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1 Introduction

1.1 Overview of Modélica

Modelicais alanguage for modeling of physical systems, designed to support effective library development and
model exchange. It is a modern language built on non-causal modeling with mathematical equations and object-
oriented constructs to facilitate reuse of modeling knowledge.

1.2 Scopeof the specification

The Modelicalanguage is specified by means of a set of rules for tranglating a model described in Modelicato
the corresponding model described as aflat hybrid DAE. The key issues of the trandation (or instantiation in
object-oriented terminology) are:

»  Expansion of inherited base classes

e Parameterization of base classes, local classes and components

e Generation of connection equations from connect statements
The flat hybrid DAE form consists of:

« Declarations of variables with the appropriate basic types, prefixes and attributes, such as " parameter
Real v=5".

e Equations from equation sections.

«  Function invocations where an invocation is treated as a set of equations which are functions of all input
and of al result variables (number of equations = number of basic result variables).

Algorithm sections where every section is treated as a set of equations which are functions of the
variables occuring in the algorithm section (number of equations = number of different assigned
variables).

When clauses where every when clause is treated as a set of conditionally evaluated equations, also
called instantaneous equations, which are functions of the variables occuring in the clause (number of
equations = number of different assigned variables).

Therefore, aflat hybrid DAE is seen as a set of equations where some of the equations are only conditionally
evaluated (e.g. instantaneous equations are only evaluated when the corresponding when-condition becomes
true).

The Modelica specification does not define the result of simulating a model or what constitutes a mathematically
well-defined model.

1.3 Definitionsand glossary

The semantic specification should be read together with the Modelica grammar. Non-normative text, i.e.,
examples and comments, are enclosed in [ ], comments are set in italics.

Term Definition
Component An element defined by the production component-clause in the Modelica
grammar (2.2.4).

Modelical.1 5
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Element Class definitions, extends-clauses and component-clauses declared in a class.

I nstantiation The tranglation of a model described in Modelica to the corresponding model
described as a hybrid DAE, involving expansion of inherited base classes,
parameterization of base classes, local classes and components, and generation of
connection equations from connect statements

Modelical.1 6
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2 Modelica syntax

2.1 Lexical conventions

The following syntactic meta symbols are used (extended BNF):

[ 1] optional
{ } repeat zero or nore tines

The following lexical units are defined:
IDENT = NONDIG T { DIAT | NONDIGAT }

NONDIG T = "_" | letters"a" to"z" | letters" A" to" 2"
STRING = """ { S-CHAR | S-ESCAPE } """
S- CHAR = any member of the source character set except double-quote """, or backslash "\ "
S-ESCAPE = "\ " | "\" " | "\2" | "\ " |
"a" "\ """\ " " "W

DAT=0| 1| 2| 3| 4| 5| 6| 7| 8] 9

UNSI GNED_INTEGER = DIG T { DIG T }

UNSI GNED_NUMBER = UNSI GNED_INTEGER [ "." [ UNSI GNED | NTEGER | ]
[ (e | E) [ "+ | ] UNSI GNED_| NTEGER ]

Note: string constant concatenation "a" "b" becoming "ab" (asin C) is replaced by the "+" operator in Modelica.

M odelica uses the same comment syntax as C++ and Java. Inside a comment, the sequence <HTM.> . . ..
</ HTML> indicates HTML code which may be used by tools to facilitate model documentation.

Keywords and built-in operators of the Modelica language are written in bold face.
2.2 Grammar

2.2.1 Modd definition

nodel _definition:
{ [ final ] class_definition ";" }

2.2.2 Classdefinition

class_definition :
[ partial ]
( class | model | record | block | connector | type |
package | function )
| DENT coment
( conposition end | DENT |
"=" name [ array_subscripts ] [ class_nodification ] )

conposition
el ement _|i st
{ public elenment_list |
protected el ement _|ist |
equation_cl ause |
al gorithm cl ause

}

[ external ]

Modelical.1 7
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el ement _|i st
{ element ";" | annotation ";" }

el ement
[ final 1 ( [ replaceable ] class_definition | extends_clause |
component _cl ause )

2.2.3 Extends

ext ends_cl ause :
extends name [ class_nodification ]

2.24 Component clause

component _cl ause:
type_prefix type_specifier [ array_subscripts ] conponent |i st

type_prefix :
[ flow] [ discrete | paraneter | constant ] [ input | output ]

type_specifier
nane

component _|i st
component _declaration { ",

conponent _decl aration }

conponent _decl aration :
decl arati on coment

decl aration :
IDENT [ array_subscripts ] [ nodification ]

2.25 Modification

nodi fication :
class_nodification [ "=" expression ]
| "=" expression

class_nodification :
"(" { argunent list } ")"

argunent _|i st
argunent { ",

argunent }

ar gunment
el enment _nodi fication
| el enment _redeclaration

el enent _nodification :
[ final ] component _reference nodification

el ement _redecl aration :
redeclare [ final ]
([ replaceable ] class_definition | extends_clause | conmponent_cl ausel )

component _cl ausel :
type_prefix type_specifier conponent decl aration

Modelical.1 8



Modelica Language Specification

2.2.6 Equations

equati on_cl ause
equation { equation ";" | annotation ";" }

al gorithmcl ause :
algorithm{ algorithm";" | annotation ";" }

equation :

( sinple_expression expressi on
| conditional _equation_e
| for_clause_e
| when_cl ause_e
| connect _cl ause
| assert_cl ause )

coment

al gorithm:

( conponent _reference ( ":=" expression | function_call )
| conditional _equation_a
| for_clause_a
| while_clause
| when_cl ause_a
| assert_cl ause )

coment

condi tional _equation_e :
i f expression then

{ equation ";" }

{ elseif expression then
{ equation ";" }

[ else
{ equation ";" }

end if

condi tional _equation_a :
i f expression then
{ algorithm™";" }
{ elseif expression then
{ algorithm";" }

[ else
{ algorithm™";" }

end if

for_clause_e :
for I DENT in expression |oop
{ equation ";" }
end for

for _clause_a :
for I DENT in expression |oop
{ algorithm™";" }
end for

Modelical.1 9



whi | e_cl ause :
whi | e expression | oop
{ algorithm";" }
end while

when_cl ause_e :
when expression then
{ equation ";" }
end when

when_cl ause_a :
when expression then
{ algorithm";" }
end when

connect cl ause :

connect " (" connector_ref

connect or _ref

| DENT [ array_subscripts ] [

assert _cl ause :

assert "(" expression "," STRING{ "+" STRING} ")"

2.2.7 EXpressions

expression :
si mpl e_expr essi on

| if expression then expression else expression

si npl e_expression :
| ogi cal _expression [

| ogi cal _expression :

logical _term{ or logical _term}

| ogical _term:

| ogi cal _factor { and logical _factor }

| ogi cal _factor
[ not ] relation

relation :

arithnetic_expression [

rel _op :

"t | """ | " | "=

arithnetic_expression :

[ add_op ] term{ add_op term}

add_op :
" +Il | n - "

term:

factor { rmul _op factor }

connect or _r ef

| ogi cal _expression |

Modelica Language Specification

| DENT [ array_subscripts ] ]

| ogi cal _expression ]| ]

rel _op arithmetic_expression ]

Modelical.1
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mul _op :
"nen | Il/ll
factor

primary [ """ primary ]

primary :
UNSI GNED_NUMBER
| STRI NG
| false
| true
| conmponent _reference [ function_call ]
| "(" expression_list ")"
| "[" expression_list { ";
| "{" expression_list "}"

expression_list } "]"

nane :
IDENT [ "." name ]

conponent _r ef erence
| DENT [ array_subscripts ] [

conponent _reference |

function_call
"(" [ function_argunments ] ")"

function_argunents :
expression_list
| I'DENT "=" expression { "," IDENT "=" expression }

expression_list
expression { ",

expression }

array_subscripts
"[" subscript { ",

subscript } "]"

subscri pt
":" | expression

coment :
[ STRRNG{ "+" STRING} ] [ annotation ]

annotation :
annotation class_nodification

Modelical.1
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3 Modéica semantics

3.1 Fundamentals

Instantiation is made in a context which consists of an environment and an ordered set of parents.
3.1.1 Scoping and name lookup

3.1.1.1 Parents

The classes lexically enclosing an element form an ordered set of parents. A class defined inside another class
definition (the parent) preceeds its enclosing class definition in this set.

Enclosing all class definitionsis an unnamed parent which contains all top-level class definitions. The order of
top-level class definitions in the unnamed parent is undefined.

During instantiation, the parent of an element being instantiated is a partialy instantiated class. [ For example,
this means that a declaration can refer to a name previously inherited through a previous extends clause.]

[Example:
class C1 ... end Ci1;
class C2 ... end C2;
class C3
Real x=3;
Cly;
class 4
Real z;
end C4;
end C3;
The unnamed parent of class definition C3 contains C1 and C2 in arbitrary order. When instantiating class
definition C3, the set of parents of the declaration of x isthe partially instantiated class C3 followed by the
unnamed parent with C1 and C2. The set of parents of z are C4, C3 and the unnamed parent in that order.]

3.1.1.2 Static namelookup

Names are looked up at class instantiation to find names of base classes, component types, etc.
For a simple name [ not composed using dot-notation] lookup is performed as follows:

*  When an element, equation or algorithm isinstantiated, any name is looked up sequentially in each member
of the ordered set of parents until a match is found.

For a composite name of the form A.B [or A.B.C, etc.] lookup is performed as follows:
e Thefirst identifier [A] islooked up as defined above.
e If theidentifier denotes a component, the rest of the name[e.g., B or B.C] islooked up in the component.

e If theidentifier denotes a class, that class is temporarily instantiated with an empty environment and using
the parents of the denoted class. The rest of the name [e.g., B or B.C] islooked up in the temporary
instantiated class.

[ The temporary class instantiation performed for composite names follow the same rules as class instantiation of
the base class in an extends clause, local classes and the type in a component clause, except that the

Modelical.1 12
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environment is empty.]

All parts of a composite name denoting a component shall denote components. [ There are no class variablesin
Modelica.]

3.1.2 Environment and modification

3.1.2.1 Environment

The environment contains arguments which modify elements of the class (e.g., parameter changes). The
environment is built by merging class modifications, where outer modifications override inner modifications.

3.1.2.2 Merging of modifications

[ The following larger example demonstrates several aspects:

class C1
class Cl11
parameter Real x;
end C11;
end Ci;
class C2
class C21

end C21;

end C2;

class C3
extends Ci;
Cl1 t(x=3); /'l ok, Cl1 has been inherited fromCl
C21 u; /1 error, C21 has not yet been inherited
ext ends C2;

end C3;

The environment of the declaration of t is (x=3). The environment is built by merging class modifications, as
shown by:
class Cl1
par anet er Real a;
end Ci;
class C2
par armet er Real b;
end C2;
class C3
par armet er Real x1; /1 No default value
paranmeter Real x2 = 2; /1 Default value 2
parameter Cl x3; /1 No default value for x3.a
paranmeter Cl x4(a=4); /1l x4.a has default value 4
ext ends Ci; /1 No default value for inherited elenent a
extends C2(b=6); /1 Inherited b has default value 6
end C3;
class 4
extends C3(x2=22, x3(a=33), x4(a=44), Cl(a=55), b=66);
end C4;

Outer modifications override inner modifications, e.g., b=66 overrides the nested class modification of
extends C2(b=6). Thisisknown as merging of modifications. mer ge( ( b=66), (b=6)) becomes
(b=66).

