] 'Vector[n] 'Vector[n] c[j] := a[j] +/- b[j]

Matrix[n, m]

Matrix[n, m]

Matrix[n, m]

cli, k] := a[j, k] +/- b[j, k]

IArray[n, m, ..

]

|Array[n, m, ..

]

IArray[n, m, ...]

clik, ...] =alj, k, ...] 7-b[j, k, ...]

3.4.6.3 Scalar Multiplication of numeric type classes

Scalar multiplication “s*a” or “a*s” with numeric scalar s and numeric scalar, vector, matrix or array a is defined

element-wise:

Type of s Type of a Type of s* a and a*s |Operation ¢ :=s*a or c¢:=a*s (j=1:n, k=1:m)
Scalar Scalar Scalar c:=s*a

Scalar Vector [n] \Vector [n] c[j] :=s* a[j]

Scalar Matrix [n, m] [Matrix [n, m] c[j, k] :=s* afj, k]

Scalar Array[n, m, ...] |Array [n, m, ...] c[j, k, ...] :=s*a[j, k, ...]

3.4.6.4 Matrix Multiplication of numeric type classes

Multiplication “a*b” of numeric vectors and matrices is defined only for the following combinations:

Typeofa  [Typeofb  [Type of a* b |Operation ¢ :=a*b

Vector [n] [Vector [n]  [Scalar c := sumy(a[k]*b[k]), k=1:n

Vector [n]  |Matrix [n, m][Vector [m] [c[j] := sumy(a[k]*b[k, j]), j=1:m, k=1:n
Matrix [n, m]|[Vector [m] [Vector [n] [c[j] := sumy(a[j, k]*b[k])
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Matrix [n, m][Matrix [m, p]Matrix [n, p](c[i, j] = sumy(a[i, k]*b[k, j]), i=1:n, k=1:m,

j=1:p
[ Example:
Real A[3,3], xI[3], b[3], vI3];
A*x = Db;
X*A = b; // same as transpose([x])*A*b
[v] *transpose ( [v]) // outer product
V*A*Y // scalar

tranpose ([v]) *A*v

// vector with one element

/

3.4.6.5 Scalar Division of numeric type classes

Division “a/s” of numeric scalars, vectors, matrices, or arrays a and numeric scalars s is defined element-wise.
The result is always of real type. In order to get integer division with truncation use the function div.

Type of a Type of s Result ofa/s Operation ¢ :=a /s (j=1:n, k=1:m)
Scalar Scalar Scalar c:=al/s

Vector[n] Scalar 'Vector[n] c[k] :=a[k] /s

Matrix[n, m] Scalar Matrix[n, m] c[j, k] :==a[j,k]/s

Array[n, m, ...] Scalar Array[n, m, ...] cli, k,...]1==a[j, k,...]/s

3.4.6.6 Exponentiation of Scalars of numeric type classes

Exponentiation “a”b” is defined as pow () in the C language if both “a” and “b” are scalars of a numeric type
class.

3.4.6.7 Scalar Exponentiation of Square Matrices of numeric type classes

Exponentiation “a”s” is defined if “a” is a square numeric matrix and “s” is a scalar as a subtype of Integer with
s >= 0. The exponentiation is done by repeated multiplication
(e.g. a"3 = a*a*a; a™0 = identity(size(a,1)); assert(size(a,l)==size(a,2),”’Matrix must be square”); a"1 = a).

[Non-Integer exponents are forbidden, because this would require to compute the eigenvalues and eigenvectors
of “a” and this is no longer an elementary operation].

3.4.6.8 Slice operation

If a is an array containing scalar components and m is a component of those components, the expression a.m is
interpreted as a slice operation. It returns the array of components {a[1].m, ...}.

If m is also an array component, the slice operation is valid only if size(a[1].m)=size(a[2].m)=...
3.4.6.9 Relational operators

Relational operators <, <=, >, >=, == <> are only defined for scalar operands of simple types. The result is
Boolean and is true or false if the relation is fulfilled or not, respectively.

For operands of type String, strl op str2 is for each relational operator, op, defined in terms of the C-function
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strcmp as stremp(strl,str2) op 0.
For operands of type Boolean, false<true.
For operands of enumeration types, the order is given by the order of declaration of the enumeration literals.

In relations of the form vl == v2 or vl <>v2, vl or v2 shall not be a subtype of Real. [The reason for this rule is
that relations with Real arguments are transformed to state events (see section Events below) and this
transformation becomes unnecessarily complicated for the == and <> relational operators (e.g. two crossing
functions instead of one crossing function needed, epsilon strategy needed even at event instants). Furthermore,
testing on equality of Real variables is questionable on machines where the number length in registers is
different to number length in main memory].

Relations of the form “v1 rel op v2”, with vl and v2 variables and rel_op a relational operator are called
elementary relations. If either v1 or v2 or both variables are a subtype of Real, the relation is called a Real
elementary relation.

3.4.6.10 Boolean operators

The operators, “and” and “or” take expressions of boolean type, which are either scalars or arrays of matching
dimensions. The operator “not” takes an expression of boolean type, which is either scalar or an array. The result
is the element-wise logical operation. For short-circuit evaluation of “and” and “or” see section 3.4.1.

3.4.6.11 Vectorized call of functions

Functions with one scalar return value can be applied to arrays element-wise, e.g. if A is a vector of reals, then
sin(A) is a vector where each element is the result of applying the function sin to the corresponding element in
A.

Consider the expression £ (argl, ..., argn), an application of the function f to the arguments argl, ..., argn
is defined.

For each passed argument, the type of the argument is checked against the type of the corresponding formal
parameter of the function.

1. If the types match, nothing is done.
2. If'the types do not match, and a type conversion can be applied, it is applied. Continued with step 1.

3. Ifthe types do not match, and no type conversion is applicable, the passed argument type is checked to see if
it is an n-dimensional array of the formal parameter type. If it is not, the function call is invalid. If it is, we
call this a foreach argument.

4. For all foreach arguments, the number and sizes of dimensions must match. If they do not match, the
function call is invalid. If no foreach argument exists, the function is applied in the normal fashion, and the
result has the type specified by the function definition.

5. The result of the function call expression is an n-dimensional array with the same dimension sizes as the
foreach arguments. Each element ei,..,j is the result of applying f to arguments constructed from the original
arguments in the following way.

e [fthe argument is not a foreach argument, it is used as-is.
e Ifthe argument is a foreach argument, the element at index [i,...,j] is used.

If more than one argument is an array, all of them have to be the same size, and they are traversed in parallel.
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[Examples:
sin({a, b, c}) = {sin(a), sin(b), sin(c)}  //argumentis a vector
sin([a,b,c]) = [sin(a),sin(b),sin(c)] // argument may be a matrix

atan({a,b,c},{d, e, £})

{atan(a,d), atan(b,e), atan(c,f)}

This works even if the function is declared to take an array as one of its arguments. If pval is defined as a
function that takes one argument that is a vector of Reals and returns a Real, then it can be used with an actual
argument which is a two-dimensional array (a vector of vectors). The result type in this case will be a vector of
Real.

pval([1,2;3,4])

[pval ([1,2]); pval([3,4])]

sin([1,2;3,4]) = [sin({1,2}); sin({3,4})]

[sin (1), sin(2); sin(3), sin(4)]

function Add
input Real el, e2;
output Real suml;
algorithm
suml := el + e2;
end Add;

Add(l, [1, 2, 3]) adds one to each of the elements of the second argument giving the result [2, 3, 4]. However, it
is illegal to write 1 + [1, 2, 3], because the rules for the built-in operators are more restrictive.]

3.4.6.12 Empty Arrays

Arrays may have dimension sizes of 0. E.g.
Real x[0]; /[ an empty vector
Real A[O, 3], B[S, 0], C[0,0];  // empty matrices

e Empty matrices can be constructed with the fill function. E.g.
Real  A[:;:] =fill(0.0,0, 1); //'a Real 0 x 1 matrix
Boolean B[, :, :] = fill(false, 0, 1, 0); //a Boolean 0 x 1 x 0 matrix

e [t is not possible to access an element of an empty matrix, e.g. v[j,k] is wrong if “v=[]” because the assertion
fails that the index must be bigger than one.

e Size-requirements of operations, such as +, -, have also to be fulfilled if a dimension is zero. E.g.
Real[3,0] A, B;
Real[0,0] C;
A+ B //fine, result is an empty matrix
A+ C //error, sizes do not agree

e  Multiplication of two empty matrices results in a zero matrix if the result matrix has no zero dimension
sizes, i.e.,
Real[0,m]*Real[m,n] = Real[0,n] (empty matrix)
Real[m,n]*Real[n,0] = Real[m,0] (empty matrix)
Real[m,0]*Real[0,n] = zeros(m,n) (non-empty matrix, with zero elements).
[Example:
Real U[p] ’ x [n] ’ Y[q] ’ A[nln] ’ B[n:p] ’ C[q,n] ’ D[qlp] H

der (x) = A*x + B*u
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y = C*x + D*u
Assume n=0, p>0, g>0: Results in "y = D*u"
]
3.4.7 If-expression

An expression

if expressionl then expression2 else expression3

is one example of if-expression. First expressionl, which must be boolean expression, is evaluated. If
expression] is true expression2 is evaluated and is the value of the if-expression, else expression3 is evaluated
and is the value of the if-expression. The two expressions, expression2 and expression3, must be type compatible
and give the type of the if-expression. If-expressions with elseif are defined by replacing elseif by else if./Note:
elseif'is added for symmetry with if-clauses.] For short-circuit evaluation see section 3.4.1.

[Example:
Integer i;
Integer sign of il=if i<0 then -1 elseif i==0 then 0 else 1;
Integer sign of i2=if i<0 then -1 else if i==0 then 0 else 1;

7
3.4.8 Functions

Function classes and record constructors can be called as described in this section. It also possible to declare
components of function type, see section 3.2.13.

3.4.8.1 Formal input parameters of functions

A function application, see section 2.2.7, has optional positional arguments followed by zero, one or more named
arguments, such as

£(3.5, 5.76, arg3=5, arg6=8.3);

The interpretation of a function application is as follows: First, a list of unfilled slots is created for all formal
input parameters. If there are N positional arguments, they are placed in the first N slots, where the order of the
parameters is given by the order of the component declarations in the function definition. Next, for each named
argument "identifier = expression", the identifier is used to determine the corresponding slot. This slot shall be
not filled [otherwise an error occurs] and the value of the argument is placed in the slot, filling it. When all
arguments have been processed, the slots that are still unfilled are filled with the corresponding default value of
the function definition. There shall be no remaining unfilled slots [otherwise an error occurs] and the list of
filled slots is used as the argument list for the call.

The type of each argument must agree with the type of the corresponding parameter, except where the standard
type coercions can be used to make the types agree. (See also section 3.4.6.10 on applying scalar functions to
arrays.)

[Example.
Suppose a function RealToString is defined as follows to convert a Real number to a String:

function RealToString
input Real number;
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input Real precision = 6 "number of significantdigits";
input Real length = 0 "minimum length of field";
output String string "number as string";

end RealToString;

Then the following applications are equivalent:

RealToString(2.0) ;
RealToString (2.0, 6, 0);

RealToString (2.0, 6);

RealToString (2.0, precision=6) ;

RealToString (2.0, length=0);

RealToString (2.0, 6, precision=6); // error: slot is used twice
/
3.4.8.2 Formal output parameters of functions

A function may have more than one output component, corresponding to multiple return values. The only way
to call a function returning more than one result is to make the function call the right hand side of an equation or
assignment. In these cases, the left hand side of the equation or assignment shall contain a list of component
references within parentheses:

(outl, out2, outl3) = £(...);

The component references are associated with the output components according to their position in the list. Thus
output component i is set equal to, or assigned to, component reference i in the list, where the order of the output
components is given by the order of the component declarations in the function definition. The type of each
component reference in the list must agree with the type of the corresponding output component.

