Modelica™ - A Unified Object-Oriented
L anguage for Physical Systems M odeling

TUTORIAL and RATIONALE

Version 1.3
December 15, 1999

H. Elmqvist!,

B. Bachmann?, F. Boudaud®, J. Broenink?, D. Briick, T. Erns?, R. Frank& P. Fritzsoh A.
Jeandé| P. Grozmalf, K. Jusliff, D. K&gedaH| M. Klos€, N. Louberé S. E. Mattsson P.
Mostermantt, H. Nilssorf, M. Otter!, P. Sanhlif?, A. Schneidef, H. Tummescheit, H.
Vangheluwé®

! Dynasim AB, Lund, Sweden

2 ABB Corporate Research Center Heidelberg
®Gaz de France, Paris, France

“University of Twente, Enschede, Netherlands
®> GMD FIRST, Berlin, Germany

® ABB Network Partner Ltd. Baden, Switzerland
’ Linképing University, Sweden

8VTT, Espoo, Finland

®Technical University of Berlin, Germany

191 und University, Sweden

' DLR Oberpfaffenhofen, Germany

'2Bris Data AB, Stockholm, Sweden

3 Fraunhofer Institute for Integrated Circuits, Dresden, Germany
“DLR, Cologne, Germany

> University of Gent, Belgium

Modelicd" is a trademark of the "Modelica Design Group".

Modelica Tutorial and Rationale

Contents

1.Introduction
2.Modelica at a Glance
3.Requirementsfor Multi-domain Modeling
4.Modelica Language Rationale and Overview
4.1 Basic Language Elements
4.2 Classes for Reuse of Modeling Knowledge
4.3 Connections
4.4 Partial Models and Inheritance
4.5 Class Parameterization
4.6 Matrices
4.7 Repetition, Algorithms and Functions
4.8 Hybrid Models
49 Units and Quantities
410 Attributesfor Graphics and Documentation
5.0verview of Present Languages
6.Design Rationale
7.Examples
8.Conclusions
9.Acknowledgments

10.References

Modelica Tutorial and Rationale

1. Introduction

There definitely is an interoperability problem amongst the large variety of modeling and

simulation environments available today, and it gets more pressing every year with the trend

towards ever more complex and heterogeneous systems to be simulated. The main cause of this

problem is the absence of a state-of -the-art, standardized external model representation.

Modeling languages, where employed, often do not adequately support the structuring of large,

complex models and the process of model evolution in general. This support is usually provided

by sophisticated graphical user interfaces - an approach which is capable of greatly improving

the user’s productivity, but at the price of specialization to a certain modeling formalism or
application domain, or even uniqueness to a specific software package. It therefore is of no help
with regard to the interoperability problem.

Among the recent research results in modeling and simulation, two concepts have strong
relevance to this problem:

» Object oriented modeling languages already demonstrated how object oriented concepts
can be successfully employed to support hierarchical structuring, reuse and evolution of
large and complex models independent from the application domain and specialized
graphical formalisms.

* Non-causal modeling demonstrated that the traditional simulation abstraction - the
input/output block - can be generalized by relaxing the causality constraints, i.e., by not
committing ports to an 'input’ or 'output’ role early, and that this generalization enables
both more simple models and more efficient simulation while retaining the capability to
include submodels with fixed input/output roles.

Examples of object-oriented and/or non-causal modeling languages include: ASCEND, Dymola,
gPROMS, NMF, ObjectMath, Omola, SIDOPS+, Smile, U.L.M., ALLAN, and VHDL-AMS.

The combined power of these concepts together with proven technology from existing modeling
languages justifies a new attempt at introducing interoperability and openness to the world of
modeling and simulation systems.

Having started as an action within ESPRIT project "Simulation in Europe Basic Research
Working Group (SIE-WG)" and currently operating as Technical Committee 1 within Eurosim
and Technical Chapter on Modelica within Society for Computer Simulation International, a
working group made up of simulation tool builders, users from different application domains,
and computer scientists has made an attempt to unify the concepts and introduce a common
modeling language. This language, caléaotelica, is intended for modeling within many
application domains (for example: electrical circuits, multi-body systems, drive trains,
hydraulics, thermodynamical systems and chemical systems) and possibly using several
formalisms (for example: ODE, DAE, bond graphs, finite state automata and Petri nets). Tools
which might be general purpose or specialized to certain formalism and/or domain will store the
models in the Modelica format in order to allow exchange of models between tools and between
users. Much of the Modelica syntax will be hidden from the end-user because, in most cases, a
graphical user interface will be used to build models by selecting icons for model components,

3

Modelica Tutorial and Rationale

using dialogue boxes for parameter entry and connecting components graphically.

The work started in the continuous time domain since there is a common mathematical
framework in the form of differential-algebraic equations (DAE) and there are several existing
modeling languages based on similar ideas. There is also significant experience of using these
languages in various applications. It thus seemsto be appropriate to collect al knowledge and
experience and design a new unified modeling language or neutral format for model
representation. The short range goal was to design a modeling language for differential-algebraic
equation systems with some discrete event features to handle discontinuities and sampled
systems. The design should be extendible in order that the goal can be expanded to design a
multi-formalism, multi-domain, general -purpose modeling language. Thisis areport of the
design state as of December 1998, Modelicaversion 1.1.

The object-oriented, non-causal modeling methodology and the corresponding standard model
representation, Modelica, should be compared with at least four alternatives. Firstly, established
commercia general purpose simulation tools, such as ACSL, EASY5, SIMULINK, System
Build and others, are continually developed and Modelicawill have to offer significant practical
advantages with respect to these. Secondly, special purpose simulation programs for electronics
(Spice, Saber, etc), multibody systems (ADAMS, DADS, SIMPACK, etc), chemical processes
(ASPEN Plus, SpeedUp, etc) have specialized GUI and strong model libraries. However, they
lack the multi-domain capabilities. Thirdly, many industrial simulation studies are till done
without the use of any general purpose simulation tool, but rather relying on numerical
subroutine libraries and traditional programming languages. Based on experience with present
tools, many usersin this category frequently doubt that any general purpose method is capable of
offering sufficient efficiency and robustness for their application. Forthly, an |EEE supported
alternative language standardization effort is underway: VHDL-AMS.

Most engineers and scientists recogni ze the advantages of an expressive and standardized
modeling language. Unlike afew years ago, they are today ready to sacrifice reasonable amounts
of short-term advantages for the benefit of abstract things like potential abundance of compatible
tools, sound model architecture, and future availability of ready-made model libraries. In this
respect, the time is ripe for a new standardization proposal. Another significant argument in
favor of a new modeling language lies in recent achievements by present languages using a non-
causal modeling paradigm. In the last few years, it hasin several cases been proved that non-
causal simulation techniques not only compare to, but outperform special purpose tools on
applications that are far beyond the capability of established block oriented simulation tools.
Examples exist in multi-body and mechatronics simulation, building ssmulation, and in chemical
process plant simulation. A combination of modern numerical techniques and computer algebra
methods give rise to this advantage. However, these non-causal modeling and ssimulation
packages are not general enough, and exchange of models between different packages is not
possible, i.e. anew unified language is needed. Furthermore, text books promoting the object-
oriented, non-causal methodology are now available, such as Cellier (1991), and university
COurses are given in many countries.

The next section will give an introduction to the basic concepts of Modelica by means of a small
example. Requirements for thistype of language are then discussed. Section 4 isthe main section
and it gradually introduces the constructs of Modelica and discusses the rational e behind them. It

4

Modelica Tutorial and Rationale

isfollowed by an overview of present object-oriented equation based modeling languages that
have been used as a basis for the Modelica language design. The design rationale from a
computer science point of view is given in section 6. Syntax and detailed semantics as well asthe
Modelica standard library are presented in the appendices of the Language Specification.

2. Modelica at a Glance

To give an introduction to Modelicawe will consider modeling of asimple electrical circuit as
shown below.

=%
Ok=ls
Qo l=cd

@

1

e
2
1

Loro=
s
o=

t

The system can be broken up into a set of connected electrical standard components. We have a
voltage source, two resistors, an inductor, a capacitor and a ground point. Models of these
components are typically available in model libraries and by using a graphical model editor we
can define amodel by drawing an object diagram very similar to the circuit diagram shown
above by positioning icons that represent the models of the components and drawing
connections.

A Modelica description of the complete circuit looks like

nodel circuit
Resi stor R1(R=10);
Capacitor C(C=0.01);
Resi stor R2(R=100);
I nductor L(L=0.1);
Vsour ceAC AC
Ground G

equation
connect
connect
connect

(); /1 Capacitor circuit
(
(
connect (
(
(
(
t;

50

); /1 1nductor circuit
connect
connect
connect

end circui

>|_§a0a>
morg%oa

© 35T -
—— g =7

/! G ound

Modelica Tutorial and Rationale

For clarity, the definition of the graphical layout of the composition diagram (here: electric
circuit diagram) is not shown, although it is usually contained in a Modelica model as
annotations (which are not processed by a Modelica translator and only used by tools). A
composite model of this type specifies the topology of the system to be modeled. It specifies the
components and the connections between the components. The statement

Resi stor R1(R=10);

declares acomponent R1 to be of classResi st or and sets the default value of the resistance, R,
to 10. The connections specify the interactions between the components. In other modeling
languages connectors are referred as cuts, ports or terminals. The language element connect isa
specia operator that generates equations taking into account what kind of quantitiesthat are
involved as explained below.

The next step in introducing Modelicaisto explain how library model classes are defined.

A connector must contain all quantities needed to describe the interaction. For electrical
components we need the quantities voltage and current to define interaction viaawire. The types
to represent them are declared as

Real (unit="V");

Real (unit="A");

type Vol tage
type Current

where Real isthe name of a predefined variable type. A real variable has a set of attributes such
as unit of measure, initial value, minimum and maximum value. Here, the units of measure are
set to be the Sl units.