An instantiation of class C4 will give an object with the following variables:

Variable Default value

Modelical.1 13
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x1 none
x2 22
x3.a 33
x4.a 44
a 55
b 66

The last argument of the C3 madification shows that an inherited element (here, b=66) can be directly referred
to, without specifying itsbase classasin C1( a=55) ]

3.1.2.3 Single madification

Two arguments of a modification shall not designate the same primitive attribute of an element. [ Example:

class C1

Real x[3];
end Ci;
class C2 = Cl(x=ones(3), x[2]=2); /I Error: x[2] designated twi ce
class C3

class 4

Real x;
end C4;
A a(x(unit ="V'), x =5.0));
[l Ck, different attributes designated (unit and val ue)

end C3;

]
3.1.2.4 Instantiation order

The name of a declared element shall not have the same name as any other element in its partially instantiated
parent class.

The elements of a class are instantiated in the order of declaration. An element is added to its partially
instantiated parent class after the complete instantiation of the element. [For example, Real x = X, is
incorrect.]

3.1.3 Subtyping and type equivalence

3.1.3.1 Subtyping of classes
For any classes Sand C, Sisasupertype of C and C isasubtype of Sif they are equivalent or if:
» every public declaration element of S also existsin C (according to their names)

¢ those element typesin S are supertypes of the corresponding element typesin C.

A base classisthe class referred to in an extends clause. The class containing the extends clauseis called the
derived class. [ Base classes of C are typically supertypes of C, but other classes not related by inheritance can
also be supertypes of C\]

3.1.3.2 Subtyping of components

Component B is subtype of A if:
e Both scalars or arrays with the same number of dimensions

« Thetype of B is subtype of the base type of A (base type for arrays)

Modelical.1 14
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»  For every dimension of an array
e Thesize of A isindefinite, or

e Thevalue of expression (size of B) - (size of A) isfinal constant equal to O (in the environment of
B)

3.1.3.3 Typeequivalence

Two types T and U are equivalent if:
¢ T and U denote the same built-in type (one of Real Type, IntegerType, StringType or BooleanType), or

e TandU areclasses, T and U contain the same public declaration elements (according to their names),
and the elementstypesin T are equivalent to the corresponding element typesin U.

3.1.3.4 Typeidentity

Two elements T and U areidentical if:
e TandU areequivalent,
e they are either both declared as final or noneis declared final,
e for acomponent their type prefixes are identical, and

« ifTandU areclasses, T and U contain the same public declaration elements (according to their names),
and the elementsin T are identical to the corresponding element in U.

3.1.4 Classeson external files

Class names are automatically mapped to a hierarchical structure of the operating system. Given that A denotesa
class at global scope, the name path A. B. Cislooked up asfollows.

¢ If Aisdefined in the current translation unit, the rest of the path (B. C) islooked up inside A.
e Otherwise, Aislocated in an ordered list of library roots, called MODELICAPATH.
If the name A is astructured entity [e.g. a directory], lookup of B. C progresses recursively in A.

If the name A is a non-structured entity [e.g. afilg], it shall contain only the complete definition of class A, and
the rest of the path (B. C) islooked up inside that package. If the name A is a structured entity [e.g. a directory
with an optional node] , the rest of the path islooked up in the node in the same way as in non-structured entity .
If not found, lookup of B.C progresses recursively in A.

[Inafile hierarchy, the nodeis stored in file package. np in the package directory] .
Otherwise the lookup fails.

[On a typical system, MODELICAPATH is an environment variable containing a semicolon-separated list of
directory names. Classes are realized by directories with subdirectories, or files containing class definitions.
The default file extension for Modelica is. np; for example, the package A would be stored in file A. np. If
there is both a subdirectory Aand afile A. np, the lookup fails. Other forms of realizing packages are also
possible, for example using a hierarchical database.]

[Thefirst part of the path A. B. C (i.e., A) islocated by searching the ordered list of rootsin MODELICAPATH.
If no root contains A the lookup fails. If A has been found in one of the roots, the rest of the path islocated in A;
if that fails, the entire lookup fails without searching for Ain any of the remaining rootsin MODELICAPATH.]

Modelical.1 15
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3.2 Declarations

3.21 Component clause

If the type specifier of the component denotes a built-in type (Real Type, IntegerType, etc.), the instantiated
component has the same type.

If the type specifier of the component does not denote a built-in type, the name of the type islooked up (3.1.1).
The found type isinstantiated with a new environment and the partialy instantiated parent of the component.
The new environment is the result of merging

» the modification of parent element-modification with the same name as the component
e the modification of the component declaration
in that order.

An environment that defines the value of a component of built-in typeis said to define a declaration eguation
associated with the declared component. For declarations of vectors and matrices, declaration equations are
associated with each element. [ This makes it possible to override the declaration equation for a single element in
a parent modelification, which would not be possible if the declaration equation is regarded as a single matrix
equation.]

Array dimensions shall be non-negative parameter expressions.
Variables declared with the flow type prefix shall be a subtype of Real.

Components of function type may be instantiated. [ A modifier can be used to e.g. change parameters of the
function. It is also possible to do such a modification with a class specialization.] Components of afunction are
reinitialized with their start values at every function invocation.

3.2.2 Vectors, Matrices, and Arrays

3.22.1 Typedeclarations

The Modelica type system includes scalar number, vector, matrix (number of dimensions, ndim=2), and arrays
of more than two dimensions. [ Thereis no distinguishing between a row and column vector.]

The following table shows the two possible forms of declarations and defines the terminology. C is a placehol der
for any class, including the builtin type classes Real, Integer, Boolean and String:

Modelicaform1 |Modelicaform 2 # dimensions [Designation  |[Explanation

C X; Cx; 0 Scalar Scalar

C[n] x; C x[n]; 1 V ector n - Vector

C[n, m] x; C x[n, m[; 2 Matrix nx m Matrix

Cln,m,p,..]x; [Cxmn,p,.]; k Array Array with k dimensions (k>=0).

[ The number of dimensions and the dimensions sizes are part of the type, and shall be checked for example at
redeclarations. Declaration form 1 displays clearly the type of an array, whereas declaration form 2 is the
traditional way of array declarationsin languages such as Fortran, C, C++ and ismore general in somerare
situations, e.g., when a square matrix with unknown sizes is declared which cannot be defined with the first
form:

Real A[:,size(A 1)]; /I squarematrix of unknown size (size(A,1) isthe size of the first dimension)
Real [ :, size(A 1)1 A; /lerror, because A is used before defined

Real [:] wv1, v2 /I vectors vl and v2 have unknown sizes. The actual sizes may be different.

It is possible to mix the two declaration forms, but it is not recommended
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Real [ 3, 2] x[4,5]; /I x hastype Readl[4,5,3,2];
]

Zero-valued dimensions are allowed, so C x[ 0] ; declares an empty vector and C x[ 0, 3] ; an empty matrix.

[ Special cases:

Modelicaform1 |Modelicaform2  #dimensions Designation |Explanation

C[1] x; C x[1]; 1 V ector 1 — Vector, representing a scalar
C[1,1] x; C x[1, 1]; 2 Matrix 1 x 1 — Matrix, representing a scalar
C[n,1] x; Cx[n, 1]; 2 Matrix n x 1 — Matrix, representing a column
C[1,n] x; C x[1, n]; 2 Matrix 1 x n — Matrix, representing a row

]

The type of an array of array is the multidimensional array which is constructed by taking the first dimensions
from the component declaration and subsequent dimensions from the maximally expanded component type. A
type is maximally expanded, if it is either one of the built-in types (Real, Integer, Boolean, String) or it is not a
type class. Before operator overloading is applied, a type class of a variable is maximally expanded.

[ Example:

t ype Voltage = Real(unit = "V");
t ype Current = Real(unit = “A”);
connect or Pin

Voltage v; /I type class of v = Voltage, type of v = Real
f1 owCurrent i; /I type class of i = Current, type of i = Redl
end Pin;
t ype MultiPin = Pin[5];
MultiPin[4] p; I type class of pis MultiPin, type of pisPin[4,5];

t ype Point = Real[3];

Point p1[10];

Real p2[10,3];

The components pointvecl and pointvec2 have identical types.

p2[5] = p1[2]+ p2[4]; /I equivalentto p2[5,:] = pl[2,]] + p2[4,:]
Real r[3] = p1[2]; /I equivalentto r[3] =pl[2,]

]
[ Automatic assertions at simulation time:

Let A beadeclared array and i be the declared maximum dimension size of the d-dimension, then an assert
statement “assert(i >= 0)" is generated provided this assertion cannot be checked at compile time.

Let A be a declared array and i be an index accessing an index gfdimeahsion. Then for every such index-
access an assert statement “assert(i >= 1 and i <= sizg)A,d generated, provided this assertion cannot be
checked at compile time.

For efficiency reasons, these implicit assert statement may be optionally suppressed.]
3.2.2.2 Built-in Functionsfor Array Expressions

The following function cannotbe used in Modelica, but is utilized below to define other operators

promote(A,n) | Fillsdimensions of size 1 from the right to array A upto dimension n, where "n >=
ndims(A)" isrequired. Let C = promote(A,n), with nA=ndims(A), then ndims(C) = n,
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size(C,j) =size(A))) for L<=j <=nA, size(C,j) =1fornA+1l<=j<=n,C[i_1, ...,
i_nA, L ..., 1] =A[i_1,..,i_nA]

[ Function promote could not be used in Modelica, because the number of dimensions of the return array cannot
be determined at compile timeif nisa variable. Below, promoteis only used for constant n].