A function application may be used as expression whose value and type is given by the value and type of the first
output component, if exactly one return result is provided.

It is possible to omit left hand side component references and/or truncate the left hand side list in order to discard
outputs from a function call. /The operator isPresent(out2) can be used inside the function to determine if the
formal output out2 needs to be computed, see section 3.4.2.]

[Example:
Function "eigen" to compute eigenvalues and optionally eigenvectors may be called in the following ways:
ev = eigen(A); // calculate eigenvalues
X = 1isStable(eigen(d)) ; // used in an expression
(ev, vr) = eigen(d) // calculate eigenvectors
(ev,vr,vl) = eigen(a) // and also left eigenvectors
(ev, ,vl) = eigen (A) // no right eigenvectors

The function may be defined as:

function eigen "calculate eigenvalues and optionally eigenvectors"
parameter Integer n = size(A,1);

input Real Al:, size(A,1)];
output Real eigenValues [n, 2] ;
output Real rightEigenVectors[n,n] ;
output Real leftEigenVectors [n,n];
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algorithm
// compute eigenvalues
if isPresent (rightEigenVectors) then
// compute right eigenvectors
end if;
if isPresent (leftEigenVectors) then
// compute left eigenvectors
end if;
end eigen;

]

The only permissible use of an expression in the form of a list of expressions in parentheses, is when it is used as
the left hand side of an equation or assignment where the right hand side is an application of a function.

[Example. The following are illegal:

(x+1, 3.0, z/y) = £(1.0, 2.0); // Not a list of component references.
(x, vy, z) + (u, v, w) // Not LHS of suitable eqn/assignment.

/

3.4.8.3 Record constructor

Whenever a record is defined, a record constructor function with the same name and in the same scope as the
record class is implicitly defined according to the following rules:

e The declaration of the record is partially instantiated including inheritance, modifications, redeclarations,
and expansion of all names referring to declarations outside of the scope of the record to their fully qualified
names [in order to remove potentially conflicting import statements in the record constructor function due
to flattening the inheritance tree].

e Allrecord elements [i.e., components and local class definitions] of the partially instantiated record
declaration are used as declarations in the record constructor function with the following exceptions: (1)
Component declarations which do not allow a modification [such as "constant Real c=1" or "final
parameter Real"] are declared as protected components in the record constructor function. (2) Prefixes
(constant, parameter, final, discrete, input, output, ...) of the remaining record components are removed.
(3) The prefix "input" is added to the public components of the record constructor function.

e An instance of the record is declared as output parameter [using a name, not appearing in the record |
together with a modification. In the modification, all input parameters are used to set the corresponding
record variables.

[This allows to construct an instance of a record, with an optional modification, at all places where a function
call is allowed. Examples:

record Complex "Complex number"
Real re "real part";
Real im "imaginary part";

end Complex;

function add

input Complex u, v;

output Complex w(re=u.re + v.re, im=u.im+v.re);
end add;
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Complex cl, c2;
equation
c2 = add(cl, Complex(sin(time), cos(time)) ;

In the following example, a convenient data sheet library of components is built up:

package Motors
record MotorData "Data sheet of a motor"
parameter Real inertia;
parameter Real nominalTorque;
parameter Real maxTorque;
parameter Real maxSpeed;
end MotorData;

model Motor "Motor model" // using the generic MotorData
MotorData data;

equation

end Motor;

record MotorIl123 = MotorData( // data of a specific motor
inertia = 0.001,
nominalTorque = 10,
maxTorque = 20,
maxSpeed = 3600) "Data sheet of motor I123";
record MotorIl45 = MotorData( // data of another specific motor
inertia = 0.0015,
nominalTorque = 15,
maxTorque = 22,
maxSpeed = 3600) "Data sheet of motor I145";

end Motors

model Robot
import Motors.*;
Motor motorl (data MotorI1l23()) ; // just refer to data sheet
Motor motor2 (data = MotorIl23 (inertia=0.0012)) ;
// data can still be modified (if no final declaration in record)
Motor motor3 (data = MotorIl45());

end Robot;

Example showing most of the situations, which may occur for the implicit record constructor function creation.
With the following record definitions

package Demo;
record Recordl;
parameter Real r0 = 0;
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end Recordl;

record Record2
import Modelica.Math.*;
extends Recordl;

constant Real cl = 2.0;
constant Real c2;
parameter Integer nl = 5;
parameter Integer n2;
parameter Real rl "comment";
parameter Real r2 = sin(cl) ;
final parameter Real r3 = cos(r2);
Real r4;
Real r5 = 5.0;
Real ré6[nl];
Real r7[n2];

end Record2;
end Demo;

the following record constructor functions are implicitly defined

package Demo;
function Recordl
input Real r0 = 0;
output Recordl 'result' (r0 = r0);
end Recordl;

function Record2

input Real ro = 0;

input Real c2;

input Integer nl := 5;

input Integer n2;

input Real rl "comment"; // the comment also copied from record
input Real r2 := Modelica.Math.sin(cl);

input Real r4;

input Real r5 = 5.0;

input Real ré6[nl];

input Real r7[n2];

output Record2 'result' (r0=r0,c2=c2,nl=nl,n2=n2,rl=rl,r2=xr2,
r4=r4,r5=r5,r6=x6,r7=x7) ;

protected
constant Real ¢l = 2.0; // referenced from r2
final parameter Real r3 = Modelica.Math.cos(r2);

end Record2;
end Demo;

and can be applied in the following way
Demo.Record2 rl = Demo.Record2 (r0=1, c2=2, nl=2, n2=3, rl=1, r2=2,
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r4=5, r5=5, r6={1,2}, r7={1,2,3});
Demo.Record2 r2 = Demo.Record2(1,2,2,3,1,2,5,5,{1,2},{1,2,3});
parameter Demo.Record2 r3 = Demo.Record2 (c2=2, n2=1, rl=1l, r4=4,
r6=1:5, r7={1});

The above example is only used to show the different variants appearing with prefixes, but it is not very
meaningful, because it is simpler to just use a direct modifier.

/

3.4.8.4 Type conversion constructor

The type conversion function Integer(E.enumvalue) returns the ordinal number of the enumeration value
E.enumvalue, where Integer(E.e1) =1, Integer(E.en) =size(E), for an enumeration type E=enumeration(el, ...,
en).

String(E.enumvalue) gives the string representation of the enumeration value.

[Example: String(E.Small) gives "Small".]
3.4.9 Variability of Expressions

Constant expressions are:
e Real, Integer, Boolean, String, and enumeration literals.
e Variables declared as constant .

e  Except for the special built-in operators initial, terminal, der, edge, change, sample, pre and
analysisType a function or operator with constant subexpressions as argument (and no parameters
defined in the function) is a constant expression.

Parameter expressions are:
e Constant expressions.
e Variables declared as parameter.

e Except for the special built-in operators initial, terminal, der, edge, change, sample and pre a
function or operator with parameter subexpressions is a parameter expression.

e The function analysisType() is parameter expression.
Discrete-time expressions are:
e  Parameter expressions.

e Discrete-time variables, i.e. Integer, Boolean, String variables and enumeration variables, as well as
Real variables assigned in when-clauses

e Function calls where all input arguments of the function are discrete-time expressions.
e  Expressions where all the subexpressions are discrete-time expressions.
e  Expressions in the body of a when clause.

e  Unless inside noEvent: Ordered relations (>,<,>=,<=) and the functions ceil, floor, div, mod, rem, abs,
sign. These will generate events if they have continuous-time subexpressions. [In other words, relations
inside noEvent(), such as noEvent(x > 1), are continuous-time expressions].
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e The functions pre, edge, and change result in discrete-time expressions.

e Expressions in functions behave as though they were discrete-time expressions.

Components declared as constant shall have an associated declaration equation with a constant expression, if the
constant is used in the model. The value of a constant cannot be changed after it has been given a value. A
constant without an associated declaration equation can be given one by using a modifier.

For an assignment v:=expr or declaration equation v=expr, v must be declared to be at least as variable as expr.

= The declaration equation of a parameter component and of the base type attributes [such as start] needs to
be a parameter expression.

= Ifvis adiscrete-time component then expr needs to be a discrete-time expression.

For an equation exprl = expr2 where neither expression is of base type Real, both expressions must be discrete-
time expressions. For record equations the equation is split into basic types before applying this test. /This
restriction guarantees that the noEvent() operator cannot be applied to Boolean, Integer, String, or enumeration
equations outside of a when-clause, because then one of the two expressions is not discrete-time]

Inside an if-expression, if-clause or for-clause, that is controlled by a continuous-time switching expression and
not in the body of a when-clause, it is not legal to have assignments to discrete variables, equations between
discrete-time expressions, or real elementary relations/functions that should generate events. [This restriction is
necessary in order to guarantee that there are no continuous-time equations for discrete variables, and to ensure
that crossing functions do not become active between events.]

[Example:

model Constants
parameter Real pl = 1;
constant Real cl pl + 2; // error, no constant expression
parameter Real p2 pl + 2; // fine

end Constants;

model Test

Constants cl(pl=3); // fine

Constants c2 (p2=7) ; // fine, declaration equation can be modified

Boolean b;

Real X;
equation

b = noEvent(x > 1) // error, since b is a discrete-time and

// noEvent(x > 1) is a continuous-time expression.

end Test;

3.5 Events and Synchronization

The integration is halted and an event occurs whenever a Real elementary relation, e.g. “x > 2”, changes its
value. The value of a relation can only be changed at event instants [in other words, Real elementary relations
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induce state or time events]. The relation which triggered an event changes its value when evaluated literally
before the model is processed at the event instant /in other words, a root finding mechanism is needed which
determines a small time interval in which the relation changes its value; the event occurs at the right side of this
interval]. Relations in the body of a when-clause are always taken literally. During continuous integration a
Real elementary relation has the constant value of the relation from the last event instant.

[Example:
y = if u > uMax then uMax else if u < uMin then uMin else u;

During continuous integration always the same if branch is evaluated. The integration is halted whenever u-
uMax or u-uMin crosses zero. At the event instant, the correct if-branch is selected and the integration is
restarted.

Numerical integration methods of order n (n>=1) require continuous model equations which are differentiable
upto order n. This requirement can be fulfilled if Real elementary relations are not treated literally but as
defined above, because discontinuous changes can only occur at event instants and no longer during continuous
integration.]

[1t is a quality of implementation issue that the following special relations

time >= discrete expression
time < discrete expression

trigger a time event at “time = discrete expression”, i.e., the event instant is known in advance and no iteration
is needed to find the exact event instant.]

Relations are taken literally also during continuous integration, if the relation or the expression in which the
relation is present, are the argument of the noEvent(..) function. The smooth(p, x) operator also allows relations
used as argument to be taken literally. The noEvent feature is propagated to all subrelations in the scope of the
noEvent function. For smooth the liberty to not allow literal evaluation is propagated to all subrelations, but the
smooth-property itself is not propagated.

[Example:
x = if noEvent (u > uMax) then uMax elseif noEvent (u < uMin) then uMin
else u;
y = noEvent( if u > uMax then uMax elseif u < uMin then uMin else u);
z = smooth(0, if u > uMax then uMax elseif u < uMin then uMin else u);

In this case x=y=z, but a tool might generate events for z. The if-expression is taken literally without inducing
State events.