In Modelica, the basic structuring element is a class. There are seven restricted classes with
specific names, such as model, type (a class which is an extension of built-in classes, such as
Real, or of other defined types), connector (a class which does not have equations and can be
used in connections). For avalid model it isfully equivalent to replace the model, type, and
connector keywords by the keyword class, because the restrictions imposed by such a
specialized class are fulfilled by avalid model.

The concept of restricted classes is advantageous because the modeller does not have to learn
several different concepts, but just one: the class concept. All properties of a class, such as
syntax and semantic of definition, instantiation, inheritance, genericity areidentical to all kinds
of restricted classes. Furthermore, the construction of Modelicatrandatorsis simplified
considerably because only the syntax and semantic of a class has to be implemented along with
some additional checks on restricted classes. The basic types, such asReal or | nt eger are built-
intype classes, i.e., they have al the properties of a class and the attributes of these basic types
are just parameters of the class.

There are two possibilities to define a class: The standard way is shown above for the definition
of the electric circuit (model circuit). A short hand notation is possible, if anew classisidentical
to an existing one and only the default values of attributes are changed. The types above, such as
Voltage, are declared in thisway.

A connector classis defined as

connector Pin
Vol t age v;

Modelica Tutorial and Rationale

flow Current i;
end Pin;

A connection connect (Pi n1, Pi n2), with Pi n1 and Pi n2 of connector class Pi n, connects the
two pins such that they form one node. Thisimplies two equations, namely Pinl.v = Pin2.v
andPinl.i + Pin2.i = 0. Thefirst equation indicates that the voltages on both branches
connected together are the same, and the second corresponds to Kirchhoff’s current law saying
that the currents sum to zero at a node (assuming positive value while flowing into the
component). The sum-to-zero equations are generated when the prefix flow is used. Similar laws
apply to flow ratesin a piping network and to forces and torques in mechanical systems.

When devel oping models and model libraries for a new application domain, it is good to start by
defining a set of connector classes. A common set of connector classes used in all componentsin
the library supports compatibility of the component models.

A common property of many electrical components is that they have two pins. This means that it
Is useful to define an "interface” model class,

partial nodel TwoPin "Superclass of elenents with two electrical pins"

Pin p, n;

Vol t age v;

Current i;
equation

V = p.V - Nnv;

O =p.i +n.i;

i = p.i;

end TwoPi n;

that has two pins, p and n, a quantity, v, that defines the voltage drop across the component and a
quantity, i , that defines the current into the pin p, through the component and out from the pinn.
The equations define generic relations between quantities of asimple electrical component. In
order to be useful a constitutive equation must be added. The keyword parti al indicates that
this model classisincomplete. The key word is optional. It is meant as an indication to a user
that it is not possible to use the class as it is to instantiate components. Between the name of a
classand its body it is allowed to have astring. It istreated as a comment attribute and is meant
to be a documentation that tools may display in special ways.

To define amodel for aresistor we exploit TwoPi n and add a definition of parameter for the
resistance and Ohm’s law to define the behavior:
nodel Resistor "ldeal electrical resistor"
extends TwoPi n;
paranmeter Real R(unit="Chm') "Resistance";
equation
Ri = v;
end Resi stor;
The keyword parameter specifiesthat the quantity is constant during a simulation run, but can
change values between runs. A parameter is a quantity which makesit simple for auser to
modify the behavior of a model.

A model for an electrical capacitor can also reuse the TwoPin as follows:
nodel Capacitor "ldeal electrical capacitor”

Modelica Tutorial and Rationale

ext ends TwoPi n;
paranmeter Real C(unit="F") "Capacitance";
equation
C:der(v) =1i;
end Capacitor;

where der (v) means the time derivative of v. A model for the voltage source can be defined as

nodel VsourceAC "Si n-wave vol tage source"
ext ends TwoPi n;
paraneter Voltage VA = 220 "Anplitude";
paraneter Real f(unit="Hz") = 50 "Frequency";
constant Real PlI=3.141592653589793;
equation
v = VA*sin(2*Pl*f*tine);
end Vsour ceAC,
In order to provide not too much information at this stage, the constant PI is explicitly declared,
although it is usually imported from the Modelica standard library (see appendix of the Language
Specification). Finally, we must not forget the ground point.
nmodel G ound "G ound"
Pin p;
equation
p.v = 0;
end G ound;

The purpose of the ground model istwofold. First, it defines areference value for the voltage
levels. Secondly, the connections will generate one Kirchhoff’s current law too many. The

ground model handles this by introducing an extra current quantity p. i , which implicitly by the
equations will be calculated to zero.

Comparison with block oriented modeling

If the above model would be represented as a block diagram, the physical structure will not be
retained as shown below. The block diagram is equivalent to a set of assignment statements
calculating the state derivatives. In fact, Ohm’s law is used in two different ways in this circuit,
once solving for i and once solving for u.

Fesd ZUM3 Inid

pEas i

] = |

SUMmZ

L +1
..+‘1z

T

zimln U Fesl Cap

g
[
- i
_[;/T
N

ol -|=
]

Modelica Tutorial and Rationale

This example clearly shows the benefits of physically oriented, non-causal modeling compared
to block oriented, causal modeling.

3. Requirements for Multi-domain M odeling

In this section, the most important requirements used for the Modelica language design are
collected together.

The Modelica language should support both ODE and DAE (differential-al gebraic equations)
formulations of models. The mixture of DAE and discrete events should be possible and be
defined in such away that efficient simulation can be performed. Other data types than real, such
as integer, Boolean and string should be supported. External functions written in common
programming languages need to be supported in addition to a data type corresponding to external
object references. It should be possible to express information about units used and minimum
and maximum allowed values for avariable in order that a modeling tool might do consistency
checking. It should be possible to parameterize models with both values of certain quantities and
also with respect to model representation, i.e., allowing, for example, to select different levels of
detail for amodel. Component arrays and the connection of elements of such arrays should be
supported. In order to allow exchange of models between different tools, also a certain
standardization of graphical attributes for icon definitions and object diagrams should be done
within the Modelica definition.

Certain modeling features will be added in later stages of the Modelica design. One exampleisto
allow partial differential equations. More advanced discrete event modeling facilities will also be
considered then, for example to alow queue handling and dynamical creation of model

instances, see (EImqvigt, et.al. 1998).

Besides requirements for modeling in general, every discipline has its specific peculiarities and
difficulties which often require special consideration. In the following sections, such
reguirements from multiple domains are presented.

Block Diagrams

Block diagrams consist of input/output blocks. For the definition of linear state space systems
and transfer functions matrices and matrix equations are needed. Thisis most conveniently done
with aMATLAB and/or Mathematica-like notation.

It is also important to support fixed and variable time delays. This could be done by calling an
external function which interpolatesin past values. However, if adelay is defined viaa specific
language construct, it isin principle possible to use a specific integrator to take care of the delay
which can be done in a better numerical way than in the first case. Therefore, a delay operator
should be defined in the language which |eaves the actual implementation to the Modelica
trangdlator. Furthermore, interpolation in 1-, 2-, n-dimensional tables with fixed and variable grids
has to be supported, because technical models often contain tables of measured data.

Modelica Tutorial and Rationale

If it is known that a component is an input/output block, local analysis of the equationsis
possible which improves the error diagnostics considerably. For example, it can be detected
whether the number of unknown variables of the block matches the number of equationsin the
block. Therefore, it should be possible to state explicitly that a model component isan
Input/output block.

Multi-Body Systems

Multi-body systems are used to model 3-dimensional mechanical systems, such as robots,
satellites and vehicles. Nearly all variables in multi-body system modeling are vectors or
matrices and the equations are most naturally formulated as matrix equations. Therefore, support
of matricesis essential. This should include the cross operator for the vector cross-product
because this operation often occurs in mechanical equations. It is convenient to have multi-body
objects with severa interfaces, but without requiring that every interface has to be connected for
amodel. For example, revolute and prismatic joints should have an additional interface to attach
adrivetrain to drivethejoint.

Usually, multi-body algorithms are written in such away that components cannot be connected
together in an arbitrary way. To ensure that an erroneous connection cannot be created, it should
be possible to define rules about the connection structure. Rules help to provide a meaningful
error message as early as possible.

In order that Modelicawill be attractive to use for modeling of multi-body systems, efficiency is

crucial. It must be possible that Modelica generated code is as efficient as that of special purpose
multi-body programs. For that, operators like symmetric and orthogonal are necessary in order

to be able to state that a matrix is symmetric or orthogonal, respectively.

Electrical and Electronic Circuits

Models of different complexity to describe electrical components are often needed. Therefore, it
should be easy to replace a specific model description of a component by another onein the
model of an electrical circuit.

It might be advantageous to implement complicated elements, such as detailed transistor models,
by procedural code. This may be either an external C or C++ function or aModelicafunction. In
any case, the model equations are already sorted and are not expanded, i.e., every instance uses
the same "function call". Thisis especially important, if alarge number of instances are present.

It isessential that SPICE net list descriptions of electrical circuits can be used within Modelica,
because vendor models of electric hardware components are described in this format. It seems
sufficient to provide the SPICE component models as classesin aModelicalibrary and to rely on
an external tool which transforms a SPICE net list description into a composite Modelica model.