The following built-in functions for array expressions are provided:

Modelica Explanation

ndims(A) Returns the number of dimensions k of array expression A, with k >= 0.

size(A,i) Returns the size of dimension i of array expression A wherei shall be > 0 and <= ndims(A).

size(A) Returns a vector of length ndims(A) containing the dimension sizes of A.

scalar (A) Returns the single element of array A. size(A,i) = Lisrequired for 1 <=i <= ndims(A).

vector (A) Returns a 1-vector, if A isascalar and otherwise returns a vector containing all the elements
of thearray, provided there is at most one dimension size > 1.

matrix(A) Returns promote(A,2), if A isascalar or vector and otherwise returns the elements of the
first two dimensions as a matrix. size(A,i) = Lisrequired for 2 <i <= ndims(A).

transpose(A) Permutes the first two dimensions of array A. It isan error, if array A does not have at least 2
dimensions.

outer(v1,v2) Returns the outer product of vectors vl and v2 ( = matrix(v)*transpose( matrix(v) ) ).

identity(n) Returns the n x n Integer identity matrix, with ones on the diagonal and zeros at the other
places.

diagonal(v) Returns a square matrix with the elements of vector v on the diagonal and all other elements
zero.

zero(ny,nz,Ns,...) | Returnsthe ny X np X ng X ... Integer array with all elements equal to zero (n, >= 0).

ones(Ny,N2,Ns,..) | Return the ny X Ny X N X ... Integer array with all elements equal to one (n; >=0).

fill(sNwun2ns, -.) | Returnsthe n, X n, X ng X ... array with all elements equal to scalar expression s which hasto
be a subtype of Real, Integer, Boolean or String (n; >= 0). The returned array has the same
typeass.

linspace(x1,x2,n) | Returns a Real vector with n equally spaced elements, such that v=linspace(x1,x2,n),
V[i] = x1 + (x2-x1)*(i-1)/(n-1) for 1 <=i <=n. It isrequired that n >= 2.

min(A) Returns the smallest element of array expression A.

max(A) Returns the largest element of array expression A.

sum(A) Returns the sum of all the elements of array expression A.
product(A) Returns the product of all the elements of array expression A.

symmetric(A) Returns a matrix where the diagonal elements and the elements above the diagonal are
identical to the corresponding elements of matrix A and where the elements below the
diagonal are set equal to the elements above the diagona of A, i.e., B := symmetric(A) ->
B[i,jl := Al jl,if i <=j, B[i,jl := Al[j,i], if i >]j.

cross(x,y) Returns the cross product of the 3-vectorsx and y, i.e.
cross(x,y) = [ X[2]*y[3]-x[3]*y[2]; X[3]*y[1]-x[1]*Y[3]; X[1]*y[2]-x[2]*Y[1] ];
skew(x) Returns the 3 x 3 skew symmetric matrix associated with a 3-vector, i.e.,

cross(x,y) = skew(x)*y; skew(x) = [0, -x[3], x[2]; X[3]. 0, -x[1]; -x[2], x[1], OI;

[Example:

Real x[4,1,6];
size(x,1) = 4;
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si ze(x); /I vector with elements 4, 1, 6
size(2*x+x ) = size(x);

Real [3] vl = fill(1.0, 3);
Real [3,1] m= matrix(vl);
Real [3] v2 = vector(m;

Bool ean check[3,4] = fill(true, 3, 4);
]

3.2.2.3 Vector, Matrix and Array Constructors

Array Construction

The constructor function array(A,B,C,...) constructs an array from its arguments according to the following
rules:

«  All arguments must have the same sizes, i.e., size(A) = size(B) = size(C) = ...

¢ All arguments must be type equivalent. The datatype of the result array is the maximally expanded type of
the arguments. The maximally expanded types should be equivalent. Real and Integer subtypes can be
mixed resulting in a Real result array where the Integer numbers have been transformed to Real humbers.

e Each application of this constructor function adds a one-sized dimension to the left in the result compared to
the dimensions of the argument arrays, i.e., ndims(array(A,B,C)) = ndimes(A) + 1 = ndims(B) + 1, ...

« {A,B,C,..} isashorthand notation for array(A, B, C, ...).
¢ Theremust beat least one argument [i.e., array() or {} isnot defined] .
[ Examples:

{1,2,3} isa 3 vector of type Integer.
{{11,12,13}, {21,22,23} } is a 2x3 matrix of type Integer
{{{1.0, 2.0, 3.0}}} isa 1x1x3 array of type Real.
Real[3] v = array(l, 2, 3.0);
type Angle = Real(unit="rad");
parameter Angle alpha = 2.0; // type of alpha is Real.
array(alpha, 2, 3.0) is a 3 vector of type Real.
Angle[3] a ={1.0, alpha, 4}; //type of a is Real[3].
]

Array Concatenation

The function cat(k,A,B,C,...) concatenates arrays A,B,C,... along dimension k according to the following rules:
e ArraysA, B, C, ... must have the same number of dimensions, i.e., ndims(A) = ndims(B) = ...

* ArraysA, B, C, ... must be type equivalen The datatype of the result array is the maximally expanded type
of the arguments. The maximally expanded types should be equivalent. Real and Integer subtypes can be
mixed resulting in a Real result array where the Integer numbers have been transformed to Real humbers.

ek hasto characterize an existing dimension, i.e., 1 <= k <= ndims(A) = ndims(B) = ndims(C).

e ArraysA, B, C, ... must haveidentical array sizes with the exception of the size of dimensionk, i.e.,
size(A,j) = size(B,j), for 1 <= j <= ndims(A) and j <> k.

[Examples:

Real [2,3] r1 =cat(1l, {{1.0, 2.0, 3}}, {{4, 5 6}});
Real[2,6] r2 = cat(2, r1, 2*r1l);

]
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Concatenation is formally defined according to:

Let R = cat(k,A,B,C,...), and let n = ndims(A) = ndims(B) = ndims(C) = ...., then
size(R,k) = size(A k) + size(B k) + size(Ck) + ...
size(R,j) = size(A)j) = size(B,j) =size(Cj) = ..., for L<=j<=nandj <> k.
Rli_1, .., ik, ..,i_n]=A[i_1,..i_k, .., i_n], fori_k<=size(AKk),
Rli_1, .., i K,..in=B[i_1,..i_k-size(A)), .., i_n], fori_k <=size(A k) + size(B k),

wherel<=i j<=size(R)) for1<=j<=n.
Array Concatenation along First and Second Dimensions

For convenience, a special syntax is supported for the concatenation along the first and second dimensions.

»  Concatenation along first dimension:
[A; B; C; ...] = cat(1, promote(A,n), promote(B,n), promote(C,n), ...) where
n = max(2, ndims(A), ndims(B), ndims(C), ....). If necessary, 1-sized dimensions are added to the right of A,
B, C before the operation is carried out, in order that the operands have the same number of dimensions
which will be at least two.

e Concatenation along second dimension:
[A, B, C, ..] = cat(2, promote(A,n), promote(B,n), promote(C,n), ...) where
n = max(2, ndims(A), ndims(B), ndims(C), ....). If necessary, 1-sized dimensions are added to the right of A,
B, C before the operation is carried out, especially that each operand has at |east two dimensions.

[c.d]].

e [A] = promote(A,max(2,ndims(A))), i.e., [A] = A, if A has 2 or more dimensions, and it isa matrix with the
elementsof A, if A isascaar or avector.

e There must be at least one argument (i.e. [] is not defined)
[ Examples:
Real sl, 2, vi[nl], v2[n2], M1[m1,n], M2[m2,n], M3[n,m1], M4[n,m2], K1[m1,n,k], K2[m2,n,K];

[vi;v2] isa(nl+n2) x1 matrix
[M1;M2] isa(ml+m2) x n matrix
[M3,M4] isanx (ml+m2) matrix
[KL;K2] isa(ml+m2) xnxkarray
[s1;82] isa2x1matrix

[sl,81] isalx2matrix

[s1] isalx1 matrix

[vl] isanlx1 matrix

Real[3] v1 = array(1, 2, 3);
Real[3] v2 = [{4, 5, 6}];
Real[3,2] ml = [v1, Vv2];
Real[3,2] m2 = [v1,[4;5:6]]; //ml=m2
Real[2,3] m3=1[1,2,3; 4,5, 6];
Real[1,3] M4 =[1, 2, 3];
Real[3,1] m5=[1; 2; 3];
]

Vector Construction

Vectors can be constructed with the general array constructor, e.g., Real [3] v = {1, 2, 3}.

The colon operator of simple-expression can be used instead of or in combination with this general constructor to
construct Real and Integer vectors. Semantics of the colon operator:
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e j:k isthelnteger vector {j, j+1, ..., k}, if j and k are of type Integer.

¢ j:k istheReal vector {j, j+1.0, ... n}, with n = floor(k-j), if j and/or k are of type Real.

e j:k isanInteger vector with zero elements, if j > k.

e« j:.d:Kk isthe Integer vector {j, j+d, ..., j+n*d}, with n = (k — j)/d, if j, d, and k are of type Integer.
e« j:d:k isthe Real vector {j, j+d, ..., j+n*d}, with n = floor((k-j)/d), if j, d, or k are of type Real.

e j:d:k isan Integer vector with zero elements, ifd >0 and j>k orifd <0 and j < k.
[ Examples:

Real v1[5] = 2.7 : 6.8;

Real v2[5] = {2.7, 3.7, 4.7, 5.7, 6.7} /1 = same as vl

]

3.2.2.4 Array access operator

Elements of vector, matrix or array variables are accesse(l with colon is used to denote all indices of one
dimension. A vector expression can be used to pick out selected rows, columns and elements of vectors,
matrices, and array$he number of dimensions of the expression is reduced by the number of scalar index
arguments.

[ Examples:

e a[;, j]is a vector of the j-th column of a,
« afj: Klis{[a[j], a[j+11], ... , a[K]},

o al,j:Klis[al,j, a[:j+1], ..., a[:,K]],

e v[2:2:8] =Vv[{2,4,6,8}] .

« if x isavectorx[ 1] is a scalar, but the slieg 1: 5] is a vector (a vector-valued or colon index
expression causes a vector to be returned).]

[ Examples given the declaration x[n, m], V[K], Zi, j, p] :

Expression # dimensions Type of value
X[1, 1] 0 Scalar

X[:, 1] 1 n — Vector

X[1, 1] 1 m — Vector
v[1:p] 1 p — Vector
X[1:p, 1] 2 p X m— Matrix
X[1:1, 1] 2 1xm-"row" matrix
X[{1, 3, 5}, ] 2 3 X m — Matrix
X[, V] 2 n x k — Matrix
z[:, 3, ] 2 i X p — Matrix
x[scalar([1]), :] 1 m — Vector
x[vector([1]), :] 1 1 x m - Matrix

]
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3.2.2.5 Scalar, vector, matrix, and array operator functions

The mathematical operations defined on scalars, vectors, and matrices are the subject of linear algebra.

Numeric Type Class

The term numeric classis used below for a subtype of the Real or Integer type class.

Equality and Assignment of type classes

Equality “a=b” and assignment “a:=b” of scalars, vectors, matrices, and arrays is defined element-wise and
require both objects to have the same number of dimensions and corresponding dimension sizes. The operands
need to be type equivalent.

Type of a Type of b Resultofa="b Operation (j=1:n, k=1:m)
Scalar Scalar Scalar a=b

\Vector[n] Vector[n] Vector[n] alj] = b[j]

Matrix[n, m] Matrix[n, m] Matrix[n, m] alfj, k] = b[j, K]

Array[n, m, ...] Array[n, m, ...] Array[n, m, ...] afj, k, ...] =b[j, k, ...]

Addition and Subtraction of numeric type classes

Addition “a+b” and subtraction “a-b” of numeric scalars, vectors, matrices, and arrays is defined element-wise
and require size(a) = size(b) and a numeric type class for a and b.