The smooth function is useful, if e.g. the modeller can guarantee that the used if-clauses fulfill at least the
continuity requirement of integrators. In this case the simulation speed is improved, since no state event
iterations occur during integration. The noEvent function is used to guard against “outside domain” errors, e.g.
y = if noEvent(x >= () then sqrt(x) else 0.]

All equations and assignment statements within when clauses and all assignment statements within function
classes are implicitly treated with the noEvent function, i.e., relations within the scope of these operators never
induce state or time events. [Using state events in when-clauses is unnecessary because the body of a when
clause is not evaluated during continuous integration.]

[Example:

Limitl = noEvent (x1 > 1);
// Error since Limitl is a discrete-time wvariable
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when noEvent (x1>1) or x2>10 then
// error, when-conditions is not a discrete-time expression
Close = true;
end when;

Modelica is based on the synchronous data flow principle which is defined in the following way:

1. All variables keep their actual values until these values are explicitly changed. Variable values can be
accessed at any time instant during continuous integration and at event instants.

2. Atevery time instant, during continuous integration and at event instants, the active equations express
relations between variables which have to be fulfilled concurrently (equations are not active if the
corresponding if-branch, when-clause or block in which the equation is present is not active).

3. Computation and communication at an event instant does not take time. /If computation or communication
time has to be simulated, this property has to be explicitly modeled].

4. The total number of equations is identical to the total number of unknown variables (= single assignment
rule).

[These rules guarantee that variables are always defined by a unique set of equations. It is not possible that a
variable is e.g. defined by two equations, which would give rise to conflicts or non-deterministic behaviour.
Furthermore, the continuous and the discrete parts of a model are always automatically “synchronized”.
Example:
equation // Illegal example

when conditionl then

close = true;
end when;

when condition2 then
close = false;
end when;

This is not a valid model because rule 4 is violated since there are two equations for the single unknown variable
close. If this would be a valid model, a conflict occurs when both conditions become true at the same time
instant, since no priorities between the two equations are assigned. To become valid, the model has to be
changed to:
equation
when conditionl then
close = true;
elsewhen condition2 then
close = false;
end when;

Here, it is well-defined if both conditions become true at the same time instant (conditionl has a higher priority
than condition2).]

There is no guarantee that two different events occur at the same time instant.

[As a consequence, synchronization of events has to be explicitly programmed in the model, e.g. via counters.
Example:

Boolean fastSample, slowSample;

Modelica 2.1 87



Modelica Language Specification

Integer ticks (start=0);
equation
fastSample = sample(0,1);

algorithm
when fastSample then
ticks := if pre(ticks) < 5 then pre(ticks)+1l else O0;
slowSample := pre(ticks) == 0;

end when;

algorithm
when fastSample then // fast sampling
end when;

algorithm
when slowSample then // slow sampling (5-times slower)
end when;

The slowSample when-clause is evaluated at every 5" occurrence of the fastSample when clause.]

[The single assignment rule and the requirement to explicitly program the synchronization of events allow a
certain degree of model verification already at compile time..]

3.6 Predefined types

The attributes of the predefined variable types and enumeration types are described below with Modelica syntax
although they are predefined. Redeclaration of any of these types is an error, and the names are reserved such
that it is illegal to declare an element with these names. It is furthermore not possible to combine extends from
the predefined types with other components. The definitions use RealType, IntegerType, BooleanType,
StringType, EnumType as mnemonics corresponding to machine representations. [Hence the only way to
declare a subtype of e.g. Real is to use the extends mechanism.]

type Real
RealType value; // Accessed without dot-notation
parameter StringType gquantity = ",
parameter StringType unit = "" "Unit used in equations";
parameter StringType displayUnit = "" "Default display unit";
parameter RealType min=-Inf, max=+Inf; // Inf denotes a large value
parameter RealType start = 0; // Initial value
parameter BooleanType fixed = true, // default for parameter/constant;

= false; // default for other variables

parameter RealType nominal; // Nominal value
parameter StateSelect stateSelect = StateSelect.default;

equation

assert (value >= min and value <= max, "Variable value out of limit");
assert (nominal >= min and nominal <= max, "Nominal value out of limit");
end Real;

type Integer
IntegerType value; // Accessed without dot-notation
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parameter StringType quantity = ",

parameter IntegerType min=-Inf, max=+Inf;

parameter IntegerType start = 0; // Initial value

parameter BooleanType fixed true, // default for parameter/constant;
false; // default for other wvariables

equation
assert (value >= min and value <= max, "Variable value out of limit");
end Integer;

type Boolean

BooleanType value; // Accessed without dot-notation
parameter StringType dquantity = ",

parameter BooleanType start = false; // Initial value

parameter BooleanType fixed = true, // default for parameter/constant;

= false, // default for other variables
end Boolean;

type String

StringType value; // Accessed without dot-notation
parameter StringType quantity = ",
parameter StringType start = ""; // Initial wvalue

end String;

type StateSelect = enumeration(

never "Do not use as state at all.",

avoid "Use as state, if it cannot be avoided (but only if variable appears
differentiated and no other potential state with attribute
default, prefer, or always can be selected).",

default "Use as state if appropriate, but only if variable appears
differentiated.",

prefer "Prefer it as state over those having the default value
(also variables can be selected, which do not appear
differentiated). ",

always "Do use it as a state."

)i

For each enumeration
type E=enumeration(el, €2, ..., en);
a new simple type is conceptually defined as

type E
EnumType value; // Accessed without dot-notation
parameter StringType gquantity = ",
parameter EnumType min=el, max=en;
parameter EnumType start = el; // Initial wvalue
parameter BooleanType fixed = true, // default for parameter/constant;
false; // default for other variables

constant EnumType el=...;

constant EnumType en=...;
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equation
assert (value >= min and value <= max, "Variable value out of limit");
end E;

The attributes “start” and “fixed” define the initial conditions for a variable for analysisType = "static".
“fixed=false” means an initial guess, i.e., value may be changed by static analyzer. “fixed=true” means a
required value. Before other analysisTypes (such as "dynamic") are performed, the analysisType "static" has to
be carried out first. The resulting consistent set of values for ALL model variables is used as initial values for the
analysis to be performed.

The attribute “nominal” gives the nominal value for the variable. The user need not set it even though the
standard does not define a default value. [The nominal value can be used by an analysis tool to determine
appropriate tolerances or epsilons, or may be used for scaling. For example, the absolute tolerance for an
integrator could be computed as “absTol = abs(nominal)*relTol/100”. A default value is not provided in order
that in cases such as “a=b”, where “b” has a nominal value but not “a”, the nominal value can be propagated
to the other variable).] [For external functions in C89, RealType by default maps to double and IntegerType by
default maps to int. In the mapping proposed in Annex F of the C99 standard, RealType/double matches the
IEC 60559:1989 (ANSI/IEEE 754-1985) double format. Typically IntegerType represents a 32-bit 2-complement
signed integer.]

3.7 Built-in variable time

All declared variables are functions of the independent variable time. Time is a built-in variable available in all
classes, which is treated as an input variable. It is implicitly defined as:
input Real time (£final quantity = "Time",
final unit = "s");

The value of the start attribute of time is set to the time instant at which the simulation is started.

[Example:
encapsulated model SineSource

import Modelica.Math.sin;

connector OutPort=output Real;

OutPort y=sin(time); // Uses the built-in variable time.
end SineSource;

Modelica 2.1 90



Modelica Language Specification

4 Mathematical description of Hybrid
DAEs

In this section, the mapping of a Modelica model into an appropriate mathematical description form is discussed.

In a first step, a Modelica translator transforms a hierarchical Modelica model into a "flat" set of Modelica
statements, consisting of the equation and algorithm sections of all used components by:

= expanding all class definitions (flattening the inheritance tree) and adding the equations and assignment
statements of the expanded classes for every instance of the model

= replacing all connect-statements by the corresponding equations of the connection set (see 3.3.8.1).
= mapping all algorithm sections to equation sets.
=  mapping all when clauses to equation sets (see 3.3.4).
As aresult of this transformation process, a sef of equations is obtained consisting of differential, algebraic and
discrete equations of the following form (v :=[X; X; y; ¢; m; pre(m); p]):
(la) e¢:=f_(relation(v))
(Ib) m:=f (v,c)
(Ie) 0=f _(v,0)

where

p Modelica variables declared as parameter or constant, i.e., variables without any time-
dependency.

t Modelica variable time, the independent (real) variable.

x(t) Modelica variables of type Real, appearing differentiated.

m(t.) Modelica variables of type discrete Real, Boolean, Integer which are unknown. These variables
change their value only at event instants t.. pre(m) are the values of m immediately before the
current event occurred.

y(t) Modelica variables of type Real which do not fall into any other category (= algebraic
variables).

c(te) The conditions of all if- expressions generated including when-clauses after conversion, see
3.3.4).

relation(v) A relation containing variables v;, e.g. vi > v,, v3 >=0.

For simplicity, the special cases of the noEvent() operator and of the reinit() operator are not contained in the
equations above and are not discussed below.
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The generated set of equations is used for simulation and other analysis activities. Simulation means that an
initial value problem is solved, i.e., initial values have to be provided for the states x, section 3.3.9. The
equations define a DAE (Differential Algebraic Equations) which may have discontinuities, a variable structure
and/or which are controlled by a discrete-event system. Such types of systems are called hybrid DAEs.
Simulation is performed in the following way:

1. The DAE (Ic) is solved by a numerical integration method. In this phase the conditions ¢ of the if- and
when-clauses, as well as the discrete variables m are kept constant. Therefore, (1¢) is a continuous function
of continuous variables and the most basic requirement of numerical integrators is fulfilled.

2. During integration, all relations from (1a) are monitored. If one of the relations changes its value an event is
triggered, i.e., the exact time instant of the change is determined and the integration is halted. As discussed
in section 3.5, relations which depend only on time are usually treated in a special way, because this allows
to determine the time instant of the next event in advance.

3. Atan event instant, (1) is a mixed set of algebraic equations which is solved for the Real, Boolean and
Integer unknowns.

4. After an event is processed, the integration is restarted with 1.

Note, that both the values of the conditions ¢ as well as the values of m (all discrete Real, Boolean and Integer
variables) are only changed at an event instant and that these variables remain constant during continuous
integration. At every event instant, new values of the discrete variables m and of new initial values for the states
x are determined. The change of discrete variables may characterize a new structure of a DAE where elements of
the state vector x are disabled. In other words, the number of state variables, algebraic variables and residue
equations of a DAE may change at event instants by disabling the appropriate part of the DAE. For clarity of the
equations, this is not explicitly shown by an additional index in (1).

At an event instant, including the initial event, the model equations are reinitialized according to the following
iteration procedure:

known variables: x, t, p
unkown variables: dx/dt, y, m, pre(m), c

// pre(m) = value of m before event occured
loop
solve (1) for the unknowns, with pre(m) fixed
if m == pre(m) then break
pre(m) :=
end loop

Solving (1) for the unknowns is non-trivial, because this set of equations contains not only Real, but also
Boolean and Integer unknowns. Usually, in a first step these equations are sorted and in many cases the Boolean
and Integer unknowns can be just computed by a forward evaluation sequence. In some cases, there remain
systems of equations (e.g. for ideal diodes, Coulomb friction elements) and specialized algorithms have to be
used to solve them.