Besides non-linear simulation, small signal analysisis often needed for electrical circuits. This

10

Modelica Tutorial and Rationale

implies linearization and frequency response calculation. Numerical linearization introduces
unnecessary errors. For electrical circuitsit isamost aways possible to symbolically
differentiate the components. Special language constructs are probably not needed because in
principle Modelicatranglators can be realized which derive the (symbolically) linearized
components automatically. Modern electric circuit programs use symbolic Jacobians to enhance
the efficiency. Similar to linearization, it should be possible to compute the symbolic Jacobian
from aModelica model by symbolic differentiation. If a component is provided as external
function, it should be possible to provide an external function for the corresponding Jacobian of
the component as well.

Chemical and Thermodynamic Systems

Processing systems for chemical or energy production are often composed of complex structures.
The modeling of these systems needs encapsul ation of detailed descriptions and abstraction into
hierarchies in order to handle the complexity. To increase the reuse of submodelsin complex
structures there is a need for an advanced concept of parameterization of submodels. Especialy,
component arrays and class parameters are needed. An example is a structure parameter for the
change of the number of traysin adistillation plant.

In order to achieve a high degree of model reuse, all medium specific data and calculation should
be encapsulated in a medium properties submodel. In most cases the thermodynamic properties
of the medium will be calculated externally by one of the many available specialized software
packages. Thusit is necessary to provide a calling interface to external functionsin ordinary
programming languages. Keeping in mind both efficient simulation and model reuse, there
should be a uniform way how thermodynamic properties of different external packages can be
accessed from Modelica models.

Many applications in process engineering and power plant simulation can only be captured
adequately with distributed parameter models. A method of lines (MOL) grid discretisation
(either finite difference, finite volume or finite element methods) is the state of the art of all but a
few very specialized simulation packages for modeling partial differential equations (PDES).
Modelicais envisaged as alanguage that is both open to future advances in numerical techniques
and as an exchange format for many existing software environments. Existing simulation
environments should be able to simulate Modelica code after preprocessing to DAE form.
Support for PDE is planned for future versions of Modelica.

Energy domain systems

Simulation in the energy domain sector is mainly used for improving or designing technical
systems: boilers, kilns, HVAC systems, pressure governors, etc. Thefirst characteristic of these
systems is that they are complex and multi-domain. For example the building energy domain
dealswith all types of heat exchanges, with fluid flows, with combustion, with particle pollution,
with system controls, automatons etc. Modelica needs to address all these issues. It stresses the
need for non-causal hierarchical modeling. To a certain extent temperature distribution and PDE

11

Modelica Tutorial and Rationale

arerelevant for improvement studies. Matrices and PDE features are useful. Combustion models
need to address thermodynamic tables by means of a suitable feature. But, the main requirements
of this domain are linked with user-friendliness, reuse, documentation, capitalization for study
efficiency and reproducibility. This means that it is necessary to isolate models, isolate numerical
data, isolate validation runs, integrate validity checks (domains, constraints, units, etc.) and in
order to produce automatic documentation include documentation features.

Bond graphs

Bond graphs (Karnopp and Rosenberg, 1968; Breedveld, 1985) are designed to model the energy
flow of physical systems using asmall set of unified modeling primitives, such as storage,
transformation and dissipation of (free) energy. Bond graphs arein principle labeled and directed
graphs, in which the vertices represent submodels and the edges represent an ideal energy
connection between power ports. This connection is a point-to-point connection, i.e. only one
bond can be connected to a power port. When preparing for simulation, the bonds are embodied
as two-signal connections with opposite directions. This signal direction depends on both the
internal description of the submodel and the structure of the bond graph where the submodel is
used; it is an algorithmic process. Consequently, the model equations are non-causal. Within
some submodel equations, the power directions of the connected bonds are used in generating
the proper equations. As a consequence, it must be possible to define rules about the connection
structure, especialy that only one-to-one connections are possible. Furthermore, it must be
possible to inquire the direction of a connection in a component, in order that the positive energy
flow direction can be deduced. Since bond graphs can be mixed with block-diagram parts, bond-
graph submodels can have power ports, signal inputs and signal outputs as their interfacing
elements. Furthermore, aspects like the physical domain of a bond (energy flow) can be used to
support the modeling process, and should therefore be incorporated in Modelica. Note that the
power bonds can be multi dimensional, i.e., are composed of a matrix of single power bonds.
This multi-bond feature is used to describe, e.g., 3D mechanical systemsin an elegant and
compact way.

Finite Automata and Extensions

Finite automata are used to model discrete systems, such as discrete control devices aswell as
switching structure of clutches or idealized thyristors. Several extensions are popular, e.g., Petri
nets, grafcet and state charts. It seems more flexible and powerful to build component libraries of
e.g., Petri nets and state charts, using basic Modelica language constructs instead of having direct
built-in language el ements.

4. M odelica Language Rationale and Overview

Modeling the dynamic behavior of physical systemsimpliesthat oneisinterested in specific
properties of alimited class of systems. These restrictions give a means to be more specific then
is possible when focusing on systemsin general. Therefore, the physical background of the

12

Modelica Tutorial and Rationale

models should be reflected in Modelica.

Nowadays, physical systems are often complex and span multiple physical domains, whereas
mostly these systems are computer controlled. Therefore, hierarchical models (i.e., models
described as connected submodels) using properties of the physical domains involved should
easily be described in Modelica. To properly support the modeler (i.e. to be able to perform
automated modeling), these physical properties should be incorporated in Modelicain such a
way, that checking consistency, like checking against basic laws of physics, can be programmed
easily in the Modelicatranslators. Examples of physical properties are the physical quantity and
the physical domain of avariable. Thisimplies that a suitable representation for physical systems
modeling is more than a set of pure mathematical differential equations.

4.1 Basic Language Elements

The language constructs will be devel oped gradually starting with small examples, and then
extended by considering practical issues when modeling large systems.

Handling large models means careful structuring in order to reuse model knowledge. A model is
built-up from

» basic components such as Real, Integer, Boolean and String

e structured components, to enable hierarchical structuring

* component arrays, to handle real matrices, arrays of submodels, etc
* eqguations and/or algorithms (= assignment statements)

* connections

» functions

Some means of declaring variable properties is needed, since there are different kinds of
variables, Parameters should be given values and there should be a possibility to giveinitial
conditions.

Basic declarations of variables can be made as follows:

Real u, y(start=1);
paraneter Real T=1;

Real isthe name of a predefined class or type. A Real variable has an attribute called st art to
giveitsinitial value. A component declaration can be preceded by a specifier like constant or
parameter indicating that the component is constant, i.e., its derivative is zero. The specifier
parameter indicates that the value of the quantity is constant during simulation runs. It can be
modified when a component is reused and between simulation runs. The component name can be
followed by a modification to change the value of the component or its attributes.

Equations are composed of expressions both on the left hand side and the right hand side likein
the following filter equation.

13

Modelica Tutorial and Rationale

equati on
T*der(y) +y =u

Time derivative is denoted by der ().

4.2 Classes for Reuse of Modeling Knowledge

Assume we would like to connect two filtersin series. Instead of repeating the filter equation, it
is more convenient to make a definition of afilter once and create two instances. Thisis done by
declaring aclass. A class declaration contains alist of component declarations and alist of
equations preceded by the keyword equation. An example of alow passfilter classis shown
below.

cl ass LowPassFilter

paranmeter Real T=1
Real u, y(start=1);

equation
Trder(y) +vy = u;
end LowPassFilter
The modd class can be used to create two instances of the filter with different time constants and
"connecting” them together as follows

class FilterslnSeries
LowPassFilter F1(T=2), F2(T=3);

equation
Fl.u = sin(tine);
F2.u = Fl.y;

end FilterslnSeries;

In this case we have used a modification to modify the time constant of the filtersto T=2 and
T=3 respectively from the default value T=1 given in the low-pass filter class. Dot notation is
used to reference components, like u, within structured components, like F1. For the moment it
can be assumed that all components can be reached by dot-notation. Restrictions of accessibility
will be introduced later. The independent variable is referenced astime.

If the FiltersinSeries model is used to declare components at a higher hierarchical level, it is till
possible to modify the time constants by using a hierarchical modification:
nodel MbodifiedFilterslnSeries

FilterslnSeries F12(F1(T=6), F2(T=11));
end ModifiedFilterslnSeries;

The class concept is similar asin programming languages. It is used for many purposesin
Modelica, such as model components, connection mechanisms, parameter sets, input-output
blocks and functions. In order to make Modelica classes easier to read and to maintain, special
keywords have been introduced for such special uses, model, connector, record, block, type
and package. It should be noted though that the use of these keywords only apply certain
restrictions, like records are not allowed to contain equations. However, for avalid model, the
replacement of these keywords by class would give exactly the same model behavior. In the
following description we will use the specialized keywords in order to convey their meaning.

14

Modelica Tutorial and Rationale
Records

It is possible to introduce parameter sets as records which is arestricted form of class which may
not have any equations:
record FilterData

Real T;
end FilterData;

record TwoFilterData
FilterData F1, F2;
end TwoFil t erDat a;

nodel ModifiedFilterslnSeries2
TwoFi I terData TwoFilterDatal(F1(T=6), F2(T=11));

FilterslnSeries F12=TwoFi |t er Dat al;
end ModifiedFilterslnSeries2;

The modification F12=TwoFi | t er Dat al IS possible since all the components of
TwoFilterDatal (F1, F2, T) are presentinFilterslnSeries. Moreabout type
compatibility can be found in section 4.4.

Packages

Class declarations may be nested. One use of that is maintenance of the name space for classes,
i.e., to avoid name clashes, by storing a set of related classes within an enclosing class. Thereisa
special kind of classfor that, called package. A package may only contain declarations of
constants and classes. Dot-notation is used to refer to the inner class. Examples of packages are
given in the appendix of the Language Specification, where the Modelica standard package is
described which is always available for aModelica tranglator.