Type of a Type of b Resultof a +/-b Operation ¢ ;= a +/- b (j=1:n, k=1:m)
Scalar Scalar Scalar ci=a+l-b

\Vector[n] Vector[n] Vector[n] c[j] := a[j] +/- b[j]

Matrix[n, m] Matrix[n, m] Matrix[n, m] clj, k] := a]j, K] +/- b][j, K]

Array[n, m, ...] Array[n, m, ...] Array[n, m, ...] cli, k, ...]:==alj, k, ...] +/- b[j, k, ...]

Scalar Multiplication of numeric type classes

Scalar multiplication “s*a” or “a*s” with numeric scalar s and numeric scalar, vector, matrix or array a is defined

element-wise:

Type of s Type of a Type of s*a and afs Operation ¢ :=s*a or c¢:=a*s (j=1:n, k=1tm)
Scalar Scalar Scalar ci=s*a
Scalar Vector [n] Vector [n] c[j] :=s* a[j]
Scalar Matrix [n, m] | Matrix [n, m] c[j, k] := s* alj, k]
Scalar Array[n, m, ...]| Array [n, m, ...] cfj, k, ...] :=s*a[j, k, ...]
Matrix Multiplication of numeric type classes
Multiplication “a*b” of numeric vectors and matrices is defined only for the following combinations:
Type of a Type of b Type ofa*b | Operation ¢ := a*b
(j=1:size(a,1), k=1:size(a,2))
\Vector [n] Vector [n] Scalar ¢ = sutalk]*b[k]), k=1:n
\Vector [n] Matrix [n, m] Vector [m] c[j] := sug(a[Kl*b[k, j1), j=1:m, k=1:n
Matrix [n, m] Vector [m] Vector [n] c[j] := sumgalj, k]*b[K])
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Matrix [n, m] Matrix [m, p] Matrix [n, p] [, j] = sumc(di, K]*b[k, j]), i=1:n, k=1:m, k=1:p

[ Example:
Real Al3,3], x[3], b[3];
A*X = b;
X*A = b; /I same as transpose([x])* A*b
[v] *transpose([V]) /I outer product
v* MV /I scalar
tranpose([v])*Mv /I vector with one element

]
Scalar Division of numeric type classes

Division “a/s” of numeric scalars, vectors, matrices, or arrays a and numeric scalars s is defined element-wise.

Type of a Type of s Resultofa/s Operation ¢ :=a/ s (j=1:n, k=1:m)
Scalar Scalar Scalar c:=als

Vector[n] Scalar Vector[n] clk]:=a[k]/s

Matrix[n, m] Scalar Matrix[n, m] cfj, kKl :=alj, k] /s

Array[n, m, ...] Scalar Array[n, m, ...] cl, k, ...]:=afj, k, ...]1/s

Exponentation of Scalars of numeric type classes

Exponentiation “a”b” is defined gsw( ) in the C language if both “a” and “b” are scalars of a numeric type
class.

Scalar Exponentation of Square Matrices of numeric type classes

Exponentation “a”s” is defined if “a” is a square numeric matrix and “s” is a scalar as a subtype of Integer with s
>= 0. The exponentation is done by repeated multiplication
(e.g. a"3 = a*a*a; a™0 = ones(size(a,l), size(a,2), ...); a®l = a).

[ Non-Integer exponents are forbidden, because this would reguire to compute the eigenvalues and eigenvectors
of “a” and this is no longer an elementary operation].

Relational operators

Relational operators <, <=, >, >=, ==, <>, are only defined for scalararguments. The result is Boolean and is
trueor falseif the relation isfulfilled or not, respectively.

In relations of the form v1 == v2 or v1 <> v2, v1 or v2 shall not be a subtype of Real. [The reason for this rule is

that relations with Real arguments are transformed to state events (see section Events below) and this
transformation becomes unnecessarily complicated for the == and <> relational operators (e.g. two crossing
functions instead of one crossing function needed, epsilon strategy needed even at event instants). Furthermore,
testing on equality of Real variables is questionable on machines where the number length in registers is
different to number length in main memory]

Relations of the form “v1 rel_op v2”, with v1 and v2 variables and rel_op a relational operator are called
elementary relations. If either v1 or v2 or both variables are a subtype of Real, the relation is called a Real
elementary relation.

Functions

Functions with one scalar return value can be applied to arrays element-wise, e.g. if A is a vector of reals, then
sin(A) is a vector where each element is the result of applying the function sin to the corresponding element in
A.
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Consider the expressionf (argl, ..., argn), anapplication of the function f to the arguments argl, ..., argn
is defined.

For each passed argument, the type of the argument is checked against the type of the corresponding formal
parameter of the function.

1. If thetypes match, nothing is done.
2. If thetypes do not match, and atype conversion can be applied, it is applied. Continued with step 1.

3. If thetypes do not match, and no type conversion is applicable, the passed argument typeis checked to see if
itisan n-dimensiona array of the formal parameter type. If it isnot, the function call isinvalid. If itis, we
call this aforeach argument.

4. For all foreach arguments, the number and sizes of dimensions must match. If they do not match, the
function call isinvalid.If no foreach arguments exists, the function is applied in the normal fashion, and the
result has the type specified by the function definition.

6. Theresult of the function call expression isan n-dimensional array with the same dimension sizes asthe
foreach arguments. Each element «i,..,j isthe result of applying f to arguments constructed from the original
arguments in the following way.

» If theargument is not aforeach argument, it is used as-is.
» If theargument is a foreach argument, the element at index [i,...,j] is used.

If more than one argument is an array, all of them have to be the same size, and they are traversed in parallel.

[ Examples:
sin({a, b, c}) = {sin(a), sin(b), sin(c)} [/l argument is a vector
sin([a, b,c]) = [sin(a),sin(b),sin(c)] /I argument may be a matrix

atan({a, b, c},{d, e, f})

Thisworks even if the function is declared to take an array as one of its arguments. If pval is defined as a
function that takes one argument that is a vector of Reals and returns a Real, then it can be used with an actual
argument which is a two-dimensional array (a vector of vectors). The result typein this case will be a vector of
Real.

pval ([1,2;3,4])
sin([1,2;3,4])

{atan(a,d), atan(b,e), atan(c,f)}

[pval ([1,2]); pval ([3,4])]
[sin({1,2}); sin({3,4})]
[sin(l), sin(2); sin(3), sin(4)]

function Add
i nput Real el, e2;
out put Real suni;
al gorithm
suml := el + e2;
end Add;

Add(1, [1, 2, 3]) adds oneto each of the elements of the second argument giving the result [2, 3, 4] . However, it
isillegal towrite 1 + [1, 2, 3], because the rules for the built-in operators are more restrictive.]

Empty Arrays

Arrays may have dimension sizes of 0. E.g.
Real x[0]; [/l an empty vector
Real A[O, 3], B[5, 0], C[0, Q];  // empty matrices

e Empty matrices can be constructed with the fill function. E.g.
Real Al:;;]  =fill(0.0,0, 1) /l aReal 0 x 1 matrix
Boolean B[;, ;, :] =fill(false, 0, 1, 0) // aBoolean 0 x 1 x 0 matrix
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* Itisnot possibleto access an element of an empty matrix, e.g. v[j,K] iswrong if "v=[]" because the assertion
fails that the index must be bigger than one.

e Size-requirements of operations, such as +, -, have aso to be fulfilled if adimension is zero. E.g.
Real[3,0] A, B;
Real[0,0] C;
A +B [/ fine, result is an empty matrix
A+ C [/ error, sizesdo not agree

e Multiplication of two empty matrices resultsin azero matrix if the result matrix has no zero dimension
sizes, i.e,
Real[0,m]*Real[m,n] = Real[0,n] (empty matrix)
Real[m,n]*Real[n,0] = Real[m,0] (empty matrix)
Real[m,0]*Real[0,n] = zeros(m,n) (hon-empty matrix, with zero elements).

[Example:
Real u[p], x[n], y[ad], Aln,n], B[np], dq,n], Dq,p];
der (x) A*x + B*u

y ; Crx + D*u

Assume n=0, p>0, g>0: Resultsin "y = D*u"
]

3.2.3 Short class definition

A class definition of the form
class I DENT, = I DENT, class_nodification ;
isidentical to the longer form

cl ass | DENT,
ext ends | DENT, cl ass_nodification ;
end | DENTq;

A short class definition of the form
type TN = T[N] (optional nodifier) ;
where N represents arbitrary array dimensions, conceptually yields an array class

array TN
T[n] _ (optional nodifiers);
end TN,

Such aarray class has exactly one anonymous component (_). When a component of such an array classtypeis
instantiated, the resulting instantiated component type is an array type with the same dimensionsas _ and with
the optional modifier applied.

[Example:

t ype Force = Real[3](unit={"Nm”,”"Nm”,”"Nm"});
Force f1;
Real f2[3](unit={"Nm”,”"Nm”,”"Nm"});

thetypesof f 1 and f 2 areidentical ]
3.24 Local classdefinition

Thelocal classisinstantiated with the partially instantiated parent of the local class. The environment is the
modification of any parent class element modification with the same name as the local class, or an empty
environment.
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The instantiated local class becomes an element of the instantiated parent class.

[ The following example demonstrates parameterization of a local class:
class C1
class Voltage = Real (unit="V");
Vol tage v1, v2;
end Ci1;
class C2
extends C1(Voltage(unit="kV"));
end C2;
Instantiation of class C2 yields a local instance of class Voltage with unit "kV". The variables vl and v2 thus
have unit "kV".]

3.25 Extendsclause

The name of the base classislooked up in the partially instantiated parent of the extends clause. The found base
classisinstantiated with a new environment and the partially instantiated parent of the extends clause. The new
environment is the result of merging

* arguments of al parent environments that match names in the instantiated base class
e the modification of a parent element-modification with the same name as the base class
e theoptiona class modification of the extends clause

in that order.

[ Examples of the three rules are given in the following example:

class A
paraneter Real a, b;
end A
class B
extends A(b=3); /'l Rule #3
end B;
class C
ext ends B(a=1, A(b=2)); /1 Rules #1 and #2
end C,

]

The elements of the instantiated base class become elements of the instantiated parent class.

[ From the exampl e above we get the following instantiated class:

cl ass Ci nstance
par anet er Real a=1;
paraneter Real b=2;
end Ci nstance;

The ordering of the merging rules ensures that, given classes A and B defined above,

class C2
B bconp(b=1, A(b=2));
end C2;

yields an instance with bconp. b=1, which overrides b=2.]
The declaration elements of the instantiated base class shall either
* Not aready exist in the partially instantiated parent class [i.e., have different names] .

» Beidentica to any element of the instantiated parent class with the same name and the same level of
protection (public or protected). In this case, the element of the instantiated base classisignored.

Otherwise the mode! isincorrect.
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[ The second rule saysthat if an element isinherited multiple times, the first inherited element overrides later
inherited elements:

class A

paraneter Real a, b;
end A

class B
extends A(a=1);
ext ends A(b=2);
end B;

Class B is well-formed and yields an instantiated object with elements a and b inherited from the first extends
clause:
cl ass Bi nstance
par aneter Real a=1;
par anet er Real b;
end Bi nstance;

]

Equations of the instantiated base class that are syntactically equivalent to equations in the instantiated parent
class are discarded. [ Note: equations that are mathematically equivalent but not syntactically equivalent are not
discarded, hence yield an overdetermined system of equations.]