Due to the construction of the equations by "flattening" a Modelica model, the hybrid DAE (1) contains a huge
number of sparse equations. Therefore, direct simulation of (1) requires sparse matrix methods. However,
solving this initial set of equations directly with a numerical method is both unreliable and inefficient. One
reason is that many Modelica models, like the mechanical ones, have a DAE index of 2 or 3, i.e., the overall
number of states of the model is less than the sum of the states of the sub-components. In such a case, every
direct numerical method has the difficulty that the numerical condition becomes worse, if the integrator step size
is reduced and that a step size of zero leads to a singularity. Another problem is the handling of idealized
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elements, such as ideal diodes or Coulomb friction. These elements lead to mixed systems of equations having
both Real and Boolean unknowns. Specialized algorithms are needed to solve such systems.

To summarize, symbolic transformation techniques are needed to transform (1) in a set of equations which can
be numerically solved reliably. Most important, the algorithm of Pantelides should to be applied to differentiate
certain parts of the equations in order to reduce the index. Note, that also explicit integration methods, such as
Runge-Kutta algorithms, can be used to solve (1c¢), after the index of (1c) has been reduced by the Pantelides
algorithm: During continuous integration, the integrator provides x and t. Then, (1c) is a linear or nonlinear
system of equations to compute the algebraic variables y and the state derivatives dx/dt and the model returns
dx/dt to the integrator by solving these systems of equations. Often, (1c) is just a linear system of equations in
these unknowns, so that the solution is straightforward. This procedure is especially useful for real-time
simulation where usually explicit one-step methods are used.
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S Unit expressions

Unless otherwise stated, the syntax and semantics of unit expressions in Modelica are conform with the
international standards ISO 31/0-1992 "General principles concerning quantities, units and symbols" and ISO
1000-1992 "SI units and recommendations for the use of their multiples and of certain other units".
Unfortunately, neither these two standards nor other existing or emerging ISO standards define a formal syntax
for unit expressions. There are recommendations and Modelica exploits them.

Examples for the syntax of unit expressions used in Modelica: "N.m", "kg.m/s2", "kg.m.s-2" "1/rad", "mm/s".

5.1 The Syntax of unit expressions

unit expression:
unit numerator [ "/" unit denominator ]

unit numerator:
"1" | unit factors | " (" unit expression ")"

unit_ denominator:

unit factor | " (" unit expression ")"
The unit of measure of a dimension free quantity is denoted by "1". The ISO standard does not define any
precedence between multiplications and divisions. The ISO recommendation is to have at most one division,
where the expression to the right of "/" either contains no multiplications or is enclosed within parentheses. It is
also possible to use negative exponents, for example, "J/(kg.K)" may be written as "J.kg-1.K-1".

unit factors:
unit factor [ unit mulop wunit factors ]

unit mulop:

n . n
The ISO standard allows that a multiplication operator symbol is left out. However, Modelica enforces the ISO
recommendation that each multiplication operator is explicitly written out in formal specifications. For example,
Modelica does not support "Nm" for newtonmeter, but requires it to written as "N.m".

The preferred ISO symbol for the multiplication operator is a "dot" a bit above the base line: "". Modelica

nn

supports the ISO alternative ".", which is an ordinary "dot" on the base line.

unit factor:
unit operand [ unit exponent ]

unit_exponent:
[ ngn | n_n ] integer

The ISO standard does not define any operator symbol for exponentiation. A unit_factor consists of a
unit_operand possibly suffixed by a possibly signed integer number, which is interpreted as an exponent. There
must be no spacing between the unit_operand and a possible unit_exponent.
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unit operand:
unit symbol | unit prefix unit_ symbol

unit prefix:

Y|z |E|]P|[T[G[M|[k[h[]da[d|[c|[m[ulp]|f]|al]sz]|
Y
A unit_symbol is a string of letters. A basic support of units in Modelica should know the basic and derived units
of the SI system. It is possible to support user defined unit symbols. In the base version Greek letters is not
supported, but full names must then be written, for example "Ohm".

A unit_operand should first be interpreted as a unit_symbol and only if not successful the second alternative
assuming a prefixed operand should be exploited. There must be no spacing between the unit_symbol and a
possible unit_prefix. The value of the prefixes are according to the ISO standard. The letter "u" is used as a
symbol for the prefix micro.

5.2 Examples

e The unit expression "m" means meter and not milli (107), since prefixes cannot be used in isolation. For
millimeter use "mm" and for squaremeter, m2, write "m2".

e The expression "mm2" means mm* = (10°m)? = 10°m?. Note that exponentiation includes the prefix.

The unit expression "T" means Tesla, but note that the letter "T" is also the symbol for the prefix tera
which has a multiplier value of 10",
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6 External function interface

6.1 Overview

Here, the word function is used to refer to an arbitrary external routine, whether or not the routine has a return
value or returns its result via output parameters (or both). The Modelica external function call interface provides
the following:

e  Support for external functions written in C and FORTRAN 77. Other languages, e.g. C++ and
Fortran 90, may be supported in the future.

e  Mapping of argument types from Modelica to the target language and back.

e Natural type conversion rules in the sense that there is a mapping from Modelica to standard libraries of
the target language.

e  Handling arbitrary parameter order for the external function.

e Passing arrays to and from external functions where the dimension sizes are passed as explicit integer
parameters.

e Handling of external function parameters which are used both for input and output.

The format of an external function declaration is as follows.
function IDENT string comment
{ component clause ";" }
[ protected { component clause ";" } ]
external [ language specification ] [ external function call ]
[annotation ] ";"
[ annotation ";" ]
end IDENT;
Components in the public part of an external function declaration shall be declared either as input or output.
[This is just as for any other function. The components in the protected part allows local variables for temporary
storage to be declared.]

The language-specification must currently be one of "C" or "FORTRAN 77". Unless the external language is
specified, it is assumed to be C.

The external-function-call specification allows functions whose prototypes do not match the default assumptions
as defined below to be called. It also gives the name used to call the external function. If the external call is not
given explicitly, this name is assumed to be the same as the Modelica name.

The only permissible kinds of expressions in the argument list are identifiers, scalar constants, and the function
size applied to an array and a constant dimension number. The annotations are used to pass additional
information to the compiler when necessary. Currently, the only supported annotation is arrayLayout, which
can be either "rowMajor" or "columnMajor".
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6.2

The arguments of the external function are declared in the same order as in the Modelica declaration, unless
specified otherwise in an explicit external function call. Protected variables (i.e. temporaries) are passed in the
same way as outputs, whereas constants and size-expression are passed as inputs.

Argument type mapping

6.2.1 Simple types

Arguments of simple types are by default mapped as follows for C:

Modelica C
Input Output

Real double double *

Integer int int *

Boolean int int *

String const char * const char **
Enumeration type int int *

An exception is made when the argument is of the form size (..., ..).In this case the corresponding C-type is

size t.

Strings are NUL-terminated (i.e., terminated by "0') to facilitate calling of C functions. When returning a non-
literal string, the memory for this string can be allocated with function "ModelicaAllocateString" (see section
6.6) [It is not suitable to use malloc, because a Modelica simulation environment may have its own allocation
scheme, e.g., a special stack for local variables of a function]. After return of the external function, the Modelica
environment is responsible for the memory allocated with ModelicaAllocateString (e.g., to free this memory,
when appropriate). It is not allowed to access memory that was allocated with ModelicaAllocateString in a
previous call of this external function.

Arguments of simple types are by default mapped as follows for FORTRAN 77:

Modelica FORTRAN 77
Input Output
Real DOUBLE PRECISION DOUBLE PRECISION
Integer INTEGER INTEGER
Boolean LOGICAL LOGICAL
Enumeration type INTEGER INTEGER

Passing strings to FORTRAN 77 subroutines/functions is currently not supported.

Enumeration types used as arguments are mapped to type int when calling an external C function, and to type
INTEGER when calling an external FORTRAN function. The i:th enumeration literal is mapped to integer value
i, starting at one.

Return values are mapped to enumeration types analogously: integer value 1 is mapped to the first enumeration
literal, 2 to the second, etc. Returning a value which does not map to an existing enumeration literal for the
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specified enumeration type is an error.

6.2.2 Arrays

Unless an explicit function call is present in the external declaration, an array is passed by its address followed
by n arguments of type size t with the corresponding array dimension sizes, where » is the number of
dimensions. [The type size_t is a C unsigned integer type.]

Arrays are by default stored in row-major order when calling C functions and in column-major order when
calling FORTRAN 77 functions. These defaults can be overridden by the array layout annotation. See the
example below.

The table below shows the mapping of an array argument in the absence of an explicit external function call
when calling a C function. The type T is allowed to be any of the simple types which can be passed to C as
defined in section 6.2.1 or a record type as defined in section 6.2.3 and it is mapped to the type T as defined in
these sections.

Modelica C
Input and Output
T[dim] T/ *, size t dim
T[dim,,dim,] T’ *, size t dim;, size t dim,
T[dim,, .., dim,] T’ *, size t dimy, .., size t dim,

The method used to pass array arguments to FORTRAN 77 functions in the absence of an explicit external
function call is similar to the one defined above for C: first the address of the array, then the dimension sizes as
integers. See the table below. The type T is allowed to be any of the simple types which can be passed to
FORTRAN 77 as defined in section 6.2.1 and it is mapped to the type T’ as defined in that section.

Modelica FORTRAN 77

Input and Output

T[dim] T/, INTEGER dim
T[dim,, dim,] T/, INTEGER dim,, INTEGER dim,
Tldimy, .., dimy] T/, INTEGER dim,, .., INTEGER dim,

[The following two examples illustrate the default mapping of array arguments to external C and FORTRAN 77
functions.
function foo

input  Real al:,:,:1;
output Real X;
external;

end foo;

The corresponding C prototype is as follows:
double foo(double *, size t, size t, size t);
If the external function is written in FORTRAN 77, i.e.:
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input Real al:,:,:1;
output Real X;
external "FORTRAN 77";

end foo;
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the default assumptions correspond to a FORTRAN 77 function defined as follows:

FUNCTION foo(a, dl, d2, d3)
DOUBLE PRECISION (dl,d2,d3)
INTEGER
INTEGER
INTEGER
DOUBLE PRECISION

END

]

a
dl
d2
a3
foo

When an explicit call to the external function is present, the array and the sizes of its dimensions must be passed

explicitly.

[This example shows how to arrays can be passed explicitly to an external FORTRAN 77 function when the

default assumptions are unsuitable.
function foo

input Real x[:];

input Real ylsize(x,1),:]1;
input Integer 1i;

output Real ul(size(y,1)];
output Integer u2l[size(y,2)];

external "FORTRAN 77" myfoo(x,

end foo;

size(x,1),
uz2) ;

Y.
i,

size(y,2),
ul,

The corresponding FORTRAN 77 subroutine would be declared as follows:

SUBROUTINE myfoo(x, y, n, m,
DOUBLE PRECISION (n) X
DOUBLE PRECISION(n,m) y
INTEGER n
INTEGER m
DOUBLE PRECISION (n) ul
INTEGER i
DOUBLE PRECISION (m) u2

END

ul, i, u2)

This example shows how to pass an array in column major order to a C function.

function fie

input Reall:,:] a;

output Real b;

external;

annotation (arraylLayout =
end fie;

This corresponds to the following C-prototype:

"columnMajor");
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double fie(double *, size t, size t);

7
6.2.3 Records

Mapping of record types is only supported for C. A Modelica record class that contains simple types, other
record elements, or arrays with fixed dimensions thereof, is mapped as follows:

e The record class is represented by a struct in C.

e Each element of the Modelica record is mapped to its corresponding C representation.
The elements of the Modelica record class are declared in the same order in the C struct.

e  Arrays are mapped to the corresponding C array, taking the default array layout or any explicit
arrayLayout-directive into consideration.

e Records are passed by reference (i.e. a pointer to the record is being passed).