Information Hiding

So far we have assumed all components to be accessible from the outside by dot-notation. To
develop librariesin such away is abad principle. Information hiding is essential from a
maintenance point of view.

Considering the FiltersinSeries example, it might be a good ideato just declare two parameters
for the time constants, T1 and T2, the input, u and the output y as accessible from the outside.
The realization of the model, using two instances of model LowPassFilter, is a protected detail.
Modelica allows such information hiding by using the heading protected.
nodel FilterslnSeries2
paraneter Real T1=2, T2=3;

i nput Real u;
out put Real v;

prot ected
LowPassFilter F1(T=T1l), F2(T=T2);

equation
Fl.u
F2.u

15

Modelica Tutorial and Rationale

y = F2.y;
end FilterslnSeries2;
Information hiding does not control interactive environments though. It is possible to inspect and
plot protected variables. Note, that variables of a protected section of a class A can be accessed
by a class which extends class A. In order to keep Modelica simple, additional visibility rules
present in other object-oriented languages, such as private (no access by subtypes), are not used.

4.3 Connections

We have seen how classes can be used to build-up hierarchical models. It will now be shown
how to define physical connections by means of arestricted class called connector.

We will study modeling of asimple electrical circuit. Thefirst issueis then how to represent pins
and connections. Each pin is characterized by two variables, voltage and current. A first attempt
would be to use a connector as follows.

connector Pin

Real v, i;
end Pin;

and build aresistor with two pinsp and n like
nodel Resi stor
Pin p, n; /1 "Positive" and "negative" pins.
paranmeter Real R "Resistance”;

equation
Rp.i = p.v - n.v;
ni =p.i; /1 Assume both n.i and p.i to be positive

/1 when current flows fromp to n.
end Resi stor;

A descriptive text string enclosed in " " can be associated with a component like R. A comment
which is completely ignored can be entered after //. Everything until the end of the lineis then
ignored. Larger comments can be enclosed in /* */.

A simple circuit with series connections of two resistors would then be described as:

nodel FirstCircuit
Resi stor R1(R=100), R2(R=200);

equation
Rl.n = R2.p;
end FirstCircuit;
The equation R1.n = R2.p represents the connection of pin n of R1 to pin p of R2. The semantics
of this equation on structured components is the same as

Rl.n.v R2.p.v
RL.n.i R2. p.i

This describes the series connection correctly because only two components were connected.
Some mechanism is needed to handle Kirchhoff’s current law, i.e. that the currents of all wires
connected at a node are summed to zero. Similar laws apply to flows in a piping network and to
forces and torques in mechanical systems. The default rule is that connected variables are set
equal. Such variables are called across variables. Real variables that should be summed to zero

16

Modelica Tutorial and Rationale

are declared with prefix flow. Such variables are also called through variables. In Modelicawe
assume that such variables are positive when the flow (or corresponding vector) isinto the
component.

connector Pin
Real v;
flow Real i;
end Pin;

It isuseful to introduce units in order to enhance the possibility to generate diagnostics based on
redundant information. Modelica allows deriving new classes with certain modified attributes.
The keyword typeis used to define anew class, which is derived from the built-in data types or
defined records. Defining V oltage and Current as modifications of Real with other attributes and
a corresponding Pin can thus be made as follows:

type Voltage = Real (unit="V")
type Current = Real (unit="A")
connector Pin

Vol t age v;

flow Current i;
end Pin;

nodel Resi stor
Pin p, n; /1l "Positive" and "negative" pins.
paranmeter Real R(unit="Chm') "Resistance";

equation
Rp.i = p.v

p.i +n.i =0; /1l Positive currents into conponent.
end Resistor;

We are now able to correctly connect three components at one node.

nmodel SinpleGircuit
Resi stor R1(R=100), R2(R=200), R3(R=300);

equation
connect (R1. p, R2.p);
connect (RL. p, R3.p);
end SinpleCrcuit;

connect is aspecial operator that generates equations taking into account what kind of variables
that are involved. The equations are in this case equivalent to

Rl.p.v = R2.p.v;
Rl.p.v = R3.p.v;
Rl.p.i + RR.p.i + R3.p.i = 0;

In certain cases, amodel library might be built on the assumption that only one connection can
be made to each connector. Thereis abuilt-in function car di nal i t y(c) that returns the number
of connections that has been made to a connector c. It is also possible to get information about
the direction of a connection by using the built-in function di r ect i on(c) (provided cardinality(c)
== 1). For a connection, connect(cl, c2), direction(cl) returns -1 and direction(c2) returns 1. An
example of the use of cardinality and direction is the bond graph components in the standard
Modelicalibrary.

17

Modelica Tutorial and Rationale

4.4 Partial Modelsand Inheritance

A very important feature in order to build reusable descriptionsis to define and reuse partial
models. Since there are other electrical components with two pins like capacitor and inductor we
can define a TwoPin as a base for all of these models.
partial nodel TwoPin
Pin p, n;
Vol tage v "Vol tage drop";

equation
VZ p.V - Nnv;
p.i +n.i =0;

end TwoPi n;

Such apartial model can be extended or reused to build a complete model like an inductor.

nodel I nductor "ldeal electrical inductance"
ext ends TwoPi n;
paranmeter Real L(unit="H') "Inductance"
equation
L*der (i) = v;
end | nduct or;
The facility is similar to inheritance in other languages. Multiple inheritance, i.e., several
extends statements, is supported.

The type system of Modelicais greatly influenced by type theory (Abadi and Cardelli 1996), in
particular their notion of subtyping. Abadi and Cardelli separate the notion of subclassing (the
mechanism for inheritance) from the notion of subtyping (the structural relationship that
determines type compatibility). The main benefit is added flexibility in the composition of types,
while still maintaining a rigorous type system.

Inheritance is not used for classification and type checking in Modelica. An extends clause can
be used for creating a subtype relationship by inheriting all components of the base class, but it is
not the only meansto create it. Instead, aclass A is defined to be a subtype of class B, if class A
contains al the public components of B. In other words, B contains a subset of the components
declared in A. This subtype relationship is especially used for class parameterization as
explained in the next section.

Assume, for example, that a more detailed resistor model is needed, describing the temperature
dependency of the resistance:

nodel TenpResi stor "Tenperature dependent electrical resistor”
ext ends TwoPi n;

paranmeter Real R(unit="0Chm") "Resi stance for ref. Tenp.";
paranmeter Real RT(unit="0Chm degC')=0 "Tenp. dep. Resistance.”
paranmeter Real Tref(unit="degC")=20 "Ref erence tenperature.”
Real Tenp=20 "Actual tenperature"

equation

v = p.i*(R + RT*(Tenp-Tref));
end TenpResi stor;

It is not possible to extend this model from the ideal resistor model Resi st or discussed in
Chapter 2, because the equation of the Resi st or class needs to be replaced by a new equation.

18

Modelica Tutorial and Rationale

Still, the TenpResi st or isasubtype of Resi st or because it contains all the public components
of Resi stor.

4.5 Class Par ameterization

We will now discuss a more powerful parameterization, not only involving values like time
constants and matrices but also classes. (This section might be skipped during the first reading.)
Assume that we have the description (of an incomplete circuit) as above.

nodel SinpleCircuit
Resi stor R1(R=100), R2(R=200), R3(R=300);

equation
connect (RL. p, R2.p);
connect (R1L. p, R3.p);
end SinpleCircuit;

Assume we would like to utilize the parameter values given for R1.R and R2.R and the circuit
topology, but exchange Resistor with the temperature dependent resistor model, TempResistor,
discussed above. This can be accomplished by redeclaring R1 and R2 as follows.
nodel RefinedSinpleCGrcuit
Real Tenp;
extends SinpleCircuit/(
redecl are TenpResi stor RL(RT=0.1, Tenp=Tenp),
redecl are TenpResi stor R2);
end RefinedSinpleCGrcuit;

Since TempResistor is a subtype of Resistor, it is possible to replace the ideal resistor model.
Vaues of the additional parameters of TempResistor and definition of the actual temperature can
be added in the redeclaration:

redecl are TenpResi stor RL(RT=0.1, Tenp=Tenp);

Thisisavery strong modification of the circuit model and there is the issue of possible
invalidation of the model. We thus think such modifications should be clearly marked by the
keyword r edeclar e. Furthermore, we think the modeller of the SimpleCircuit should be able to
state that such modifications are not allowed by declaring a component as final.

final Resistor R3(R=300);

It should also be possible to state that a parameter is frozen to a certain value, i.e., isnot a
parameter anymore:

Resi stor R3(final R=300);

To use another resistor model in the model SimpleCircuit, we needed to know that there were
two replaceable resistors and we needed to know their names. To avoid this problem and prepare
for replacement of a set of models, one can define areplaceable class, ResistorModel. The actual
classthat will later be used for R1 and R2 must have Pins p and n and a parameter R in order to
be compatible with how R1 and R2 are used within SimpleCircuit2. The replaceable model
ResistorModel is declared to be a Resistor model. This means that it will be enforced that the
actual classwill be a subtype of Resistor, i.e., have compatible connectors and parameters.
Default for ResistorModel, i.e., when no actual redeclaration is made, isin this case Resistor.
Note, that R1 and R2 arein this case of class ResistorModel.