3.2.6 Redeclaration

A redeclar e construct replaces the declaration of an extends clause, local class or component in the modified
element with another declaration. The type specified in the redeclaration shall be a subtype of the typein the
origina declaration.

The element modifications of the redeclaration and the original declaration are merged in the usual way.

[ Example:
class A
par anet er Real x;
end A;
class B
par aneter Real x=3.14, vy; /1 Bis a subtype of A
end B;
class C
A a(x=1);
end C
class D
extends C(redeclare B a(y=2));
end D

which effectively yields a class D2 with the contents

class D2
B a(x=1, y=2);
end D2;

]
The following additional constraints apply to redeclarations:

* anelement declared as final cannot be redeclared
¢ anelement declared as constant can only be redeclared with constant or final constant
¢ anelement declared as parameter can only be redeclared with parameter, constant or final constant

e anelement declared as discrete can only be redeclared with discr ete, parameter, constant or final
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constant
» afunction can only be redeclared as function
¢ anelement declared as flow can only be redeclared with flow
* anelement declared as not flow can only be redeclared without flow

Modelica does not allow a protected element to be redeclared as public, or a public element to be redeclared as
protected.

A scalar may be redeclared as a matrix. A matrix may be redeclared as a scalar. Matrix dimensions may be
redeclared.

3.3 Equations

3.3.1 Equation clause

The instantiated equation isidentical to the non-instantiated equation.
Names in an equation shall be found by looking up in the partially instantiated parent of the equation.

Equation equality = shall not be used in an agorithm clause. The assignment operator : = shall not be used in an
equation clause.

3.3.2 For clause

The expression of afor clause shall be a vector expression. It is evaluated once for each for clause. In an
equation section, the expression of afor clause shall be a parameter expression.

[ Example;
for i in 1:10 I oop /l'i takesthevalues 1,2,3,...,10
for r in1.0: 1.5 : 5.5 loop //rtakesthevauesl.0,25,4.0,55
for i in{1,3,6,7} |loop /l'i takesthevauesl, 3, 6, 7

]
3.3.3 When clause

The expression of a when clause shall be a Boolean scalar or vector expression. The equations within awhen
clause are activated when the scalar or any one of the elements of the vector expression becomes true. A when
clause shall not be used within a function class.

[ Example:
Equations are activated when x becomes > 2:

when > 2 then
yl 2*X + y2;
y2 sin(x);
end when;

Equations are activated when either x becomes > 2 or sample(0,2) becomes true or x becomes less than 5:

when {x > 2, sanple(0,2), x < 5} then
yl = 2*x + y2;
y2 = sin(x);

end when;

The equations in a when clause are sorted independently form each other with all other equations.]

I n X

A when clause
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when {conditionl, condition2, ..., conditionN} then
end When;
is equivalent to the following special if-clause
i f edge(conditionl) or edge(condition2) or ... edge(conditionN) then
end- | f;

with“edge( A)= A and not pre(A)” and the additional guarantee, that the equations within this special
if clause are only evaluated at event instants.

When clauses cannot be nested.
[ Example:
The following when clauseisinvalid:

when x > 2 then
when y1 > 3 then
y2 = sin(x);
end when;
end when;

]

The expression of an assert clause shall evaluate t¢ Thesntent isto perform a test of model validity and to
report the failed assertion to the user if the expression evaluates to false. The means of reporting a failed
assertion are dependent on the simulation environment.]

3.3.4 Connections

Connections between objects are introduced bgdheect statement in the equation part of a class. The

connect construct takes two references to connectors, each of which is either an element of the same class as the
connect statement (an outer connector) or an element of one of its components (an inner connector). The two
main tasks are to:

» Build connection sets fromonnect statements.
e Generate equations for the complete model.
Definitions:
Connection sets

A connection set is a set of variables connected by means of connect clause. A connection set shall
contain either only flow variables or only non-flow variables.

Inner and outer connectors

In a class M, each connector element of that class is called an outer connector with respect to M. Each
connector element of some element of M is called an inner connector with respect to M.

3.3.4.1 Generation of connection equations

For every use of the connect statement
connect (a, b);
the primitive components @f andb form a connection set. If any of them already occur in a connection set
from previous connects in the same class or nested components, these sets are merged to form one connection

set. Composite connector types are broken down into primitive components. Each connection set is used to
generate equations for across and through (zero-sum) variables of the form

al = a2 = ... = an;
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zl + z2 + (-2z3) + ... + zn = 0;
In order to generate equations for through variables [using the f | owprefiX], the sign used for the connector
variable z; above is+1 for inner connectors and -1 for outer connectors [ z3 in the example above] .
For each unconnected through (zero-sum) variable the following equation isimplicitly generated:

z = 0;
3.3.4.2 Redtrictions
A component of an inner connector declared with the input type prefix shall not occur in more than one connect
statement in that scope. A component of an outer connector declared with the output type prefix shall not occur
in more than one connect statement in that scope. Two components declared with theinput type prefix shall not

be connected in the same scope. Two components declared with the output type prefix shall not be connected in
the same scope.

Subscripts in a connector reference shall be constant expressions.

If the array sizes do not match, the original variables are filled with one-sized dimensions from the left until the
number of dimensions match before the connection set equations are generated.

Constants or parametersin connected components yield the appropriate assert statements; connections are not
generated.

3.4 Functions

There are two forms of function application, see section 2.2.7. In the first form,
f(3.5, 5.76)

the arguments are associated with the [ formal] parameters according to their position in the argument list. Thus
argument i is passed to parameter i, where the order of the parametersis given by the order of the component
declarations in the function definition. The first input component is parameter number 1, the second input
component is parameter number 2, and so on. When a function is called in this way, the number of arguments
and parameters must be the same.

In the second form of function application,
g(x=3.5, y=5.76)

the parameters are explicitly associated with the arguments by means of equations in the argument list.
Parameters which have default values need not be specified in the argument list.

The type of each argument must agree with the type of the corresponding parameter, except where the standard
type coercions can be used to make the types agree. (See also section 3.2.2.5 on applying scalar functions to

arrays.)
[ Example. Suppose a function f is defined as follows:

function f
i nput Real x;
i nput Real vy;

i nput Real z = 10.0;
out put Real r;
end. f
Then the following two applications are equivalent:

f(1.0, 2.0, 10.0)
f(y =2.0, x =1.0)

]

A function may have more than one output component, corresponding to multiple return values. When afunction
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has a single return value, afunction application is an expression whose value and type are given by the value and
type of the output component.

The only way to call afunction having more than one output component isto make the function call the RHS of
an equation or assignment. In these cases, the LHS of of the equation or assignment must be alist of component
references within parentheses. The component references are associated with the output components according
to their position in the list. Thus output component i is set equal to, or assigned to, component referencei in the
list, where the order of the output componentsis given by the order of the component declarationsin the function
definition.

The number of component references in the list must agree with the number of output components.

The type of each output parameter must agree with the type of the corresponding component referencesin the
list onthe LHS.

[ Example. Suppose a function f is defined as follows:

function f
i nput Real x;
i nput Real vy;

out put Real r1;
out put Real r2;
out put Real r3;
end. f
Then the following equation and assignment show the two possible ways of calling f:

(x, vy, z) =f(1.0, 2.0);
(x, y, z) :=f(1.0, 2.0);

]

The only permissible use of an expression in the form of alist of expressionsin parentheses, iswhen it isused as
the LHS of an equation or assignment where the RHS is an application of afunction with more than one output
component. In this case, the expressionsin the list shall be component references.

[Example. The following areillegal:

(x+1, 3.0, z/y) =1f(1.0, 2.0); // Not alist of component references.
(x, vy, z) +(u, v, W // Not LHS of suitable eqn/assignment.

]
3.5 Variability constraints

The prefixes discrete, parameter, constant of a component declaration define in which situation the value of a
variable can be changed, as outlined in the following table:

public experiment at event during integration
no prefix variable variable variable variable
discrete variable variable variable fixed
parameter variable variable fixed fixed
constant variable fixed fixed fixed
final constant fixed fixed fixed fixed

The column heading "public" characterizes a declaration in a public section of a model. "Experiment"
characterizes an environment in which the simulation experiment is defined. Here, only data of the model can be
changed but no other model properties, such as equations. "At event” characterizes an event instant of a
simulation. The last column characterizes the period of continuous integration of a simulation.
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[ A discrete component is a piecewise constant signal which changesits values only at event instants during
simulation. This prefix is needed in order that special algorithms, such as the algorithm of Pantelides for index
reduction, can be applied (it must be known that the time derivative of these variablesisidentical to zero).
Furthermore, memory requirements can be reduced in the simulation environment, if it is known that a
component can only change at event instants.

A parameter component is constant during simulation. This prefix gives the library designer the possibility to
express that the physical equationsin a library are only valid if some of the used components are constant
during simulation. The same also holds for the discrete and constant prefix. Additionally, the parameter prefix
allows a convenient graphical user interface in the experiment environment, to support quick changes of the
most important constants of a model.

A constant component is a constant which can be changed by a constant model modifier (the modifier needsto be
a constant expression), e.g., when instantiating a class, and which cannot be changed in an experiment
environment. This allows for example to hide constants from the experiment environment to reduce the visible
parameters.

In combination with an if-clause, this allows to remove parts of a model before the symbolic processing of a
model takes place in order to avoid variable causalitiesin the model (similar to #ifdef in C). Class parameters
can be sometimes used as an alternative. Example:

nodel I nertia
const ant Bool ean state = true;

equati on

J¥a = tl - t2

if state then /1 code which is renpved at conpile-tine,
der(v) = ga; [l if state=false
der(r) = v;

end if

end | nerti a;
]

Constant expressions are:
¢ Redl, integer, boolean and string literals.
e Redl, integer, boolean and string variables declared as constant or final constant.
* Logical expressions with constant subexpressions not containing function calls.

* Logical expressions with constant subexpressions using the functions div, rem, ceil, floor, integer,
size, ndims, min, max, abs, sign.

Parameter expressions are;
e Constant expressions.
* Real, integer, boolean and string variables declared as parameter.
e Logical expressions with parameter subexpressions not containing function calls.

« Logical expressions with parameter subexpressions using the functions div, rem, ceil, floor, integer,
size, ndims, min, max, abs, sign.

Discrete expressions are:
e Parameter expressions.
*  Redl, integer, boolean and string variables declared as discrete.
* Function calls where al input arguments of the function are declared as discrete, parameter or constant.

e Expressionsin the body of awhen clause.
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» Logical expressions with discrete subexpressions.

For causality analysis or sorting, components declared as discrete, parameter or constant are assumed to be
known.

Components declared as constant shall have an associated declaration equation. [1f the declaration equation is
not defined in the declaration itself, all instances of that declaration must be given a modification that defines
the declaration eguation.]