For example,

record R struct R {
Real x; double x;
Integer yI[10]; is mapped to int y[10];
Real z; double z;
end R; }i

6.3 Return type mapping

If there is a single output parameter and no explicit call of the external function, or if there is an explicit external
call in the form of an equation, in which case the LHS must be one of the output parameters, the external routine
is assumed to be a value-returning function. Mapping of the return type of functions is performed as indicated in
the table below. Storage for arrays as return values is allocated by the calling routine, so the dimensions of the
returned array are fixed at call time. Otherwise the external function is assumed not to return anything; i.e., it is
really a procedure or, in C, a void-function. [In this case, argument type mapping according to section 6.2 is
performed in the absence of any explicit external function call.]

Return types are by default mapped as follows for C and FORTRAN 77:

Modelica C FORTRAN 77
Real double DOUBLE PRECISION
Integer int INTEGER
Boolean int LOGICAL
String const char* Not allowed.
T[dimy, .., dimyg] T/ * T
Enumeration type int INTEGER
Record See section 6.2.3. Not allowed.

The element type T of an array can be any simple type as defined in section 6.2.1 or, for C, a record type as
defined in section 6.2.3. The element type T is mapped to the type T’ as defined in these sections.
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6.4 Aliasing

Any potential aliasing in the external function is the responsibility of the tool and not the user. An external
function is not allowed to internally change the inputs (even if they are restored before the end of the function).
[Example:
function foo
input Real x;
input Real y;
output Real z:=x;
external "FORTRAN 77" myfoo(x,y,z);
end foo;
The following Modelica function:
function £
input Real a;
output Real b;
algorithm
b:=foo(a,a);
b:=foo(b,2*b) ;
end f;

can on most systems be transformed into the following C function

double f (double a) {
extern void myfoo (double*,double*,double¥*) ;
double b, templ, temp2;
myfoo (&a, &a, &b) ;
templ=2*Db;
temp2=b;
myfoo (&b, &templ, &temp2) ;
return temp2;

}

The reason for not allowing the external function to change the inputs is to ensure that inputs can be stored in
static memory and to avoid superfluous copying (especially of matrices). If the routine does not satisfy the
requirements the interface must copy the input argument to a temporary. This is rare but occurs e.g. in dormlq in
some Lapack implementations. In those special cases the writer of the external interface have to copy the input
to a temporary. If the first input was changed internally in myfoo the designer of the interface would have to
change the interface function “’foo” to:

function foo
input Real x;
protected Real xtemp:=x; // Temporary used because myfoo changes its input
public input Real y;
output Real z;
external "FORTRAN 77" myfoo(xtemp,y,z);
end foo;

Note that we discuss input arguments for Fortran-routines even though Fortran 77 does not formally have input
arguments and forbid aliasing between any pair of arguments to a function (section 15.9.3.6 of X3J3/90.4). For

the few (if any) Fortran 77 compilers that strictly follow the standard and are unable to handle aliasing between
input variables the tool must transform the first call of foo into

templ=a; /* Temporary to avoid aliasing */
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myfoo (&a, &templ, &b) ;

The use of the function foo in Modelica is uninfluenced by these considerations.]

6.5 Examples

6.5.1 Input parameters, function value

[Here all parameters to the external function are input parameters. One function value is returned. If the
external language is not specified, the default is "C", as below.

function foo

input Real X;
input Integer vy;
output Real w;
external;

end foo;

This corresponds to the following C-prototype:
double foo (double, int);
Example call in Modelica:
z = foo(2.4, 3);
Translated call in C:
z = foo(2.4, 3);

6.5.2 Arbitrary placement of output parameters, no external function value

In the following example, the external function call is given explicitly which allows passing the arguments in a
different order than in the Modelica version.

function foo

input Real X;
input Integer vy;
output Real ul;

output Integer u2;
external "C" myfoo(x, ul, y, u2);
end foo;
This corresponds to the following C-prototype:
void myfoo (double, double *, int, int *);
Example call in Modelica:
(z1,12) = foo (2.4, 3);
Translated call in C:
myfoo (2.4, &zl, 3, &i2);

6.5.3 External function with both function value and output variable

The following external function returns two results: one function value and one output parameter value. Both
are mapped to Modelica output parameters.
function foo
input Real X;
input Integer vy;
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output Real funcvalue;

output Integer outl;

external "C" funcvalue = myfoo(x, y, outl);
end foo;

This corresponds to the following C-prototype:
double myfoo(double, int, int *);
Example call in Modelica:
(z1,12) = foo (2.4, 3);
Translated call in C:
z1l = myfoo(2.4, 3, &i2);

]
6.6  Utility functions

The following utility functions can be called in external Modelica functions written in C. These functions are
defined in file ModelicaUtilities.h:

ModelicaMessage void ModelicaMessage(const char* string)
Output the message string (no format control).

ModelicaFormatMessage void ModelicaFormatMessage(const char* string, ...)
Output the message under the same format control as the C-
function printf.

ModelicaError void ModelicaError(const char* string)

Output the error message string (no format control). This function
never returns to the calling function, but handles the error
similarly to an assert in the Modelica code.

ModelicaFormatError void ModelicaFormatError(const char® string, ...)

Output the error message under the same format control as the C-
function printf. This function never returns to the calling function,
but handles the error similarly to an assert in the Modelica code.

ModelicaAllocateString char* ModelicaAllocateString(size_t len)

Allocate memory for a Modelica string which is used as return
argument of an external Modelica function. Note, that the storage
for string arrays (= pointer to string array) is still provided by the
calling program, as for any other array. If an error occurs, this
function does not return, but calls "ModelicaError".

ModelicaAllocateStringWithErrorReturn | char* ModelicaAllocateStringWithErrorReturn(size t len)

Same as ModelicaAllocateString, except that in case of error, the
function returns 0. This allows the external function to close files
and free other open resources in case of error. After cleaning up
resources use ModelicaError or ModelicaFormatError to signal
the error.
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6.7 External objects

External functions may have internal memory reported between function calls. Within Modelica this memory is
defined as instance of the predefined class ExternalObject according to the following rules:

There is a predefined partial class "ExternalObject”
[since the class is partial, it is not possible to define an instance of this class].

An external object class shall be directly extended from "ExternalObject", shall have exactly two function
definitions, called "constructor" and "destructor", and shall not contain other elements.

The constructor function is called exactly once before the first use of the object. For each completely
constructed object, the destructor is called exactly once, after the last use of the object, even if an error
occurs. The constructor shall have exactly one output argument in which the constructed ExternalObject is
returned. The destructor shall have no output arguments and the only input argument of the destructor shall
be the ExternalObject. It is not legal to call explicitly the constructor and destructor functions.

Classes derived from ExternalObject can neither be used in an extends clause nor in a short class definition.

External functions may be defined which operate on the internal memory of an ExternalObject. An
ExternalObject used as input argument or return value of an external C-function is mapped to the C-type
"void*".

[Example:

A user-defined table may be defined in the following way as an ExternalObject
(the table is read in a user-defined format from file and has memory for the last used table interval):

class MyTable
extends ExternalObject;
function constructor
input String fileName = "";
input String tableName = "";
output MyTable table;
external "C" table = initMyTable(fileName, tableName) ;
end constructor;

function destructor "Release storage of table"
input MyTable table;
external "C" closeMyTable (table) ;
end destructor;
end MyTable;

and used in the following way:

model test "Define a new table and interpolate in it"
MyTable table=MyTable (fileName ="testTables.txt",

tableName="tablel"); // call initMyTable
Real vy;
equation
y = interpolateMyTable (table, time);
end test;
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This requires to provide the following Modelica function:

function interpolateMyTable "Interpolate in table"
input MyTable table;
input Real u;
output Real vy;
external "C" y = interpolateMyTable (table, u);
end interpolateTable;

The external C-functions may be defined in the following way:

typedef struct { /* User-defined datastructure of the table */

double* array; /* nrow*ncolumn vector */

int nrow; /* number of rows */

int ncol; /* number of columns */

int type; /* interpolation type */

int lastIndex; /* last row index for search */
} MyTable;

void* initMyTable (char* fileName, char* tableName)
MyTable* table = malloc(sizeof (MyTable)) ;
if ( table == NULL ) ModelicaError ("Not enough memory") ;
// read table from file and store all data in *table
return (void*) table;

}i

void closeMyTable (void* object) { /* Release table storage */
MyTable* table = (MyTable*) object;
if ( object == NULL ) return;
free(table->array) ;
free(table) ;

}

double interpolateMyTable (void* object, double u) {

MyTable* table = (MyTable*) object;

double y;

// Interpolate using "table" data (compute y)
return y;

}i
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7 Annotations

Annotations are intended for storing extra information about a model, such as graphics, documentation or
versioning, etc. A Modelica tool is free to define and use other annotations, in addition to those defined here. The
only requirement is that any tool must be able to save files with all annotations intact, including those that are
not used. To ensure this, annotations must be represented with constructs according to the Modelica grammar.
The specification in this document defines the semantic meaning if a tool implements any of these annotations.

7.1 Annotations for documentation

documentation annotation:
annotation" (" Documentation " (" "info" "=" STRING
[u,u "revisiong" "=" STRING ] ")mw mn

The “Documentation” annotation can contain the “info” annotation giving a textual description, the “revisions”
annotation giving a list of revisions and other annotations defined by a tool [The “revisions” documentation
may be omitted in printed documentation]. How the tool interprets the information in “Documentation” is
unspecified. Within a string of the “Documentation” annotation, the tags <HTML> and </HTML> or <htmI>
and </htm]> define optionally begin and end of content that is HTML encoded. Links to Modelica classes may
be defined with the HTML link command using scheme “Modelica”, e.g.,

<a href="Modelica://MultiBody.Tutorial">MultiBody.Tutorial</a>

Together with scheme “Modelica” the (URI) fragment specifiers #diagram, #info, #text, #icon may be used to
reference different layers. Example:

<a href="Modelica://MultiBody.Joints.Revolute#info">Revolute</a>

7.2  Annotations for graphical objects

A graphical representation of a class consists of two abstraction layers, icon layer and diagram layer showing
graphical objects, component icons, connectors and connection lines. The icon representation typically vizualizes
the component by hiding hierarchical details. The hierarchical decomposition is typically described in the
diagram layer showing icons of subcomponents.

Graphical annotations described in this chapter ties into the Modelica grammar as follows.

graphical annotations
annotation " (" [ layer annotations ] ")"

layer annotations:
( icon layer | diagram layer ) ["," layer annotations ]
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Layer descriptions (start of syntactic description):

icon_layer
"Icon" " (" [ coordsys specification "," ] graphics ")"

diagram layer
"Diagram" " (" [ coordsys specification "," ] graphics ")"

[Example:

annotation (
Icon (coordinateSystem(extent={{-10,-10}, {10,10}}),
graphics={Rectangle (extent={{-10,-10}, {10,10}}),
Text ({{-10,-10}, {10,10}}, textString="Icon”)}));
]

The graphics is specified as an ordered sequence of graphical primitives, which are described below. [Note that
the ordered sequence is syntactically a valid Modelica annotation, although there is no mechanism for defining
an array of heterogeneous objects in Modelica.]