19

Modelica Tutorial and Rationale

nodel SinpleCircuit?2
repl aceabl e nodel Resi storMbdel = Resistor;

protected
Resi st or Model R1(R=100), R2(R=200);
final Resistor R3(final R=300);

equation
connect (R1. p, R2.p);
connect (R1L. p, R3.p);
end SinpleCircuit?2;

Binding an actual model TempResistor to the replaceable model ResistorModel is done as
follows.

nodel RefinedSinpleCrcuit2 =
Sinpl eCircuit2(redecl are nodel ResistorMdel = TenpResistor);

Another case where redecl arations are needed is extensions of interfaces. Assume we have a
definition for a Tank in amodél library:

connector Stream

Real pressure;

fl ow Real vol uneFl owRat e;
end Stream

nodel Tank
paraneter Real Area=1;
repl aceabl e connector TankStream = Stream
TankStream Inlet, CQutlet;
Real |evel;

equation
/1 Mass bal ance.
Area*der (Il evel)
Qutlet. pressure
end Tank;

We would like to extend the Tank to model the temperature of the stream. This involves both
extension to interfaces and to model equations.
connector Heat Stream
ext ends Stream

Real tenp;
end Heat Stream

I nl et.volumeFl owRate + Qutl et. vol unmeFl owRat €;
I nlet. pressure;

nodel Heat Tank
extends Tank(redecl are connector TankStream = Heat Strean;

Real tenp;

equation
/'l Energy bal ance.
Area*Level *der(tenp) = Inlet.vol uneFl owRate*Inlet.tenp +
Cutlet.vol unmeFl owrat e*Qut | et . t enp;
Qutlet.tenp = tenp; [/ Perfect mxing assuned.
end Heat Tank;

The definition of HeatTank above is equivalent to the following definition (which has been

20

Modelica Tutorial and Rationale

automatically produced by a Modelica trand ator).

nmodel Heat TankT
paranmeter Real Area=1;

connector TankStream
Real pressure;
fl ow Real vol uneFl owRat e;
Real tenp;

end TankStream

TankStream I nlet, Qutlet;

Real |evel
Real tenp;
equation
Area*der(level) = Inlet.volumeFl owrRate + Qutl et. vol uneFl owRat e;
Qutlet.pressure = Inlet.pressure;
Area*| evel *der(tenp) = Inlet.voluneFl owRate*Inlet.tenp +

Qutl et.vol umreFl owRat e*Qut | et . t enp;
Qutlet.tenp = tenp;
end Heat TankT;

Replaceabl e classes are also very convenient to separate fluid properties from the actual device
where the fluid is flowing, such as a pump.

4.6 Matrices

An array variable can be declared by appending dimensions after the class name or after a
component name.

Real [3] position, velocity, acceleration;
Real [3, 3] transformation;

or
Real position[3], velocity[3], acceleration[3], transfornmation[3, 3];

It isaso possible to make a matrix type
type Transformation = Real [3, 3];
Transformation transfornmation;
The following definitions are appropriate for modeling 3D motion of mechanical systems.

type Position = Real (unit="mn");
type Position3 = Position[3];

type Force = Real (unit="N");
type Force3 = Force[3];

type Torque = Real (unit="N.ni);
type Torque3d = Torque[3];

It is now possible to introduce the variables that are interacting between rigidly connected bodies
in afree-body diagram.

connect or MosCut
Transformation S "Rotation matri x describing frane A"
" with respect to the inertial franme";
Posi tion3 ro "Vector fromthe origin of the inertial”

21

Modelica Tutorial and Rationale

" frame to the origin of frane A";
fl ow Force3 f "Resultant cut-force acting at the origin"
" of frame A"
flow Torque3 t "Resultant cut-torque with respect to the"
" origin of frame A";
end MosCut;

Such a definition can be used to model arigid bar as follows.

nodel Bar "Massless bar with two nechanical cuts.”
MosCut a b;
par anet er
Position3 r = {0, 0, 0}
"Position vector fromthe origin of cut-frane A"
‘to the origin of cut-frame B";

equati on
/1l Kinematic rel ationships of cut-frame A and B
b.S = a.§
b.rO0 = a.r0 + a.S*r;

/1l Relations between the forces and torques acting at
/1 cut-frane A and B
zeros(3) = a.f + b.f;
zeros(3) = a.t + b.t - cross(r, a.f);
/1 The function cross defines the cross product
/1 of two vectors
end Bar;

Vector and matrix expressions are formed in a similar way asin Mathematicaand MATLAB.
The operators +, -, * and / can operate on either scalars, vectors or two-dimensional matrices of
type real and integer. Division isonly possible with ascalar. An array expression is constructed
as {expri, expra, ... expra}. A matrix (two dimensional array) can be formed as

[exprii, exprip, ... exprip
expray, €expra, ... €Xprap;
expr ng, €Xpr e, ... €Xpr m)

i.e. with commas as separators between columns and semicolon as separator between rows.
Indexing iswritten as A[i] with the index starting at 1. Submatrices can be formed by utilizing :
notation for index ranges, A[il:i2, j1:j2]. The then and else branches of if-then-else expressions
may contain matrix expressions provided the dimensions are the same. There are several built-in
matrix functions like zeros, ones, identity, transpose, skew (skew operator for 3 x 3 matrices) and
cross (cross product for 3-dimensional vectors. For details about matrix expressions and
available functions, see the Language Specification.

Matrix sizes and indices in equations must be constant during simulation. If they depend on
parameters, it is amatter of "quality of implementation” of the tranglator whether such
parameters can be changed at simulation time or only at compilation time.

Block Diagrams

We will now illustrate how the class concept can be used to model block diagrams as a specia

22

Modelica Tutorial and Rationale

case. It is possible to postul ate the data flow directions by using the prefixesinput and output in
declarations. This also allows checking that only one connection is made to an input, that outputs
are not connected to outputs and that inputs are not connected to inputs on the same hierarchical
level.

A matrix can be declared without specific dimensions by replacing the dimension with a colon:
A[:, :]. The actual dimensions can be retrieved by the standard function size. A genera state
space model is an input-output block (restricted class, only inputs and outputs) and can be
described as
bl ock StateSpace
paraneter Real A[:, :],
B[si ze(A 1), :],
d:, size(A 2)],
D size(C, 1), size(B, 2)]=zeros(size(C 1), size(B, 2));

i nput Real u[size(B, 2)];
out put Real y[size(C 1)];
prot ect ed

Real x[size(A 2)];

equation
assert(size(A 1) == size(A 2), "Matrix A nust be square.");
der(x) = A*x + B*u
y = Cx + Du

end St at eSpace;

Assert isapredefined function for giving error messages taking a Boolean condition and a string
as arguments. The actual dimensions of A, B and C are implicitly given by the actual matrix
parameters. D defaultsto a zero matrix:

bl ock Test St at eSpace
St at eSpace S(A =[0.12, 2; 3, 1.5], B=1[2, 7; 3, 1], C=1]0.1, 2]);

equation
S.u = {tine, sin(tinme)};
end Test St at eSpace;
The block classisintroduced to allow better diagnostics for pure input/output model
components. In such a case the correctness of the component can be analyzed locally which is
not possible for components where the causality of the public variables is unknown.

4.7 Repetition, Algorithms and Functions
Regular Equation Structures

Matrix equations are in many cases convenient and compact notations. There are, however, cases
when indexed expressions are easier to understand. A loop construct, for, which allow indexed
expressions will be introduced below.

Consider evaluation of a polynomial function
n .
y = sumg; X'
i =0

23

Modelica Tutorial and Rationale

with agiven set of coefficients ¢; in avector an+1] with &[i] = ¢.;. Such a sum can be expressed
in matrix form as a scalar product of the form

a* {1, x, x"2, ... x™n}
If we could form the vector of increasing powers of x. A recursive formulation is possible.
xpowers[1l] = 1;

xpower s[2: n+1] = xpower s[1: n] *x;
y = a * xpowers

The recursive formulation would be expanded to

xpowers[1l] = 1;
xpower s[2] = xpowers[1]*x;
xpower s[3] = xpowers|[2] *x;

kbbmers[n+1] = xpower s[n] *x;
y = a * xpowers;

The recursive formulation above is not so understandabl e though. One possibility would be to
introduce a special matrix operator for element exponentiation asin MATLAB (). The
readability does not increase much though.

Matrix equations like
xpower s[2: n+1] = xpower s[1: n] *x;

can be expressed in aform that is more familiar to programmers by using afor loop:

for i in 1:n |loop
xpower s[i +1] = xpowers[i]*Xx;
end for;

Thisfor-loop is equivalent to n equations. It is also possible to use a block for the polynomial
evaluation:

bl ock Pol ynom al Eval uat or
paraneter Real a[:];
i nput Real x;
out put Real v;

prot ected
paraneter Integer n = size(a, 1)-1
Real xpowers[n+1];

equation
xpowers[1l] = 1;
for i in 1:n |loop
xpower s[i +1] = xpowers[i]*x;
end for;
y = a * xpowers;
end Pol ynom al Eval uat or

The block can be used as follows:

Pol ynom al Eval uat or pol yeval (a={1, 2, 3, 4});
Real p;
equation
pol yeval . x = tine;
p = polyeval .y;

24

Modelica Tutorial and Rationale

It isaso possible to bind the inputs and outputs in the parameter list of the invocation.
Pol ynom al Eval uat or pol yeval (a={1, 2, 3, 4}, x=tine, y=p);

Regular Model Structures

Thefor construct is also essential in order to make regular connection structures for component
arrays, for example:
Conponent conponents[n];
equation
for i in 1:n-1 | oop
connect (conponents[i].Qutlet, conmponents[i+1].Inlet);
end for;

Algorithms

The basic describing mechanism of Modelica are equations and not assignment statements. This
gives the needed flexibility, e.g., that a component description can be used with different
causalities depending on how the component is connected. Still, in some situationsit is more
convenient to use assignment statements. For example, it might be more natural to define a
digital controller with ordered assignment statements since the actual controller will be
implemented in such away.