Before the initial event takes place, components declared as discr ete are set equal to their start value.

A component declared with the prefix final constant shall not be redeclared and its value shall not be modified.
[In general, final t ype definesthat no redeclaration of t ype ispossible, but is not associated with the variable
value]

If the declaration or the modification of aparameter variable contains a defining equation for the parameter and
this equation references directly or indirectly parameter, discrete or non-constant variables, then this parameter
is not visible in an experiment environment.

[ Example:
nodel nodel A
public
paraneter Real pl = 1;
paraneter Real p2 = 1 + p1l;
constant Real p3 =1 + p1;
test obj(final p4 =1 + pl, /] paraneter Real p4
p5 = 1 + pl, /1 paraneter Real p5
pr ot ect ed
paraneter Real p6 = 1 + p1l;
constant Real p7 =1 + p1;

end nodel A;

nodel nodel B
nodel A a(pl=3, p2=4+a.pl, p3=4+a.pl, obj.p5=4+a.pl);

end'ﬁﬁdellB

When instantiating model nodel A, only variablesp1, p2, p3, p5 arevisible and can be modified. In an
experiment environment only p1 isvisible because all other parameters are functionsof p1. If p1=5isset,
p2=p5=9, p3=7, p4=p6=6, and p7=4. Note, that the constant variables are already fixed at compile time
using the default value for p1. ]

A set of parameter components can be computed from a set of other parameter components by using a
function call.

[ Example;

function fc // or use an external function
out put Real p3, p4;
i nput Real pl, p2;

al gorithm
p3 1= pl*p2;
p4 := p3*pl + p2;

end fc;

nodel Test
paraneter Real pl=2, p2=3;

end Test;
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3.6 Eventsand Synchronization

The integration is halted and an event occurs whenever a Real elementary relation, e.g. “x > 2", changes its
value. During continuous integration the value of a relati@oristant. The value of a relation can only be
changed at event instaiiie other words, Real elementary relations induce state or time events]. At an event

instant, a relation is taken literally. During continuous integration a Real elementary relation has the constant
value of the relation from the last event instant.

[ Example:
y = if u > uMax then uMax else if u < uMn then uMn el se u;

During continuous integration always the same if branch is evaluated. The integration is halted whenever u-
uMax or u-uMin crosses zero. At the event instant, the correct if-branch is selected and the integration is
restarted.

Numerical integration methods of order n (n>=1) require continuous model equations which are differentiable
upto order n. Thisrequirement can be fulfilled if Real elementary relations are not treated literally but as
defined above, because discontinuous changes can only occur at event instants and no longer during continuous
integration.]

[It isa quality of implementation issue that the following special relations

time >= discrete expression
time <= discrete expression
time > discrete expression
time < discrete epxression

trigger a time event at “time = discrete expression”, i.e., the event instant is known in advance and no iteration
is needed to find the exact event instant.]

Relations are taken literally also during continuous integration, if the relation or the expression in which the
relation is present, are the argument of the noEvent(..) function. The noEvent feature is propagated to all
subrelations in the scope of the noEvent function.

[Example:
y = noEvent( if u > uMax then uMax else if u < uMn then uMn else u);
The if-expression is taken literally without inducing state events.

ThenoEvent function is useful, if e.g. the modeller can guarantee that the used if-clauses fulfill at least the
continuity requirement of integrators. In this case the simulation speed is improved, since no state event
iterations occur during integration. Furthermore, theEvent function is used to guard agains “outside
domain” errors, e.g. y = ifvEvent(x >= 0) then sqrt(x) else 0.]

All equations and assignment statements within when clauseand all assignment statements within function
classesre implicitly treated with the noEvent function, i.e., relations within the scope of these operators never
induce state or time events. [Using state events in when-clauses is unnecessary because the body of a when
clause is not evaluated during continuous integration.]

It isnot allowed to use the noEvent function directly or indirectly for relationsin discrete expressions outside of
when clauses or relations in the conditions of when clauses [otherwise it cannot be guaranteed that discrete
expressions and when clauses are only evaluated at event instants]
[Example:

Limitl = noEvent(x1 > 1);

Limit2 = x2 > 10;

Limit = Limtl or Limt2;

when Linit then

Close = true;
end when;

This is an error, because Limitl is indirectly used in the condition of a when clause and therefore the body of the
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when clause may be evaluated during continuous integration which can lead to a discontinuous change in the
model equations.

di screte Bool ean of f 1;

Bool ean of f 2;
equati on
off1 = s1 < 0O; /1l noEvent(sl < 0) is not allowed
of f2 = noEvent(s2 < 0) /'l possible, because no discrete variable
ul if offl1 then sl else O;

u2 if off2 then s2 el se O;

Since offl isdeclared as discrete, it is guaranteed that offl can only change its values at event instants. Variable
off2 may change its value during continuous integration. As a result, ul is guaranteed to be continuous during
continuous integration whereas no such guarantee exists for u2.]

Modelicais based on the synchronous data flow principle which is defined in the following way:

1. All Variables keep their actual values until these values are explicitly changed. Variable values can be
accessed at any time instant during continuous integration and at event instants.

2. At every timeinstant, during continuous integration and at event instants, the active equations express
relations between variables which have to be fulfilled concurrently (equations are not active if the
corresponding if-branch, when-clause or block in which the equation is present is not active).

3. Computation and communication at an event instant does not take time. [ If computation or communication
time hasto be simulated, this property has to be explicitly modeled] .

4. Thetotal number of equationsisidentical to the total number of unknown variables (= single assignment
rule).

[ These rules guarantee that variables are always defined by a unique set of equations. It is not possible that a
variableis e.g. defined by two equations, which would give rise to conflicts or non-deterministic behaviour.
Furthermore, the continuous and the discrete parts of a model are always automatically ,synchronized.
Example:

when conditionl then
cl ose = true;
end when;

when condition2 then
cl ose = fal se;
end when;

This is not a valid model because rule 4 is violated since there are two equations for the single unknown variable
close. If this would be a valid model, a conflict occurs when both conditions become true at the same time
instant, since no priorities between the two equations are assigned. To become valid, the model has to be
changed to:

when {conditionl, condition2} then
close = if edge(conditionl) then true el se fal se;
end when;

Here, it is well-defined if both conditions become true at the same time instant (condition1 has a higher priority
than condition2).]

There is no guarantee that two different events occur at the same time instant.

[As a consequence, synchronization of events has to be explicitly programmed in the model, e.g. via counters.
Example:

Bool ean fast Sanpl e, sl owSanpl e;

I nteger ticks(start=0);
equation

fast Sanpl e = sanpl e(0, 1);
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when fast Sanpl e t hen
ticks = if pre(ticks) <5 then pre(ticks)+1 else O;
sl owSanpl e = pre(ticks) == 0;

end when;

when fast Sanpl e t hen /1 fast sanpling
end. Wﬁen;
when sl owSanpl e t hen /1 slow sanpling (5-tines slower)
end- ;Nhen;
The slowSample when-clause is evaluated at every 5™ occurrence of the fastSample when clause]

[ The single assignment rule and the requirement to explicitly program the synchronization of events allow a
certain degree of model verification already at compile time. For example, “deadlock” between different when-
clauses is present if there are algebraic loops between the equations of the when-clauses.]

3.7 Restricted classes

The keyword class can be replaced by one of the following keywords: record, type, connector, model, block,
package or function. Certain restrictions will then be imposed on the content of such a definition. The following
table summarizes the restrictions.

record No equgtions are allowed in the definition or in any of its components. May not be used in
connections.

type May only be extension to the predefined types, records or matrix of type.

connector No equations are allowed in the definition or in any of its components.

model May not be used in connections.

block Fixed c_:ausality, input-output block. Each component_ of an intqface must either have
Causality equal to Input or Output. May not be used in connections.

package May only contain declarations of classes and constants.

function g:crgi rr]estric’[ions asfor block. Additional restrictions: no equations, only one agorithm

3.8 Variableattributes

The attributes of the predefined variable types are described below with Modelica syntax although they are
predefined; redeclaration of any of these typesis an error. The definitions use Real Type, IntegerType,
BooleanType and StringType as mnemonics correponding to machine representations. [Hence the only way to
declare a subtype of e.g. Real is to use the extends mechanism.]

type Real
Real Type val ue; /1 Accessed without dot-notation
paranmeter StringType quantity "
parameter StringType wunit
paraneter StringType displayUnit

"Unit used in equations"”;
"Default display unit";

par anet er Real Type m n=-1nf, max=+Inf; // Inf denotes a |arge val ue
par anmet er Real Type start = 0; /1 Initial value
equati on

assert(value = nmin and value <= nmax, "Variable value out of limt");
end Real ;

type | nteger
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I nt eger Type val ue; /1l Accessed wi thout dot-notation
par anet er | nteger Type nin=-1nf max=+lnf;
par anet er |ntegerType start = O; /1 Initial value

equati on

assert(value = mn and value <= nmax, "Variable value out of limt");
end | nteger;

type Bool ean
Bool eanType val ue; /1 Accessed wi thout dot-notation
par anet er Bool eanType start = false; // Initial value

end Bool ean;

type String
StringType val ue; /1l Accessed wi thout dot-notation
paranmeter StringType start = ""; /1 Initial value

end String;

[For external functionsin C, Real Type by default mapsto doub! e and Integer Type by default mapsto i nt . In
the mapping proposed in Annex F of the future C9X standard, Real Type/double matches the IEC 60559: 1989
(ANSI/IEEE 754-1985) double format. Typically Integer Type represents a 32-bit 2-complement signed integer.]

3.9 Intrinsiclibrary functionality

3.9.1 Built-in variabletime

All declared variables are functions of the independent variable time. Timeisabuilt-in variable availablein all
classes, which istreated as an input variable. It isimplicitly defined as:
i nput Real tine (final quantity = "Time",
final unit "s");
The value of the start attribute of timeis set to the time instant at which the simulation is started.