7.2.1 Common definitions

The following common definitions are used to define graphical annotations in the later sections.

type DrawingUnit Real (final unit="mm") ;
type Point = DrawingUnit [2] "{x, yv}";
type Extent = Point [2]
"Defines a rectangular area {{x1, yl}, {x2, y2}}";
The interpretation of "unit" is with respect to printer output in natural size (not zoomed). /On the screen, 1 mm in
"natural size" is typically mapped to 4 pixels.]

All graphical entities have a visible attribute which indicates if the entity should be shown.

partial record GraphicItem
Boolean visible = true;
end GraphicItem;

7.2.1.1 Coordinate systems

Each of the layers have their own coordinate system. A coordinate system is defined by the coordinates of two
points, at the lower left corner and at the upper right corner.

record CoordinateSystem "Attribute to layer"
Extent extent;
end CoordinateSystem;
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[ A coordinate system for an icon could for example be defined as:
CoordinateSystem(extent = {{-10, -10}, {10, 10}});

i.e. a first quadrant coordinate system with width 20 units and height 20 units. The exact interpretation of the
units is to a certain extent tool dependent. |

The coordinate systems for icon and diagram are by default defined as follows; the array of Graphicsltem
represents an ordered list of graphical primitives.

record Icon "Representation of Icon layer"
CoordinateSystem coordinateSystem(extent =
{{-10, -10}, {10, 10}});
GraphicItem[:] graphics;
end Icon;

record Diagram "Representation of Diagram layer"
CoordinateSystem coordinateSystem(extent =
{{-100, -100}, {100, 100}});

GraphicItem[:] graphics;
end Diagram;

[ A coordinate system for a connector icon could for example be defined as:

CoordinateSystem(extent = {{-1, -1}, {1, 1}});

7.2.1.2 Graphical properties

Properties of graphical objects and connection lines are described using the following attribute types.
type Color = Integer[3] (min=0, max=255) "RGB representation";
constant Color Black = zeros(3);

type LinePattern = enumeration (None, Solid, Dash, Dot, DashDot,
DashDotDot) ;

type FillPattern = enumeration (None, Solid, Horizontal, Vertical,
Cross, Forward, Backward, CrossDiag, HorizontalCylinder,
VerticalCylinder, Sphere);

type BorderPattern = enumeration (None, Raised, Sunken, Engraved) ;

The FillPattern attributes Horizontal, Vertical, Cross, Forward, Backward and CrossDiag specify fill patterns
drawn with the border color over the fillColor.

The attributes HorizontalCylinder, VerticalCylinder and Sphere specify gradients that represent a horizontal
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cylinder, a vertical cylinder and a sphere, respectively.

The border pattern attributes Raised and Sunken represent panels which are rendered in a system-dependent way.
The boder pattern Engraved represents a system-dependent outline.

type Arrow = enumeration (None, Open, Filled, Half);

type TextStyle = enumeration (Bold, Italic, UnderLine) ;

Filled shapes have the following attributes for the border and interior.

record FilledShape "Style attributes for filled shapes"
Color lineColor = Black "Color of border line'";
Color fillColor = Black "Interior fill color";
LinePattern pattern = LinePattern.Solid "Border line pattern";

FillPattern fillPattern = FillPattern.None
"Interior fill pattern";

DrawingUnit lineThickness = 0.25 "Border line thickness"
end Style;

When color gradient is specified, the color fades from the specified fill color to white and black using the hue
and saturation of the specified color.

7.2.2 Component instance and extends clause

A component instance and an extends clause can be placed within a diagram or icon layer. It has an annotation
with a Placement modifier to describe the placement. Placements are defined in term of coordinate systems
transformations:

record Transformation
DrawingUnit x=0, y=0;
Real scale=1, aspectRatio=1;
Boolean flipHorizontal=false, flipVertical=false;
Real rotation(quantity="angle", unit="deg")=0;
end Transformation;

The coordinates {x,y} define the position of the origin of the component’s icon coordinate system. The scale
attribute defines a uniform scale factor of the icon’s coordinate system when draw in the coordinate system of
the enclosing class. The aspectRatio attribute defines non-uniform scaling, where sy=aspectRatio*sx. The
flipHorizontal and flipVertical attributes define horizontal and vertical flipping around the coordinate system
axes. The graphical operations are applied in the order: scaling, flipping and rotation.

record Placement "Attribute for component and extends"
extends GraphicItem;
Transformation transformation;
Transformation iconTransformation "Placement in icon layer";
end Placement;
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A connector can be shown in both an icon layer and a diagram layer of a class. Since the coordinate systems
typically are different, placement information needs to be given using two different coordinate systems. More
flexibility than just using scaling and translation is needed since the abstraction views might need different visual
placement of the connectors. Placement gives the placement in the diagram layer and iconPlacement gives the
placement in an icon layer. When a connector is shown in a diagram layer, it’s diagram layer is shown to
facilitate opening up a hierarchical connector to allow connections to it’s internal subconnectors.

For connectors, the icon layer is used to represent a connector when it is shown in the icon layer of the enclosing
model. The diagram layer of the connector is used to represent it when shown in the diagram layer of the
enclosing model. Protected connectors are only shown in the diagram layer. Public connectors are shown in both
the diagram layer and the icon layer. Non-connector components are only shown in the diagram layer.

7.2.3 Connections

A connection is specified with an annotation containing a Line primitive, as specified below. [Example:

connect (a.x, b.x)
annotation (Line (points={{-25,30}, {10,30}, {10, -20}, {40,-20}}));

7
7.2.4 Graphical primitives

This section describes the graphical primitives that can be used to define the graphical objects in an annotation.
7.2.4.1 Line

A line is specified as follows:

record Line
extends GraphicItem;

Point pointsl[:];
Color color = Black;

LinePattern pattern = LinePattern.Solid;
DrawingUnit thickness = 0.25;

Arrow arrow[2] = {Arrow.None, Arrow.None}; "{start arrow, end arrow}"
DrawingUnit arrowSize=3;
Boolean smooth = false "Spline";

end Line;

Note that the Line primitive is also used to specify the graphical representation of a connection.
7.2.4.2 Polygon

A polygon is specified as follows:

record Polygon
extends GraphicItem;
extends FilledShape;
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Point points[:];
Boolean smooth = false "Spline outline";
end Polygon;

The polygon is automatically closed, if the first and the last points are not identical.
7.2.4.3 Rectangle

A rectangle is specified as follows:

record Rectangle

extends GraphicItem;

extends FilledShape;

BorderPattern borderPattern = BorderPattern.None;

Extent extent;

DrawingUnit radius = 0 "Corner radius";
end Rectangle;

The extent specifies the bounding box of the rectangle. If radius is specified, the rectangle is drawn with rounded
corners of the given radius.

7.2.4.4 Ellipse

An ellipse is specified as follows:

record Ellipse
extends GraphicItem;
extends FilledShape;
Extent extent;

end Ellipse;

The extent specifies the bounding box of the ellipse.
7.2.45 Text

A text string is specified as follows:

record Text
extends GraphicItem;
extends FilledShape;
Extent extent;
String textString;
DrawingUnit fontSize;
String fontName;
TextStyle textStylel[:];
end Text;

The style attribute fontSize specifies the font size. If the fontSize attribute is 0 the text is scaled to fit its extent.
Otherwise, the size specifies the absolute size. [Note: the unit “point” is 1/72 inch, approximately 0.35 mm.]
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The style attribute textStyle specifies variations of the font.
7.2.4.6 Bitmap

A bitmap image is specified as follows:

record BitMap
extends GraphicItem;
Extent extent;

String fileName "Name of bitmap file";
String imageSource "Pixmap representation of bitmap";
end BitMap;

The bitmap primitive renders a graphical bitmap image. The data of the image can either be stored on an external
file or in the annotation itself. The image is scaled to fit the extent.

When the attribute £i1leName is specified, the string refers to an external file containing image data. The
mapping from the string to the file is unspecified. The supported file formats include PNG, BMP and JPEG,
other supported file formats are unspecified.

When the attribute imageSource is specified, the string contains the image data. The image is representation
the Pixmap format. [Note: the Pixmap format is well defined and can be used both as a file format and
embedded as a string. There are public-domain libraries for reading and writing Pixmap files.]

The image is uniformly scaled [to preserve aspect ratio] so it exactly fits within the extent [touching the extent
along one axis]. The center of the image is positioned at the center of the extent.

7.3 Annotations for the graphical user interface

A class may have the following annotations to define properties of the graphical user interface:

e annotation (defaultComponentName = "name")
When creating a component of the given class, the recommended component name is name.
e annotation (defaultComponentPrefixes = "prefixes")

When creating a component, it is recommended to generate a declaration of the form
prefixes class-name component-name

The following prefixes may be included in the string prefixes: inner, outer, replaceable, constant, parameter,
discrete. [In combination with defaultComponentName it can be used to make it easy for users to create
inner components matching the outer declarations, see also example below]

e annotation(missingInnerMessage = "message")
When an "outer" component of the class does not have a corresponding "inner" component, the string
message may be used as a diagnostic message.

[Example:
model World
annotation (defaultComponentName = "world",
defaultComponentPrefixes = "inner replaceable",
missingInnerMessage = "The World object is missing") ;
end World;

When an instance of model World is dragged in to the diagram layer, the following declaration is generated
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inner replaceable World world;

A declaration may have the following annotations

e annotation (unassignedMessage = "message") ;
When the variable to which this annotation is attached in the declaration cannot be computed due to the
structure of the equations, the string message can be used as a diagnostic message. [When using BLT
partitioning, this means if a variable “a” or one of its aliases “b =a”, “b = -a”, cannot be assigned, the
message is displayed. This annotation is used to provide library specific error messages.]
e annotation(Dialog(enable = parameter-expression,
tab = "tab", group = "group"));
Defines the placement of the component or class parameter in a parameter dialog with optional tab and
group specification. If enable is false, the input field may be disabled /and no input can be given]. “Dialog’
is defined as:
record Dialog
parameter String tab = "General”;
parameter String group "Parameters”;
parameter Boolean enable true;
end Dialog;
A parameter dialog is a sequence of tabs with a sequence of groups inside them.

>

[Examples:
connector Frame "Frame of a mechanical system"

flow Modelica.SIunits.Force £f[3]
annotation (unassignedMessage = "
All Forces cannot be uniquely calculated. The reason could be that
the mechanism contains a planar loop or that joints constrain the
same motion. For planar loops, use in one revolute joint per loop the
option PlanarCutdJoint=true in the Advanced menu.
") ;

end Frame;
model BodyShape
parameter Boolean animation = true;
parameter SI.Length length "Length of shape"
annotation(Dialog(enable = animation, tab = "Animation",

group = "Shape definition")) ;

end BodyShape;

7.4 Annotations for version handling

A top-level package or model can specify the version of top-level classes it uses, its own version number, and if
possible how to convert from previous versions. This can be used by a tool to guarantee that consistent versions
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are used, and if possible to upgrade usage from an earlier version to a current one.

7.4.1 Version numbering

Version numbers are of the forms:

e  Main release versions: """ UNSIGNED INTEGER { "." UNSIGNED INTEGER } """
[Example: "2.1"]

e Pre-release versions: """ UNSIGNED INTEGER { "." UNSIGNED INTEGER }"" {S-CHAR} """
[Example: "2.1 Beta 1"]

e Un-ordered versions: """ NON-DIGIT {S-CHAR} """
[Example: "Test 1"]

The main release versions are ordered using the hierarchical numerical names, and follow the corresponding pre-
release versions. The pre-release versions of the same main release version are internally ordered alphabetically.