It ispossible to call externa functions written in other programming languages from Modelica
and to use all the power of these programming languages. This can be quite dangerous because
many difficult-to-detect errors are possible which may lead to simulation failures. Therefore, this
should only be done by the ssimulation specialist if tested legacy code isused or if aModelica
implementation is not feasible. In most cases, it is better to use aModelicaalgorithm whichis
designed to be much more secure than calling external functions.

The vector xvec in the polynomial evaluator above had to be introduced in order that the number
of unknowns are the same as the number of equations. Such a recursive calculation schemeis
often more convenient to express as an algorithm, i.e., a sequence of assignment statements, if-
statements and loops, which allows multiple assignments:

al gorithm
y 1= 0;
xpower := 1;
for i in 1:n+1 | oop
y :=y + a[i]*xpower;
Xpower = xpower*Xx;
end for;

A Modelica agorithm isafunction in the mathematical sense, i.e. without internal memory and
side-effects. That is, whenever such an algorithm is used with the same inputs, the result will be
exactly the same. If afunction is called during continuous integration thisis an absolute
prerequisite. Otherwise the mathematical assumptions on which the integration algorithms are
based on, would be violated. An internal memory in an algorithm would lead to a model giving
different results when using different integrators. With thisrestriction it is also possible to
symbolically form the Jacobian by means of automatic differentiation. This requirement is also
present for functions called only at event instants (see below). Otherwise, it would not be
possible to restart asimulation at any desired time instant, because the simulation environment

25

Modelica Tutorial and Rationale

does not know the actual value of the internal algorithm memory.

In the algorithm section, ordered assignment statements are present. To distinguish from
equations in the equation sections, a special operator, :=, is used in assignments (i.e. given
causality) in the algorithm section. Several assignments to the same variable can be performed
in one algorithm section. Besides assignment statements, an algorithm may contain if-then-else
expressions, if-then-else constructs (see below) and loops using the same syntax asin an
eguation-section.

Variables that appear on the left hand side of the assignment operator, which are conditionally ‘
assigned, are initialized to their start value (for algorithmsin functions, the value given in the
binding assignment) whenever the algorithmisinvoked. Due to thisfeature it isimpossiblefora |
function to have amemory. Furthermore, it is guaranteed that the output variables always have a
well-defined value.

Within an equation section of a class, algorithms are treated as a set of equations. Especiadly, ‘
algorithms are sorted together with all other equations. For the sorting process, the calling of a
function with n output argumentsis treated as n implicit equations, where every equation

depends on all output and on al input arguments. This ensures that the implicit equations remain
together during sorting (and can be replaced by the algorithm invocation afterwards), because the
implicit equations of the function form one algebraic loop.

In addition to the for loop, there is a while loop which can be used within algorithms:

whil e condition |oop
{ algorithm}
end whil e;

Functions

The polynomia evaluator aboveis a special input-output block since it does not have any states.
Since it does not have any memory, it would be possible to invoke the polynomial function asa
function, i.e. memory for variables are allocated temporarily while the algorithm of the function
Is executing. Modelica allows a specialization of a class called function which has only public
inputs and outputs, one algorithm and no equations.

The polynomial evaluation can thus be described as:

function Pol ynom al Eval uat or 2
input Real a[:];
i nput Real x;
out put Real v;

prot ected
Real Xpower ;

al gorithm
y :=0;
xpower = 1;
for i in 1:size(a, 1) loop
y 1=y + a[i]*xpower;
Xpower : = xpower*Xx;
end for;

26

Modelica Tutorial and Rationale

end Pol ynom al Eval uat or 2;

A function declaration is similar to a class declaration but starts with the function keyword. The
input arguments are marked with the keyword input (since the causality isinput). The result
argument of the function is marked with the keyword output.

No internal states are allowed, i.e., the der- and pre- operators are not allowed. Any class can be
used as an input and output argument. All public, non-constant variables of a class in the output
argument are the outputs of afunction.

Instead of creating a polyeval object as was needed for the block PolynomialEvaluator:
Pol ynom al Eval uat or pol yeval (a={1, 2, 3, 4}, x=tine, y=p);

it is possible to invoke the function as usual in an expression.
p = Polynom al Eval uator2(a={1, 2, 3, 4}, x=tinme);

It isaso possible to invoke the function with positional association of the actual arguments:
p = Polynoni al Eval uator2({1, 2, 3, 4}, tine);

External functions

It is possible to call functions defined outside of the Modelica language. The body of an external
function is marked with the keyword ext er nal :
function | og
i nput Real x;
out put Real v;

ext er nal
end | og;

Thereisa"natural™ mapping from Modelicato the target language and its standard libraries. The
C language is used as the least common denominator.

The arguments of the external function are taken from the Modelica declaration. If thereisa
scalar output, it is used as the return type of the external function; otherwise the results are
returned through extra function parameters. Arrays of simple types are mapped to an argument of
the simple type, followed by the array dimensions. Storage for arrays as return valuesis allocated
by the calling routine, so the dimensions of the returned array is fixed. More details are discussed
in the appendix of the Language Specification.

4.8 Hybrid Models

Modelica can be used for mixed continuous and discrete models. For the discrete parts, the
synchronous data flow principle with the single assignment rule is used. Thisfits well with the
continuous DAE with equal number of equations as variables. Certain inspiration for the design
has been obtained from the languages Signal (Gautier, et.al., 1994) and Lustre (Halbwachs, et.al.
1991).

Discontinuous Models

If-then-€l se expressions allow modeling of a phenomena with different expressionsin different

27

Modelica Tutorial and Rationale

operating regions. A limiter can thus be written as
y = if u > HighLinmit then Hi ghLimt
else if u<Lowinit then LowLimt else u

This construct might introduce discontinuities. If thisis the case, appropriate information about
the crossing points should be provided to the integrator. The use of crossing functionsis
described later.

More drastic changes to the model might require replacing one set of equations with another
depending on some condition. It can be described as follows using vector expressions:

zeros(3) = if cond_A then
{ expression_All - expression_Alr,
expressi on_A2l - expression_A2r }
else if cond_B then
{ expression_Bll - expression_Blr,
expression_B2l - expression_B2r }
el se
{ expression_Cll - expression_Clr,
expression_C2l - expression_C2r };

The size of the vectors must be the samein all branches, i.e., there must be equal number of
expressions (equations) for al conditions.

It should be noted that the order of the equations in the different branchesisimportant. In certain
cases systems of simultaneous equations will be obtained which might not be present if the
ordering of the equations in one branch of the if-construct is changed. In any case, the model
remains valid. Only the efficiency might be unnecessarily reduced.

Conditional Models

It is useful to be able to have models of different complexities. For complex models, conditional
components are needed as shown in the next example where the two controllers are modeled
itself as subcomponents:
bl ock Controller
i nput Bool ean sinpl e=true;
i nput Real e;
out put Real v;
prot ected
Controllerl cl(u=e, enabl e=sinple);
Controller2 c2(u=e, enabl e=not sinple);
equation
y = if sinple then cl.y else c2.y;
end Controller;

Attribute enabl e is built-in Boolean input of every block with default equation "enable=true". It
allows enabling or disabling a component. The enable-condition may be time and state
dependent. If enable=false for an instance, its equations are not evaluated, all declared variables
are held constant and all subcomponents are disabled. Special consideration is needed when
enabling a subcomponent. The reset attribute makesit possible to reset all variablesto their Start-
values before enabling. The reset attribute is propagated to all subcomponents. The previous
controller example could then be generalized as follows, taking into account that the Boolean
variable simple could vary during a simulation.

28

Modelica Tutorial and Rationale

bl ock Controller
i nput Bool ean sinpl e=true;
i nput Real e
out put Real vy
prot ect ed
Controllerl cl(u=e, enabl e=sinple, reset=true);
Controller2 c2(u=e, enable=not sinple, reset=true);
equation
y = if sinple then cl.y else c2.y;
end Controller;

Discrete Event and Discrete Time Models

The actions to be performed at events are specified by a when-statement.

when condition then
eguations
end when;

The equations are active instantaneously when the condition becomestrue. It is possible to use a
vector of conditions. In such a case the equations are active whenever any of the conditions
becomes true.

Specia actions can be performed when the simulation starts and when it finishes by testing the
built-in predicatesinitial() and terminal(). A special operator reinit(state, value) can be used to
assign new values to the continuous states of amodel at an event.

Let’s consider discrete time systems or sampled data systems. They are characterized by the
ability to periodically sample continuous input variables, cal culate new outputs influencing the
continuous parts of the model and update discrete state variables. The output variables keep their
values between the samplings. We need to be able to activate equations once every sampling.
There is abuilt-in function sample(Start, Interval) that is true when time=Start + n*Interval,
n>=0. A discrete first order state space model could then be written as
bl ock Di screteStateSpace

paraneter Real a, b, c, d;

paranmeter Real Period=1

i nput Real u;

di screte out put Real vy;

prot ect ed
di screte Real x;

equation
when sanpl e(0, Period) then
X = a*pre(x) + b*u;
y = c*pre(x) + d*u;
end when;
end Di screteStat eSpace;

Note, that the special notation, pre(x), is used to denote the value of the discr ete state variable x
before the sampling.

In this case, the first sampling is performed when simulation starts. With Start > O, there would
not have been any equation defining x and y initially. All variables being defined by when-
statements hold their values between the activation of the equations and have the value of their

29

Modelica Tutorial and Rationale

start-attribute before the first sampling, i.e., they are discrete state variables and must have the
variable prefix discrete.