[Example:
Trigger an event at start time+ 10 s;

paranmeter Real TO = tine.start + 10;
when tinme >= TO then

end. Wﬁen;
]
3.9.2 Modelica built-in operators

Built-in operators of Modelica have the same syntax as a function call. However, they do not behave asa
mathematical function, because the result depends not only on the input arguments but also on the status of the
simulation. The following operators are supported:

der (x) The time derivative of x. Variable x need to be a (non-discrete) subtype of Real.
If x isan array, the operator is applied to al elements of the array.
initial () Returns true at the initial time instant.
. Returns true at aregular halt of the simulation, but not in the case of an error
terminal()
stop.
Real elementary relations within expr are taken literally, i.e., no state or time
noEvent(expr) o
event istriggered.
sample(start,interval) Returns true and triggerstime events at timeinstants " st art  +
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i *interval" (i=0,1,...).Duringcontinuous integration the operator
returns always false. The starting time “start” and the sample interval “inte
need to be parameter expressions and need to be a subtype of Real or In

Returns the “left limit” y(®®) of variable y(t) at a time instant t. At an event
instant, y(t) is the value of y after the last event iteration at time instant t
comment below). Thpre operator can be applied if the following three

pre(y) conditions are fulfilled simultaneously: (a) variable y is a subtype of Boole
Integer or Real, (b) the operator is applied withinhen clause or y is declare
asdiscrete, (c) the operator isot applied in gunction class.
Is expanded into “(land not pre(b))” for Boolean variable b. The same
edgeth) p ( pre(b))

restrictions as for there operator apply (e.g. not to be used in function clas

reinit(x, expr)

Reinitializes state variable x with expr at an event instant. Argument x nee
(a) a subtype of Real and (b) tther-operator need to be applied to it. expr n
to be an Integer or Real expression. The reinit operator can only be applie
for the same variable x.

abs(v)

Is expanded into if v >= Othen v else —v)”. Argument v needs to be an Integ
or Real expressiofiNote, outside of a when clause state events are triggered] .

sign(v)

Is expanded into ff v > Othen 1 elseif v < Othen —1€else 0)". Argument v
needs to be an Integer or Real expresgidote, outside of a when clause state
events are triggered]

sart(v)

Returns ff noEvent(v >= 0)then squareRoot(x@§ se OutsideDomainError”.
Argument v needs to be an Integer or Real expression.

div(x,y)

Returns the algebraic quotienty with any fractional part discarded (also
known as truncation toward zero). Result and arguments shall have type F

rval”
eger.

see

an,
d

ses).

d to be
ced
d once

yer

Real.

[Note: this is defined for / in C9X; in Standard C the result for negative numbers

is implementation-defined, so the standard funatibw() must be used.].
The input arguments need to be discrete expressions.

rem(x,y)

Returns the integer remaindendfy, such thati v( x, y)
y) X. Result and arguments shall have type Real.
The input arguments need to be discrete expressions.

*y + ren(X,

ceil(x)

Returns the smallest integer not less thaResult and argument shall have ty
Real. The input argument needs to be a discrete expression.

floor (x)

Returns the largest integer not greater thaResult and argument shall have
type Real. The input argument needs to be a discrete expression.

integer (x)

Returns the largest integer not greater thahhe argument shall have type R
The result has type Integer.
The input argument needs to be a discrete expression.

delay(expr,delayTime,delayMax
delay(expr,delayTime)

Returns'expr(time — delayTime)" for

time > time.start + delayTime and "expr(time.start)"
fime <= time.start + delayTime . The arguments, i.e., expr,
delayTime and delayMax, need to be subtypes of Real. delayMax needsto be
additionally a parameter expression. The following relation shall hold: 0 <=
delayTime <= delayMax. If delayMax isnot supplied in the

argument list, delayTime  need to be a parameter expression.

for

pe

eal.

A new event is triggered if at least for one variabl@re{v) <> v’ after the active model equations are
evaluated at an event instant. In this case the model is at once reevaluated. This evaluation sequence is called
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“event iteration”. The integration is restarted, if for all v usedpire-operators the following condition holds:

“pre(v) == v".

[1f vand pre(v) are only used in when clauses, the translator might mask event iteration for variable v since v

cannot change during event iteration. It is a “quality of implementation” to find the minimal loops for event
iteration, i.e., not all parts of the model need to be reevaluated.

The language allows that mixed algebraic systems of equations occur where the unknown variables are of type
Real, Integer or Boolean. These systems of equations can be solved by a global fix point iteration scheme,
similarily to the event iteration, by fixing the Boolean and Integer unknowns during one iteration. Again, it is a
quality of implementation to solve these systems more efficiently, e.g., by applying the fix point iteration scheme
to a subset of the model equations.]

Thereinit operator does not break the single assignment rule, because r einit(x,expr) makes the previousy
known state variable x unknown and introduces the equation “x = expr”.

[If a higher index systemis present, i.e. constraints between state variables, some state variables need to be
redefined to non-state variables. If possible, non-state variables should be chosen in such a way that states with
an applied reinit operator are not utilized. If thisis not possible, an error occurs, because the reinit operator is
applied on a non-state variable.

Examples for the usage of thereinit operator:

Bouncing ball:
der ( h) v;
der (v) -0;
when h < 0 then
reinit(v, -e*v);
end when;

Salf-initializing block:

bl ock PT1 “first order filter”
par armet er Real T “time constant”;
par aret er Real k “gain”;
i nput Real u;
out put Realy;

pr ot ect ed

Real x;

equati on
der(X)=(u—-x)/T;

y =k*x;
when initial () then
reinit(x, u); //initalize, such that der (x) = 0.

end when

end PT1,;

nodel Test
PT1 bl, b2, b3;
i nput u;
equati on
bl.u=u;
connect (bl.y, b2.u);
connect (b2.y, b3.u);
end Test;

Given the input signal u, all 3 blocks b1, b2, b3 are initialized at their stationary value]

[ The abs and sign operator trigger state eventsif used outside of a when clause. If thisis not desired, the
noEvent function can be applied to them. E.g. noEvent(abs(v)) is |v|

Thediv, rem, ceil, floor, integer operators require discrete expressions as input arguments, i.e., these functions
can be either called in when clauses or the input arguments need to be discrete variables. The reason for this
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restriction isthat these operators are not differentiable, i.e., the partial derivatives of the result with respect to
the input arguments are no continuous functions. Since thisis a pre-requisite for continuous integration, it must
be guaranteed that these operators are not called during continuous integration or if they are called, produce
always the same resuilt.

The delay operator allows a numerical sound implementation by interpolating in the (internal) integrator
polynomials, as well as a more simple realization by interpolating linearly in a buffer containing past values of
expression expr . Without further information, the complete time history of the delayed signals need to be
stored, because the delay time may change during simulation. To avoid excessive storage requirements and to
enhance efficiency, the maximum allowed delay time has to be given via del ay Max. This gives an upper bound
on the values of the delayed signals which have to be stored. For realtime simulation where fixed step size
integrators are used, this information is sufficient to allocate the necessary storage for the internal buffer before
the simulation starts. For variable step size integrators, the buffer sizeis dynamic during integration. In
principal, a delay operator could break algebraic loops. For simplicity, thisis not supported because the
minimum delay time has to be give as additional argument to be fixed at compile time. Furthermore, the
maximum step size of the integrator islimited by this minimum delay time in order to avoid extrapolation in the
delay buffer.]
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4 Mathematical description of Hybrid
DAESs

In this section, the mapping of a Modelica model into an appropriate mathematical description form is discussed.

The result of the modeling processis a set of ordinary differential equations, often accompanied with algebraic
constraint equations, thus forming a set of Differential and Algebraic Equations (DAE). Theinitial values of the
state variables need to be specified, implying that the DAE is mathematically formulated as a so-called Initial
Value Problem. This DAE is used for simulation or other analysis activities. DAEs may have discontinuities or
the structure of a DAE may change at certain points in time. Such types of DAEs are called hybrid DAEs. Events
are used to stop continuous integration at discontinuities of a hybrid DAE. After applying the discontinuous
change, the integration is restarted. A hybrid DAE is mathematically described by a set of equations of the form

(l1a) Residue Equations: O f(dx/dt, x, y, t, m, df/[dx/dt;y] isregular

(1b) Monitor Functions: z:= g(dx/dt, x, y, t, m

(1c) Update Equations : O h(dx/dt, xknow —xreinit vt m pre(m)
Additionally, every equation is a function of the parameters p and of the input functions u(t). This dependency is
not explicitly shown in (1) for clarity of the equations. The variables have the following meaning:

t time, the independent (real) variable.

X() (Real) variables appearing differentiated (x™*"is the part of x which is always known; x®" is the other part of
X whichisreinitialized at an event instant).

y(t) (Real) agebraic variables.
u(t) known (Real) functions of time.

discrete variables of type Real, Boolean or Integer defining the current mode.

m pre(m) are the values of m immediatly before the current event occured.

p  parameters, i.e., constant variables.

The residue equations (1a) are used for continuous integration. During integration, the discrete variables m are
not changed. The monitor functions (1b) are also evaluated during continuous integration. If one of the signals z
crosses zero, the integration is halted and an event occurs. The special case of atimeevent, "z=t-t.", isaso
included. For efficiency reasons, time events are usually treated in a specia way, since the timeinstant of such
an event is known in advance. At every event instant, the update functions (1c) are used to determine new values
of the discrete variables and of new initial valuesfor the states x. The change of discrete variables may
characterize a new structure of a DAE where elements of the state vector x are disabled. In other words, the
number of state variables, algebraic variables and residue equations of a DAE may change at event instants by
disabling the appropriate part of the DAE. For clarity of the equations, thisis not explicitly shown by an
additional index in (1).

At an event instant, including the initial event, the model equations are reinitialized according to the following
iteration procedure:

| oop
sol ve
0 =f(dX/dt, anown’ Xreinit, Y, t, n,)
0 = h(dx/dt, xknown xreint oy t, m pre(m)
for dx/dt, x™"Mt y m where xk" t pre(m are fixed
if m==pre(m then break

m:= pre(m
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end | oop

At every iteration a set of mixed Real, Boolean, Integer equations (1a),(1¢) has to be solved for the indicated
variables. In order that thisis possible, at least the Jacobian of (1a) needsto be regular, as it was stated in (14).
This set of equations can e.g. be solved by a global fixed point iteration scheme which can be combined with the
event iteration:

| oop
solve * 0= f(dx/dt, —xkmown —xreinit vyt m”
ford x/dt, y, where xknown —xreinit t  mare fixed
solve “ 0= h(dx/dt, —x*ow xrentoy it m pre(m)’
for x'ent mwhered x/dt, y, xXnown pre(m are fixed
if m== pre(m then break
m:= pre(m
end loop

The hybrid DAE (1) is not the most general one, but it has a clearly defined view and structure. Especialy, (1a)
can be transformed into state space form, at least numerically, since the Jacobian is required to be regular.
Generalizations are possible in the direction of higher index DAEs where the Jacobian of (1a) issingular. This
leads to additional difficulties during integration and especially for event restart because the non-linear equation
cannot be solved due to the singular Jacobian. Other generalizations concern the determination of theinitial
configuration by allowing the specification of any variable at theinitial time and by calculating the remaining
ones. A third generalization may use other algorithms to determine a consistent configuration after an event
occurred, e.g., by solving a complementary problem, see (Pfeiffer and Glocker 1996) for details. For a certain
class of higher index DAE systems, algorithms are available to automatically differentiate selected equations of
(1a), choose appropriate variables to be no longer states (= dummy derivative method) and transform to a DAE
(1) with aregular Jacobian.

The Modelicalanguage allows a direct and convenient specification of physical systems. A Modelica trandator
maps a Modelica model into a hybrid DAE (1), or in one of its generalizations if these are available. The
mapping into (1) is straightforward by expanding all class definitions (flattening the inheritance tree) and adding
the equations and assignment statements of the expanded classes for every instance of the model to (1). The
resulting hybrid DAE usually contains a huge number of sparse equations. Therefore, direct simulation of a
hybrid DAE (1) which was generated by a Modelica trandator requires sparse matrix methods.