7.4.2 Version handling

In a top-level class, the version number and the dependency to earlier versions of this class are defined using one
or more of the following annotations:

e version = CURRENT-VERSION-NUMBER
Defines the version number of the model or package. All classes within this top-level class have this
version number.

e conversion ( noneFromVersion = VERSION-NUMBER) Defines that user models using the
VERSION-NUMBER can be upgraded to the
CURRENT-VERSION-NUMBER of the current class without any changes.

e conversion ( from (version = VERSION-NUMBER, script="..."))
Defines that user models using the VERSION-NUMBER can be upgraded to the
CURRENT-VERSION-NUMBER of the current class by applying the given script. The semantics of
the conversion script is not defined.

e uses(IDENT (version = VERSION-NUMBER) )
Defines that classes within this top-level class uses version VERSION-NUMBER of classes within the
top-level class IDENT.

The annotations uses and conversion may contain several different sub-entries.

[Example:
package Modelica
annotation (version="2.1",
conversion (noneFromVersion="2.1 Beta 1”,
from(version="1.5",
script="convertFromModelical 5.mos”))) ;

end Modelica;
model A

annotation (version="1.0",
uses (Modelica (version="1.5"))) ;
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end A;

model B
annotation (uses (Modelica (version="2.1 Beta 1")));

end B;

In this example the model A uses an older version of the Modelica library and can be upgraded using the given
script, and model B uses an older version of the Modelica library but no changes are required when upgrading.

]
7.4.3 Mapping of versions to file system

A top-level class, IDENT, with version VERSION-NUMBER can be stored in one of the following ways in a
directory given in the MODELICAPATH:

e The file IDENT ".mo" [Example: Modelica.mo]

e The file IDENT " " VERSION-NUMBER ".mo" [Example: Modelica 2.1.mo]
e  The directory IDENT [Example: Modelica]

e The directory IDENT " " VERSION-NUMBER /[Example: Modelica 2.1]

This allows a tool to access multiple versions of the same package.
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8 Modelica standard library

The pre-defined, free "package Modelica" is shipped together with a Modelica translator. It is an extensive
standard library of pre-defined components in several domains. Futhermore, it contains a standard set of type
and interface definitions in order to influence the trivial decisions of model design process. If, as far as possible,
standard quantity types and connectors are relied on in modeling work, model compatibility and thereby reuse is
enhanced. Achieving model compatibility, without having to resort to explicit coordination of modeling
activities, is essential to the formation of globally accessible libraries. Naturally, a modeller is not required to use
the standard library and may add any number of local base definitions.

The library will be amended and revised as part of the ordinary language revision process. It is expected that
informal standard base classes will develop in various domains and that these gradually will be incorporated into
the Modelica standard library.

The type definitions in the library are based on ISO 31-1992. Several ISO quantities have long names that tend
to become awkward in practical modeling work. For this reason, shorter alias-names are also provided if
necessary. Using, e.g., "ElectricPotential" repeatedly in a model becomes cumbersome and therefore "Voltage"
is supplied as an alternative.

The standard library is not limited to pure SI units. Whenever common engineering practice uses a different set
of (possibly inconsistent) units, corresponding quantities will be allowed in the standard library, for example
English units. It is also frequently common to write models with respect to scaled SI units in order to improve
the condition of the model equations or to keep the actual values around one for easier reading and writing of
numbers.

The connectors and partial models have predefined graphical attributes in order that the basic visual appearance
is the same in all Modelica based systems.

The complete Modelica package can be downloaded from http://www.Modelica.org/library/library.html. Below,
the introductory documentation of this library is given. Note, that the Modelica package is still under
development.

package Modelica
annotation(Documentation(info="
/* The Modelica package is a standardized, pre-defined and free
package, that is shipped together with a Modelica translator. The
package provides constants, types, connectors, partial models and
model components in various disciplines.

In the Modelica package the following conventions are used:

- Class and instance names are written in upper and lower case
letters, e.g., "ElectricCurrent". An underscore is only used
at the end of a name to characterize a lower or upper index,

e.g., body low_up.

- Type names start always with an upper case letter.
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Instance names start always with a lower case letter with only
a few exceptions, such as "T" for a temperature instance.

- A package XXX has its interface definitions in subpackage
XXX.Interface, e.g., Electrical.Interface.

- Preferred instance names for connectors:
p,n: positive and negative side of a partial model.
a,b: side "a" and side "b" of a partial model
(= connectors are completely equivalent).
*/
");
end Modelica;
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9 Revision history

This section describes the history of the Modelica Language Design, and its contributors. The current version of
this document is available from http://www.modelica.org/.

9.1 Modelica 2.1

Modelica 2.1 was released January 30, 2004. The Modelica 2.1 specification was edited by Hans Olsson and
Martin Otter.

9.1.1 Contributors to the Modelica Language, version 2.1

Mikael Adlers, MathCore, Linkdping, Sweden

Peter Aronsson, Linkdping University, Sweden

Bernhard Bachmann , University of Applied Sciences, Bielefeld, Germany

Peter Bunus, Linkoping University, Sweden

Jonas Eborn, United Technologies Research Center, Hartford, U.S.A.

Hilding Elmqvist, Dynasim, Lund, Sweden

Riidiger Franke, ABB Corporate Research, Ladenburg, Germany

Peter Fritzson, Link6ping University, Sweden

Anton Haumer, Technical Consulting & Electrical Engineering, St.Andrae-Woerdern, Austria
Olof Johansson, Linképing University, Sweden

Karin Lunde, R.O.S.E. Informatik GmbH, Heidenheim, Germany

Sven Erik Mattsson, Dynasim, Lund, Sweden

Hans Olsson, Dynasim, Lund, Sweden

Martin Otter, German Aerospace Center, Oberpfaffenhofen, Germany

Levon Saldamli, Linkdping University, Sweden

Christian Schweiger, German Aerospace Center, Oberpfaffenhofen, Germany
Michael Tiller, Ford Motor Company, Dearborn, MI, U.S.A.

Hubertus Tummescheit, United Technologies Research Center, Hartford, U.S.A.
Hans-Jiirg Wiesmann, ABB Switzerland Ltd.,Corporate Research, Baden, Switzerland

9.1.2 Main changes in Modelica 2.1

The main changes in Modelica 2.1 are:

e  Arrays and array indices of Enumerations (needed, e.g., in the Electrical.Digital library currently under
development).

e Connections into hierarchical connectors (needed, e.g., for convenient implementation of buses).

e  Optional output arguments of Modelica functions. The presence of actual input and/or output arguments can
be inquired with the new built-in function isPresent(..). The previous built-in function and attribute enable
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was removed.

e  Making the default constraining type more useful by inheriting the base constraining type automatically to
modifications.

e Enhanced redeclaration as needed, e.g., in the Modelica.Media library under development (e.g. “redeclare
model name” or “model extends name (<modifications>)").

e Handling of overdetermined connectors (needed, e.g., for multi-body systems and electrical power systems)
including the new built-in package Connections with operators Connections.branch, Connections.root,
Connections.potentialRoot, Connections.isRoot.

e Statement break in the while loop of an algorithm section.
e  Statement return in a Modelica function.

e  Built-in function String(..) to provide a string representation of Boolean, Integer, Real and Enumeration
types.

e  Built-in function Integer(..) to provide the Integer representation of an Enumeration type.

e  Built-in function semiLinear(..) to define a characteristics with two slopes and a set of rules for symbolic
transformations, especially when the function becomes underdetermined (this function is used in the
Modelica Fluid library under development to define reversing flow in a mathematically clean way).

e  More general identifiers by having any character in single quotes, e.g. '+’ or '123.456#1" are valid identifiers.
'x" and x are different identifiers. This is useful for a direct mapping of product identifiers to model names
and for having the usual symbols for digital electrical signals as enumerations (such as '+', -', '0’, '1").

e New annotations:
- For version handling of libraries and models (version, uses, conversion),
- for revision logging (revisions),
- for using a Modelica name as link in a HTML documentation text,
- for convenient “inner” declaration in a GUI (defaultComponentName, defaultComponentPrefixes),
- for parameter menu structuring (Dialog, enable, tab, group), and
- for library specific error messages (missinglnnerMessage, unassignedMessage).

e Fixing some minor errors in the grammar and semantic specification.

The language changes are backward compatible, except for the introduction of the new keywords break and
return, the new built-in package Connections and the removing of built-in function and attribute enable.

9.2 Modelica 2.0

Modelica 2.0 was released January, 30 2002, and the draft was released on December 18 in 2001. The Modelica
2.0 specification was edited by Hans Olsson. Modelica is a registered trademark owned by the Modelica
Association since November 2001.

9.2.1 Contributors to the Modelica Language, version 2.0

Peter Aronsson, Linképing University, Sweden

Bernhard Bachmann , University of Applied Sciences, Bielefeld
Peter Beater, University of Paderborn, Germany

Dag Briick, Dynasim, Lund, Sweden
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Peter Bunus, Linkdping University, Sweden

Hilding Elmgqvist, Dynasim, Lund, Sweden

Vadim Engelson, Linkdping University, Sweden

Peter Fritzson, Link&ping University, Sweden

Riidiger Franke, ABB Corporate Research, Ladenburg

Pavel Grozman, Equa, Stockholm, Sweden

Johan Gunnarsson, MathCore, Linkdping

Mats Jirstrand, MathCore, Linkdping

Sven Erik Mattsson, Dynasim, Lund, Sweden

Hans Olsson, Dynasim, Lund, Sweden

Martin Otter, German Aerospace Center, Oberpfaffenhofen, Germany
Levon Saldamli, Linkdping University, Sweden

Michael Tiller, Ford Motor Company, Dearborn, MI, U.S.A.
Hubertus Tummescheit, Lund Institute of Technology, Sweden
Hans-Jiirg Wiesmann, ABB Switzerland Ltd.,Corporate Research, Baden, Switzerland

9.2.2 Main changes in Modelica 2.0

A detailed description of the enhancements introduced by Modelica 2.0 are given in the papers

» M. Otter, H. Olsson: New Features in Modelica 2.0. 2" International Modelica Conference, March 18-19,
DLR Oberpfaffenhofen, Proceedings, pp. 7.1 - 7.12, 2002. This paper can be downloaded from
http://'www.Modelica.org/Conference2002/papers/p01_Otter.pdf

= Mattsson S. E., Elmqvist H., Otter M., and Olsson H.: Initialization of Hybrid Differential-Algebraic
Equations in Modelica 2.0. 2™ International Modelica Conference, March 18-19, DLR Oberpfaffenhofen,
Proceedings, pp. 9 - 15, 2002. This paper can be downloaded from
http://www.Modelica.org/Conference2002/papers/p02_Mattsson.pdf

The main changes in Modelica 2.0 are:

= Full specification of initialization in order to compute consistent initial values of all variables appearing in a
model before performing an operation, such as simulation or linearization.

= Specified the graphical appearance of Modelica object diagrams, thereby ensuring portability of model
topology information and improving the previous informal graphical description, e.g., with separate icon
and diagram positions.

=  Enumeration types to allow the definition of options and properties in an understandable, safe and efficient
way.

= Support for (optional) explicit preference in state-selection in order that a modeler can incorporate
application specific knowledge to guide the solution process, e.g., for real-time simulation.

= [terators in array constructors and reduction operators, to support more powerful expressions, especially in
declarations, in order to avoid inconvenient and less efficient local function definitions.