For non-periodic sampling a somewhat more complex method for specifying the samplings
would be used. The sequence of sampling instants could be calculated by the model itself and
kept in adiscrete state variable, say NextSampling. We would then like to activate a set of
equations once when the condition time>= NextSampling becomes true. An alternative
formulation of the above discrete system would thus be.
bl ock Di screteStat eSpace2

paraneter Real a, b, c, d;

paranmeter Real Period=1

i nput Real u;

di screte out put Real vy;

prot ect ed
di screte Real x, NextSanpling(start=0);

equation
when tinme >= pre(NextSanpling) then
X = a*pre(x) + b*u;
y = c*pre(x) + d*u;
Next Sanpling = time + Peri od;
end when;
end Di screteSt at eSpacez;

Indicator functionsfor efficient smulation

If the conditions used in if-the-else expressions contain relations with dynamic variables, the
corresponding derivative function f might not be continuous and have as many continuous partial
derivatives as required by the integration routine in order for efficient smulation. Modern
integrators have indicator functions for such discontinuous events. For arelation likevl >v2, a
proper indicator functionisvl - v2.

If the resulting if-then-else expression is smooth, the modeller should have the possibility to give
this extrainformation to the integrator in order to avoid event handling and thus enhance
efficiency. This can be done by embedding the corresponding relation in afunction noEvent as
follows.

y = if noEvent (u > HighLimt) then Hi ghLimt

else if noEvent(u < LowLimit) then LowLimt else u

lin some cases the event does not need to be triggered exactly when the condition becomes true.
It might be sufficient to wait until the next step of the integration has been completed. Such
events are sometimes called step events. An appropriate translator pragmafor that would be to
use a function switch(relation).

Synchronization and event propagation

Propagation of events can be done by the use of Boolean variables. A Boolean equation like
Qut. Overfl owi ng = Hei ght > MaxLevel;

inalevel sensor might define a Boolean variable, Overflowing, in an interface. Other
components, like a pump controller might react on this by testing Overflowing in their

30

Modelica Tutorial and Rationale

corresponding interfaces

Punmpi ng = I n.Overfl owi ng or StartPunping;
Del taPressure = if Punping then DP el se O;

A connection like
connect (Level Sensor. Qut, PunmpController.In);
would generate an equation for the Boolean component StartPump
Level Sensor. Qut. Start Punp = PunpController.|n. Start Punp;

For simulation, this equations needs to be solved for PumpController.In.StartPump. Boolean
equations always needs to have avariable in either the left hand part or the right hand part or in
both in order to be solvable.

An event (arelation becoming true or false) might involve the change of continuous variables.
Such continuous variables might be used in some other relation, etc. Propagation of events thus
might require evaluation of both continuous equations and conditional eguations.

Ideal switching devices

Consider the rectifier circuit of Figure 3. We will show an appropriate way of modeling an ideal
diode.

R ideal diode
|—1| Vi Va
- L1 K .
v, | o +h h
?___,a——.._\..
e;) [o — R,
e
— v=0
Figure 3. Rectifier circuit
The characteristics of the ideal diode is shown in Figure 4.
i
i
1 - 1
Fomm- - -
v
. 5
> ! -
s=0 v

Figure 4. Characteristics of ideal diode

It is not possible to writei as afunction of v or vice versa because the ideal characteristics.
However, for such planar curves a parametric form can be used

31

Modelica Tutorial and Rationale
x =1(9)
y=9(9

where sisascalar curve parameter. The ideal diode can then be described as

if s <0 then s else O;
if s <0 then 0 el se s;

i
v

The complete model of theideal diodeisthen

nodel |deal Di ode "ldeal electrical diode"
ext ends TwoPi n;
prot ect ed
Real s;
equation
i =if s <0 then s else 0;
v =if s <0 then 0 el se s;
end | deal D ode;

Thistechniqueis aso appropriate to model ideal thyristors, hysteresis and ideal friction.
Conditional Equationswith Causality Changes

The following example models a breaking pendulum - a simple variable structure model. The
number of degrees-of-freedom increases from one to two when the pendulum breaks. The
example shows the needs to transfer information from one set of state variables (phi, phid) to
another (pos, vel) at an event. Consider the following description with a parameter Broken.

nodel Breaki ngPendul um
paraneter Real n¥l, g=9.81, L=0.5;

par anet er Bool ean Broken

i nput Real u;

Real pos[2], vel[2];

constant Real PI=3.141592653589793;
Real phi(start=PI/4), phid;

equati on
vel = der(pos);

if not Broken then

/'l Equations of pendul um

pos = {L*sin(phi), -L*cos(phi)};
phid = der(phi);

ntL*L*der (phid) + mrg*L*sin(phi) = u;

el se;
/1 Equations of free flying mass
ntder(vel) = nt{0, -g};
end if;
end Breaki ngPendul um
This problem is non-trivial to simulate if Broken would be a dynamic variable because the
defining equations of the absolute position "pos" and of the absolute velocity "vel" of the mass
change causality when the pendulum breaks. When "Broken=false", the position and the vel ocity
are calculated from the Pendulum angle "phi" and Pendulum angular velocity "phid". After the

32

Modelica Tutorial and Rationale

Pendulum is broken, the position and velocity are state variables and therefore known quantities
in the model.

As aready mentioned, conditional equations with dynamic conditions are presently not
supported because it is not yet clear in which way atranslator can handle such a system
automatically. It might be that atranglator pragma is needed to guide the translation process. It is
possible to simulate variable causality systems, such as the breaking pendulum, by reformulating
the problem into a form where no causality change takes place using conditional block models:

record Pendul unDat a
paranmeter Real m g, L;
end Pendul unDat a;

partial nodel BasePendul um
Pendul unDat a p;
i nput Real u;
output Real pos[2], vel[2];
end BasePendul um

bl ock Pendul um
ext ends BasePendul um
constant Real PI=3.141592653589793;
out put Real phi(start=PI/4), phid;
equation
phid = der(phi);
p. n¥p. L*p. L*der (phid) + p.ntp.g*p.L*sin(phi) = u;

pos = {p.L*sin(phi), -p.L*cos(phi)};
vel = der(pos);
end Pendul um

bl ock Br okenPendul um

ext ends BasePendul um
equation

vel = der(pos);

p. mtder(vel) = p.nt{0, -p.g};
end BrokenPendul um

nodel Breaki ngPendul un?
ext ends BasePendul um(p(m=s1, ¢=9.81, L=0.5));
nondi screte input Bool ean Broken

prot ect ed
Pendul um pend (p=p, u=u, enabl e=not Broken);
Br okenPendul um bpend(p=p, u=u, enabl e=Broken);
equation

when Broken then
reinit(bpend. pos, pend. pos);
reinit(bpend.vel, pend.vel);

end when;
pos = if not Broken then pend. pos el se bpend. pos;
vel = if not Broken then pend.vel else bpend. vel

33

Modelica Tutorial and Rationale

end Breaki ngPendul ung;

This rewriting scheme is always possible and resultsin alarger model. It has the drawback that
the same physical variable is represented by several model variables. In some cases, such as for
the breaking pendulum, it is possible to avoid this drawback:

nodel Breaki ngPendul uns
paraneter Real n¥l, g=9.81;

nondi screte i nput Bool ean Broken;

i nput Real u;

Real pos[2], vel[2];

constant Real PI=3.141592653589793;
Real phi(start=PI/4), phid;

Real L(start=0.5), Ldot;

equation
pos = {L*sin(phi), -L*cos(phi)};
vel = der(pos);
phid = der(phi);
Ldot = der(L);
zeros(2) = if not Broken then {

/!l Equations of pendul um
mt der (phid) + m*g*L*sin(phi) — u,
der (Ldot)}
el se
/I Equations of free flying mass
m* der (vel) - m*{0, -g};
end BreakingPendulum3;

Thetrick was to use complete polar coordinates including the length, L and to give a differential
equation for L in the non Broken mode. If the derivatives of some variables are not calculated
during the "not Broken"-phase, the variables "pos" and "vel" can be considered as algebraic

variables. A ssimulator thus has the possibility to remove them from the set of active state
variables.

4.9 Units and Quantities

The built-in "Rea" type of Modelica has additional attributes to define unit properties of
variables:

type Real
paranmet er StringType quantity =",
paranet er StringType unit ="""unit in equations";

par anet er StringType displayUnit =" "default display unit";
eHd Real;

/I define quantity types

t ype Force = Real(fi nal quantity="Force", final unit="N");

t ype Angle = Real(final quantity="Angle", final unit="rad",
displayUnit="deg");

/I use the quantity types
Force f1 , f2 (displayUnit="kp");

Modelica Tutorial and Rationale

Angl e al pha, beta(displayUnit="rad");

The quantity attribute defines the category of the variable, like Length, Mass, Pressure. The unit
attribute defines the unit of avariable as utilized in the equations. That is, al equations in which
the corresponding variable is used are only correct, provided the numeric value of the variableis
given with respect to the defined unit. Finally, displayUnit gives the default unit to be used in
tools based on Modelicafor interactive input and output. If, for example, a parameter valueis
input viaa menu, the user can select the desired unit from alist of units, using the "displayUnit"
value as default. When generating M odelica code, the tool makes the conversion to the defined
"unit" and stores the used unit in the "displayUnit" field. Similarly, a simulator may convert
simulation results from the "unit" into the "displayUnit" unit before storing the results on file. All
of these actions are optional. If tools do not support units, or a specific unit cannot be found in
the unit database, the value of the "unit" attribute could be displayed in menus, plots etc.

The quantity attribute is used as grouping mechanism in an interactive environment: Based on
the quantity name, alist of unitsis displayed which can be used as displayUnit for the underlying
physical quantity. The quantity name is needed because it isin general not possible to determine
just by the unit whether two different units belong to the same physical quantity. For example,

type Torque = Real (final quantity="MnentOForce", final unit="Nnm);
type Energy = Real (final quantity="Energy" , final unit="3");

the units of type Torque and type Energy can be both transformed to the same base units, namely
"kg.m2/s2". Still, the two types characterize different physical quantities and when displaying
the possible displayUnits for torque types, unit "J' should not be in such alist. If only a unit
name is given and no quantity name, it is not possible to get alist of displayUnitsin asimulation
environment.