There are several simulation environments available, such as Allan, Dymola, gPROMS, Ida (NMF) or Omola,
which preprocess (1) symbolically to arrive at aform which can be evaluated more efficiently by numerical
algorithms. Especially, efficient graph-theoretical algorithms are available to transform (1) automatically into the
following form which is called sorted hybrid DAE:

(2a) Residue Equations: 0= frdx'/dt, y', xt m,
(2b) Exp. dx-Functions: d x®/dt ;= fXdx'/dt, y',xt m
(2¢) Exp. y-Functions : ye: fydx'/dt, y',x,t, m

(2d) Monitor Functions: z gdx'/dt, y', xt m

(2e) Update Equations : [ mx"eMt = h(dx'/dt, y', x<"O" t m pre(m)
where the vector of algebraic variablesy is split into implicit variables y' and explicitly solvable algebraic
variables y®. The vector of state derivatives dx/dt is split into implicit variables dx'/dt and explicitly solvable
variables dx*/dt, respectively. When using an implicit integrator, only equations (2a,2b) need to be solved during
continuous integration. Equations (2c) are effectively hidden from the solver. They need only be evaluated for
external usage (e.g., to store output points to be plotted). At initial time and at events, the non-linear equation of
reduced dimension (2a) has to be solved. Again the dimension of the original equations has reduced
considerably. It isalso possible to use explicit integration methods, such as Runge-K utta algorithms. During
continuous integration, the integrator provides x and t. The model function solves (2a) for the implicit variables,
uses the result to evaluate (2b) and returns the complete vector of state derivatives dx/dt. This procedure is useful
for real-time simulation where only explicit one-step methods can be used and for non-stiff systems where the
number of implicit equationsis small and/or linear.

To summarize, aModelicatranslator maps a Modelica model into the hybrid DAE (1). By a subsequent
symbolic processing, (1) can be transformed into the sorted hybrid DAE (2).
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5 Unit expressions

Unless otherwise stated, the syntax and semantics of unit expressions in Modelica are conform with the
international standards 1SO 31/0-1992 " General principles concerning quantities, units and symbols" and SO
1000-1992 "SI units and recommendations for the use of their multiples and of certain other units".
Unfortunately, neither these two standards nor other existing or emerging I SO standards define aformal syntax
for unit expressions. There are recommendations and M odelica exploits them.

Examples for the syntax of unit expressions used in Modelica: "N.m", "kg.m/s2", "kg.m.s-2" " Lrad", "mm/s".

5.1 The Syntax of unit expressions

uni t _expression:
unit_nunerator [ "/" unit_denomni nator ]

uni t _nunerator:
"1" | unit_factors | "(" unit_expression ")"

unit _denomi nat or:

unit_factor | "(" unit_expression ")"
The unit of measure of adimension free quantity is denoted by "1". The I SO standard does not define any
precedence between multiplications and divisions. The SO recommendation is to have at most one division,
where the expression to the right of "/" either contains no multiplications or is enclosed within parentheses. It is
also possible to use negative exponents, for example, "J/(kg.K)" may be written as "J.kg-1.K-1".

unit_factors:
unit_factor [ unit_rmulop wunit_factors ]

uni t _nul op:

The ISO standard allows that a multiplication operator symbol is left out. However, Modelica enforces the | SO
recommendation that each multiplication operator is explicitly written out in formal specifications. For example,
Modelica does not support "Nm" for newtonmeter, but requiresit to written as"N.m".

The preferred 1SO symbol for the multiplication operator isa"dot" abit above the base line: "*'. Modelica

supports the | SO alternative ".", which is an ordinary "dot" on the base line.

unit_factor:
unit_operand [ unit_exponent ]

uni t _exponent:

[ "+" | "-" 1 integer
The 1SO standard does not define any operator symbol for exponentiation. A unit_factor consists of a
unit_operand possibly suffixed by a possibly signed integer number, which isinterpreted as an exponent. There
must be no spacing between the unit_operand and a possible unit_exponent.
uni t _operand:

unit_synbol | unit_prefix unit_synbol

uni t _prefix:
Y| Z| El P T|] G| M| k| h|]da]d|]c|m[ul|]p|]f]alz]|
y
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A unit_symbol isastring of letters. A basic support of unitsin Modelica should know the basic and derived units
of the S| system. It is possible to support user defined unit symbols. In the base version Greek lettersis not
supported, but full names must then be written, for example "Ohm".

A unit_operand should first be interpreted as a unit_symbol and only if not successful the second alternative
assuming a prefixed operand should be exploited. There must be no spacing between the unit_symbol and a
possible unit_prefix. The value of the prefixes are according to the | SO standard. The letter "u" isused asa
symbol for the prefix micro.

5.2 Examples

»  Theunit expression "m" means meter and not milli (10°3), since prefixes cannot be used in isolation. For
millimeter use "mm" and for squaremeter, m?, write "m2".

«  Theexpression "mm2" means mm? = (10*m)? = 10°m? Note that exponentiation includes the prefix.

The unit expression "T" means Tesla, but note that the letter "T" is aso the symbol for the prefix tera
which has amultiplier value of 10%.
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6 External function interface

6.1 Overview

The purpose isto allow calls to functions defined outside of the Modelica language. The design goals were:

» Cfunctions are used as the least common denominator. It is planned that other languages (C++,
Fortran) will be supported in the future too.

e A mapping of argument types from Modelicato the target language should be defined.

e Themapping should be "natural" in the sense that there is a mapping from Modelica to standard
libraries of the target language.

It should be possible to specify inverse and Jacobian functions. Details will be specified in afuture Modelica
release.

The format of an external function declaration is as follows.

function | DENT
[ input-declarations ]
[ output-declaration ]
ext er nal

end | DENT,;
Examples of Modelica function declarations:

function | og
i nput Real x;
out put Real v;
ext er nal
end | og;
function Pol ynom al Eval uat or 2
input Real a[:];
i nput Real x;
out put Real v;
ext er nal
end Pol ynom al Eval uat or 2;
function Force3D

i nput Real c=1.0;
i nput Real s;

out put Real f[3];
ext er nal

end Force3D;
The corresponding declarations in the C language are:

ext ern doubl e | og(double x);
ext ern doubl e Pol ynom al Eval uat or2(double t* a, size_t dinl, double x);
extern void Force3D(doubl e ¢, double s, double *f, size t diml);

6.2 Mapping of argument types

The arguments of the external function are declared in the same order as in the Modelica declaration. The single
Modelica function output parameter specifies the return type of the external function.
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6.21 Simpletypes

Arguments of simple types are by default mapped as follows:

C
Modelica Input Output
(return value)
Real doubl e doubl e
Integer i nt i nt
Boolean i nt i nt
String const char * const char *

Strings are nul-terminated to facilitate calling of C functions.

6.2.2 Arrays

Arrays of simple types are mapped to an argument of the simple type, followed by n arguments of type si ze_t
with the corresponding array dimensions. Thetypesi ze_t isaC unsigned integer type. Storage for arrays as
return valuesis allocated by the calling routine, so the dimensions of the returned array is fixed.

Arrays are stored in column-major order according to the Fortran conventions, in order to be compatible with
most standard numerical libraries.

Modelica ¢
Input and output

T[dim1] T*, size_t diml

T[dim1, dim2] T* size_t dml, size_t dim2

T[...] T*, size_t diml,.., size_t dimn

6.2.3 Records

A Modelicarecord class that contains simple types, other record elements, or arrays with fixed dimensions
thereof, are mapped as follows:

* Therecord classis represented by astruct in C.

¢ Each element of the Modelicarecord is mapped to its corresponding C representation.
The elements of the Modelicarecord class are declared in the same order in the C struct.

e Arraysare mapped to the corresponding C array.

For example,
record R struct R {
Real x; doubl e x;
I nteger y[10]; is mapped to i nt y[10];
Real z; doubl e z;
end R };
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7/ Modedlicastandard library

The pre-defined, free "package Modelica’ is shipped together with a Modelica translator. It is an extensive
standard library of pre-defined componentsin several domains. Futhermore, it contains a standard set of type
and interface definitions in order to influence the trivial decisions of model design process. If, as far as possible,
standard quantity types and connectors are relied on in modeling work, model compatibility and thereby reuseis
enhanced. Achieving model compatibility, without having to resort to explicit coordination of modeling
activities, is essential to the formation of globally accessible libraries. Naturally, a modeller is not required to use
the standard library and may also add any number of local base definitions.

Thelibrary will be amended and revised as part of the ordinary language revision process. It is expected that
informal standard base classes will develop in various domains and that these gradually will be incorporated into
the Modelica standard library.

The type definitionsin the library are based on 1SO 31-1992. Several 1SO quantities have long names that tend
to become awkward in practical modeling work. For this reason, shorter alias-names are also provided if
necessary. Using, e.g., "ElectricPotential” repeatedly in a model becomes cumbersome and therefore "V oltage"
isalso supplied as an aternative.

The standard library is not limited to pure Sl units. Whenever common engineering practice uses a different set
of (possibly inconsistent) units, corresponding quantities will be allowed in the standard library, for example
English units. It is also frequently common to write models with respect to scaled Sl unitsin order to improve
the condition of the model equations or to keep the actual values around one for easier reading and writing of
numbers.

The connectors and partial models have predefined graphical attributesin order that the basic visual appearance
isthe samein al Modelica based systems.

The complete Modelica package can be downloaded. Below, the introductory documentation of thislibrary is
given together with links to the subpackages. Note, that the Modelica package is still under development.

package Modelica
package Info
/* The Modelica package is a standardized, pre-defined and free
package, that is shipped together with a Modelica translator. The
package provides constants, types, connectors, partial models and
model components in various disciplines.

In the Modelica package the following conventions are used:

- Class and instance names are written in upper and lower case
letters, e.g., "ElectricCurrent”. An underscoreis only used
at the end of a name to characterize a lower or upper index,
e.g., body low_up.

- Type names start always with an upper case letter.
Instance names start always with alower case letter with only
afew exceptions, such as"T" for atemperature instance.

- A package XXX hasits interface definitions in subpackage
XXX.Interface, e.g., Electric.Interface.

- Preferred instance names for connectors:
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p,n: positive and negative side of a partial model.
a,b: side"a' and side"b" of apartial model
(= connectors are completely equivalent).
The following subpackages are available;

GENERAL PACKAGES

Constant Mathematical and physical constants
Math Mathematical functions
Slunit Sl-unit type definitions
FORMALISM PACKAGES
BlockDiagram Input/output blocks
BondGraph Bond graph components
FiniteStateMachine Finite state machine
PetriNet One-token petri-nets.
GENERAL DOMAINS
Electric Electric and electronic components
Mechanics 1D and 3D mechanical components
ThermoFluid 1D thermo-fluid components

DOMAIN PACKAGES

Modelica Language Specification

Aircraft Aircraft components
Building Energy balance of building components
DriveTrain Planetary gearboxes, clutches
ElectricPower Generators, motors, electric line
Hydraulics Hydraulic components
*/
end Info;
end Modelica;
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