= Support for generic formulation of blocks applicable to both scalar and vector connectors, connection of
(automatically) vectorized blocks, and simpler input/output connectors. This allows significant
simplifications of the input/output block library of Modelica, e.g., since only scalar versions of all blocks
have to be provided. Furthermore, new library components can be incorporated more easily.

= Record constructor to allow, e.g., the construction of data sheet libraries.
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=  Functions with mixed positional and named arguments. Optional results and default arguments make the
same function fit for beginners and expert users.

= Additional utilities for external C-functions that are interfaced to Modelica models, especially supporting
external functions returning strings and external functions with internal memory (e.g., to interface user-
defined tables, property databases, sparse matrix handling, hardware interfaces).

= Added an index, and specification of some basic constructs that had previously not formally be defined,
such as while-clauses, if-clauses.

The language changes are backward compatible, except for the introduction of the new keyword enumeration.
The library change of the block library which will become available soon requires changes in user-models.

9.3 Modelica 1.4

Modelica 1.4 was released December 15, 2000. The Modelica Association was formed in Feb. 5, 2000 and is
now responsible for the design of the Modelica language. The Modelica 1.4 specification was edited by Hans
Olsson and Dag Briick.

9.3.1 Contributors to the Modelica Language, version 1.4

Bernhard Bachmann, Fachhochschule Bielefeld, Germany

Peter Bunus, MathCore, Linkdping, Sweden

Dag Briick, Dynasim, Lund, Sweden

Hilding Elmqvist, Dynasim, Lund, Sweden

Vadim Engelson, Linkdping University, Sweden

Jorge Ferreira, University of Aveiro, Portugal

Peter Fritzson, Linkoping University, Linkoping, Sweden

Pavel Grozman, Equa, Stockholm, Sweden

Johan Gunnarsson, MathCore, Linkdping, Sweden

Mats Jirstrand, MathCore, Linkdping, Sweden

Clemens Klein-Robbenhaar, Germany

Pontus Lidman, MathCore, Linkdping, Sweden

Sven Erik Mattsson, Dynasim, Lund, Sweden

Hans Olsson, Dynasim, Lund, Sweden

Martin Otter, German Aerospace Center, Oberpfaffenhofen, Germany
Tommy Persson, Linkdping University, Sweden

Levon Saldamli, Linkdping University, Sweden

André Schneider, Fraunhofer Institute for Integrated Circuits, Dresden, Germany
Michael Tiller, Ford Motor Company, Dearborn, MI, U.S.A.
Hubertus Tummescheit, Lund Institute of Technology, Sweden
Hans-Jiirg Wiesmann, ABB Corporate Research Ltd., Baden, Switzerland

9.3.2 Contributors to the Modelica Standard Library

Peter Beater, University of Paderborn, Germany

Christoph Clauf3, Fraunhofer Institute for Integrated Circuits, Dresden, Germany
Martin Otter, German Aerospace Center, Oberpfaffenhofen, Germany

André Schneider, Fraunhofer Institute for Integrated Circuits, Dresden, Germany
Hubertus Tummescheit, Lund Institute of Technology, Sweden
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9.3.3 Main Changes in Modelica 1.4

e Removed declare-before-use rule. This simplifies graphical user environments, because there exists no
order of declarations when components are graphically composed together.

e Refined package concept by introducing encapsulated classes and import mechanism. Encapsulated
classes can be seen as "self-contained units": When copying or moving an encapsulated class, at most
the import statements in this class have to be changed.

e Refined when-clause: The nondiscrete keyword is removed, equations in when-clauses must have a
unique variable name on left hand side variable and the exact mapping of when-clauses to equations is
defined. As a result, when-clauses are now precisely defined without referring to a sorting algorithm
and it is possible to handle algebraic loops between when-clauses with different conditions and between
when-clauses and the continuous-time part of a model. The discrete keyword is now optional,
simplifying the library development because only one type of connector is needed and not several types
which do contain or do not contain the discrete prefix on variables. Additionally, when-clauses in
algorithm sections may have elsewhen clauses which simplifies the definition of priorities between
when-clauses.

e For replaceable declarations: allowed constraining clauses, and annotations listing suitable
redeclarations. This allows a graphical user environment to automatically build menus with meaningful
choices.

e Functions can specify their derivative. This allows, e.g., the application of the Pantelides algorithm to
reduce the index of a DAE also for external functions.

e New built-in operator "rem" (remainder) and the built-in operators div, mod, ceil, floor, integer,
previously only allowed to be used in when-clauses can now be used everywhere, because state events
are automatically generated when the result value of one of these operator changes discontinuously.

e Quantity attribute also for base types Boolean, Integer, String (and not only for Real), in order to allow
abstracted variables to refer to physical quantities (e.g. Boolean i(quantity="Current") is true if current
is flowing and is false if no current is flowing).

e final keyword also allowed in declaration, to prevent modification. Example
model A
Real x[:];
final Integer n=size(x,1);
end A;

e Several minor enhancements, such as usage of dot-notation in modifications
(e.g:"A x(B.C=1,B.D=2)" isthesameas "A x(B(C=1,D=2));").

e Internally restructured specification.

Modelica 1.4 is backwards compatible with Modelica 1.3, with the exception of (1) some exotic cases where
different results are achieved with the removed "declare-before-use-rule" and the previous declaration order, (2)
when-clauses in equations sections, which use the general form "exprl = expr2" (now only "v=expr" is allowed
+ some special cases for functions), (3) some exotic cases where a when-clause may be no longer evaluated at
the initial time, because the initialization of the when-condition is now defined in a more meaningful way
(before Modelica 1.4, every condition in a when-clause has a "previous" value of false), and (4) models
containing the nondiscrete keyword which was removed.
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9.4 Modelica 1.3 and older versions.
Modelica 1.3 was released December 15, 1999.
9.4.1 Contributors up to Modelica 1.3

The following list contributors and their affiliations at the time when Modelica 1.3 was released.

H. Elmgqvist',

B. Bachmannz, F. Boudaud® . Broenink4, D. Briickl, T. Ernst’, R. Franke6, P. Fritzson’, A. Jeandel3, P.
Grozman'?, K. Juslin®, D. Kagedal’, M. Klose’, N. Loubere’, S. E. Mattsson', P. J. Mosterman'', H. Nilsson’, H.
Olsson', M. Otter'', P. Sahlin'?, A. Schneider', M. Tiller', H. Tummescheit'®, H. Vangheluwe16

' Dynasim AB, Lund, Sweden

> ABB Corporate Research Center Heidelberg

3 Gaz de France, Paris, France

4 University of Twente, Enschede, Netherlands

> GMD FIRST, Berlin, Germany

® ABB Network Partner Ltd. Baden, Switzerland
7 Linkoping University, Sweden

SVTT, Espoo, Finland

? Technical University of Berlin, Germany
'Lund University, Sweden

"' DLR Oberpfaffenhofen, Germany

"2 Bris Data AB, Stockholm, Sweden

' Fraunhofer Institute for Integrated Circuits, Dresden, Germany
" DLR, Cologne, Germany

' Ford Motor Company, Dearborn, MI, U.S.A.
' University of Gent, Belgium

9.4.2 Main changes in Modelica 1.3

Modelica 1.3 was released December 15, 1999.

=  Defined connection semantics for inner/outer connectors.
= Defined semantics for protected element.

= Defined that least variable variability prefix wins.

= Improved semantic definition of array expressions.

=  Defined scope of for-loop variables.

9.4.3 Main changes in Modelica 1.2

Modelica 1.2 was released June 15, 1999.
=  Changed the external function interface to give greater flexibility.
= Introduced inner/outer for dynamic types.

= Redefined final keyword to only restrict further modification.
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=  Restricted redeclaration to replaceable elements.
=  Defined semantics for if-clauses.

= Defined allowed code optimizations.

= Refined the semantics of event-handling.

= Introduced fixed and nominal attributes.

= Introduced terminate and analysisType.

9.4.4 Main Changes in Modelica 1.1

Modelica 1.1 was released in December 1998.

Major changes:

= Specification as a separate document from the rationale.
= Introduced prefixes discrete and nondiscrete.

= Introduced pre and when.

= Defined semantics for array expressions.

= Introduced built-in functions and operators (only connect was present in Modelica 1.0).

9.4.5 Modelica 1.0

Modelica 1, the first version of Modelica, was released in September 1997, and had the language specification as
a short appendix to the rationale.
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10 Index

CoordinateSystem 102

- 70 Diagram 101
. 16-18 Ellipse 106
= Extent 102
modifier See modifications for graphical objects 101
{ See array:construction Icon 101
info 101
[ 67 Line 105
: Point 102
range-construction 68 Polygon 105
: Rectangle 106
in subscripts 69 Text 106
= transformation 104
equation 70 array 65
=170 access 69
+ 70 construction 65
* 70-71 declaration 29
/71 for 66
N modifications 22
.72 slice 72
72 subscript 69
<72 assert 61
<= 72 assignment 70
> 72
>= 72 base-class 35-36, 35-36
=72 Boolean 83-85
< 72 break 46
Fehler! Ungiiltige Textmarke in einem Eintrag built-in
auf der Seite 31 functions and operators 62, 76
type 83-85
26 variable 85
abs cardinality 59
variability 80 cat 66
ceil
See initial algorithm, variability 80
analysisType 58
variability 79 variability 79, 80
and 72 comment syntax 9
annotation 9 47-54, 47-54
Bitmap 106 annotation 105
37 47-54, 47-54
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conversion 107
cross 64

DAE 86
declaration
order 22
declare before use See declaration order
delay 59
der
variability 79
diagonal 63
differential algebraic equation 86
displayUnit 83
div
variability 80
division 71
dynamic name lookup 18

each 20-21, 22
58
variability 79, 80
else 74
encapsulated 17
end 69
enumeration 83-85
subtype 24
type equivalence 24
environment 20
equation 70
exponentiation 71
external 91-98
function interface 91-98
object 99
representation of classes 24
ExternalObject 99

fill 63
final 20-21, 23
fixed 83
floor
variability 80
for 64, 66
array 66
function 74
pure 56
vectorized call of 72

identity 63
if 74
expression 74
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import 16-18
inheritance See extends
initial 9, 54, 57
48, 54
48, 54
variability 79
inner 18
instantiation 8
order 22
Integer 83-85
isPresent 59

keywords 9

linspace 63

lookup
dynamic 18
static 16—18

matrix 63
max 63
attribute 83
for 64
min 63
attribute 83
for 64
mod
variability 80
Modelica
Association 1, 114
Standard Library 109
modifications
merging 20-21
of array elements 22
single modification rule 21
modifier See modifications
multiplication 70-71

ndims 62

noEvent 57, 60
variability 80

nominal 83

not 72

ones 63

or 72

outer 18
outerProduct 63

package 16—18
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58, 60

variability 79, 80
predefined type 83
product 64

for 64
public 17,23,24

quantity 83

Real 83-85, 83-85
record

constructor 74, 76
reduction expressions 64
reinit 58, 60
rem

variability 80
return 46
revision history 111

sample 57
variability 79
scalar 63
sign
variability 80
simple type 83—85
size 63
skew 64
smooth 57, 60
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start 83
stateSelect 83-85
static name lookup 16-18
String 83-85
concatenation 9, 70
subtyping 23
sum 63
for 64
symmetric 64
syntax 9

terminal 57
variability 79
terminate 61
time 85
type
equivalence 23
predefined See predefined type

unit 83-85, 89-90
variability

of expressions 79
vector 63

version 107

zeros 63
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