Together with Modelica a standard package of predefined quantity and connector typesis
provided in the form as shown in the example above. Thiswill give some help in standardization
of the interfaces of models. Note, that the prefix final defines that the quantity and unit values of
the predefined types cannot be modified.

Conver sion between unitsis not supported within the Modelicalanguage. This simplifiesa
Modelicatrandator considerably, especially because a unit-database with its always incompl ete
collection of unitsis not needed, see e.g. (Cardarelli 1997). As a consequence, the semantics of a
correct Modelicamodel is independent of the unit attributes and the Modelica tranglator can
ignore them during code generation. Especially, the unit attributes need not be checked for a
connection, i.e., connected variables may have different quantities and units.

Much more support on units and quantities will be given by tools based on Modelica. Thiswill
be considered as "quality of implementation”. An object-diagram editor may, for example,
support automatic unit conversion when two interfaces are connected. As ageneral ruleit will
always be allowed to connect any variable to a variable which has no quantity and unit
associated with it. Furthermore, a Modelica translator may optionally check equations on correct
dimensionality (this will produce only warning messages, i.e., code will be produced anyway).
The equation "f=m*a" would, for example, produce awarning, if "f" is given in "N.m" because
then the units are not compatible to each other. The variablesin the equations may have non-S|
units. Therefore, for example, the compiler will not detect that "f=m*a" is an error, if the units
"N" for "f", "g" for "m" and "m/s*2" for "a" are used. Dimension checking is done by

35

Modelica Tutorial and Rationale

transforming the "quantity” information into one of the seven base "quantities’ (like "Mass",
"Length™).

Usually, units are associated with types. There are however elements where instances may have a
different unit by redefinition of the quantity type. Example:

type Voltage = Real (final quantity="Voltage", final unit="V");

nodel Si neSi gnal
paranmeter Real freq (unit="Hz");
par anet er Angl e phi

repl aceabl e type SineType = Real

paraneter SineType Anmplitude;

out put Si neType vy;

constant Real Pl=3.141592653589793;
equation

y = Anplitude*sin(2*Pl*freqg*time + phi);
end Si neSi gnal

nmodel Circuit
Si neSi gnal sig(redeclare SineType = Vol tage);
Vol t ageSour ce Vsource;

equation
connect (sig.y, Vsource.in);
end Circuit;

In ablock diagram library thereis agenera sine signal generator. When it is used to generate a
voltage sine for avoltage source, the output of the signal generator should have a unit of "V".

This can be accomplished by having the type of the amplitude and of the output as a replaceable
type which can be changed appropriately when this signal generator is instantiated.

4.10 Annotationsfor Graphics and Documentation

In addition to the mathematical model with variables and equations, additional information is
needed for example to represent icons, graphical layout, connections and extended
documentation. Graphically representing models as interconnected submodels displayed as
icons, supports their quick understanding. As most contemporary tools provide facilities to build
models graphically, Modelica has language constructs to represent icons, graphical layout and
the connections between submodels.

M odelica supports property lists for the various components. Such lists can be used to store
graphical, documentation and tool related annotations. Each component can have alist
designated by the keyword annotation. The value of such annotations can be according to any
class, i.e., it can be created using a class modification. The strong type checking is abandoned in
this case because of the need for various modeling tools to use different kinds of annotations.
Since such annotation values are normally generated and read by tools, i.e., not directly edited by
humans, there is a reduced need for having redundant type information. However, in order that
graphical and documentation information can be exchanged between tools, a minimum set of
annotation components are specified.

36

Modelica Tutorial and Rationale
Graphical representation of models
Graphical annotation information is given in three separate contexts:

» Annotations associated with a component, typically to specify position and size of the
component.

* Annotations of aclass to specify the graphical representation of itsicon (see above),
diagram, and common properties such asthe local coordinate system.

+ Annotations associated with connections, i.e., route, color of connection line, etc.

The example below shows the use of such graphical attributes to define a resistor.
nodel Resi stor
Pin p annotation (extent=[-110, -10; -90, 10]);
Pin n annotation (extent=[110, -10; 90, 10]);

paraneter R "Resistance in [Chm"

equation
Rp.i = p.v - n.v;
ni =p.i;
public
annotation (Icon(
Rect angl e(extent=[-70, -30; 70, 30], style(fillPattern=1)),
Text (extent=[-100, 55; 100, 110], string="%ame="R"),
Li ne(poi nts=[-90, 0; -70, 0]),
Li ne(poi nts=[70, 0; 90, 0])
));
end Resi stor;
Theresistor has two pins, and we specify two opposite corners of the extent of their graphical
representation. An icon of the Resistor is defined by arectangle, atext string and two lines. For
the rectangle we specify additional style attributes for fill pattern.

The extent specified for acomponent is used to scale the icon image. Theicon isdrawn in the
master coordinate system specified in the component’s class. The icon is scaled and translated so
the coordinate system is mapped to the region defined in the component declaration.

The attribute set to represent component positions, connections and various graphical primitives
for building icons is shown below. The attribute structures are described through Modelica
classes. Points and extents (two opposite points) are described in matrix notation.

type Point = Real[2]; I {x, vy}
type Extent = Real[2,2]; I [x1, yl;, x2, y2]

record Coordi nat eSystem /1l Attribute to class
Extent extent;
Point grid;
Poi nt si ze;

end Coor di nat eSyst em

37

Modelica Tutorial and Rationale

record Pl acenent /1 Attribute for conponent
Extent extent;
Real rotation;

end Pl acenent;

record Style
Integer color[3], fillColor[3]; /1 RGB
Integer pattern, fillPattern, thickness, gradient,
snoot h, arrow, textStyle;
String font;
end Styl e;

record Route // Attribute for connect
Poi nt points[:];
Style style;
String | abel;

end Rout e;

/1 Definitions for graphical elenents
record Line = Route;

record Pol ygon = Route;

record G aphicltem
Extent extent;
Style style;

end G aphicltem

record Rectangle = G aphicltem
record Ellipse = Gaphicltem

record Text
extends Graphicltem
String string;

end Text;

record BitMp

extends Graphicltem

String URL; /1 Narme of bitmap file
end Bit Map;

The graphical unit of the master coordinate system used when drawing lines, rectangles, text etc.
is the baseline spacing of the default font used by the graphical tool, typically 12 points for a 10
point font (note: baseline spacing = space between text lines).

Documentation of models

In practical modeling studies, documenting the model is an important issue. It is not only for
writing a report on the modeling work, but also to record additional information which can be
consulted when the model is reused. This information need not necessarily be completely
structured and standardized in the sense that Modelica language constructs are available for all
aspects. The following aspects should typically be recognized:

History information

38

Modelica Tutorial and Rationale

Major milestones, like creation, important changes, release into public accessibility should be
recorded. Information to store are the author, date and a brief description. This functionality
Is comparable with version control of software, using tools such as SCCSor RCS. If a
specific modeling procedure is used, the mile stones of such a procedure can be recorded in
this part.

References to literature

References to external documents and/or scientific literature for understanding the model, its
context and/or underlying theory should be mentioned here. The format can be like a
literature reference list in an scientific article.

Validation information

This concerns the reference (model or measurement data) to which the model is validated and
criteriafor validation. Also the simulation experiments used for the validation should be
mentioned.

Explanation and sketches

A brief text describing the model or device, akind of ‘manual page’ of the model. Schematic
drawings or sketches can be incorporated for better understanding.

User advice

This extension of the explanation part, concerns additional remarks giving hints for reuse of
the model.

Basic documentation functionality is available in Modelica. This consists of an annotation
attribute Docurrent at i on which isfurther structured into key/text pairs.
annot ati on (Docunentati on(

keyl = "Text string",

key2 = "Text string"

)
Currently, no further detail on structuring information is given. The information is given as plain
text in the appropriate category. It islikely that companies have their own way of documenting
their models and experiments, so that different ways of filling in the documentation information
are needed.

5. Overview of Present Languages

In this chapter an overview is given on the languages which have been used as starting point for
the Modelicadesign, i.e., Modelica builds upon the experience gained with these languages.

Since the definition of CSSL in 1967 (Strauss, 1967), most modeling languages are essentially
block oriented with inputs and outputs and the mathematical models are defined as assignment
statements for auxiliary variables and derivatives. Physical equations thus need to be transformed

39

Modelica Tutorial and Rationale

to aform suitable for calculations. The only aid in transforming the equations to an algorithm for
calculating derivatives is automatic sorting of the equations.

The languages that form the base of Modelica, all have general equations, i.e. expression =
expression, as the basic element. Hierarchical decomposition and reuse are typically supported
by some kind of model class. Typically, the languages have provisions to describe physical
connection mechanisms, i.e. to associate a set of variables with some kind of port. Such ports can
be used at higher hierarchical levels when connecting submodels without having to deal with
individual variables.

ASCEND

ASCEND (Advanced System for Computation in ENgineering Design)
(http://www.cs.cmu.edu/~ascend/Home.html) was developed at Carnegie Mellon University, PA,
USA to be arapid model building environment for complex models comprising large sets of
nonlinear algebraic equations (Piela 1989, Pidlaet.al. 1991). The language is textual. It supports
guantity equations, single inheritance and hierarchical decomposition, but it does not have well
defined submodel interfaces. The application domain is chemical process modeling. Later
versions support dynamic continuous time modeling.

Dymola

Dymola (Dynamic Modeling Language) (http://www.dynasim.se/), as introduced already in 1978
(EImqvist, 1978), is based on equations for non-causal modeling, model types for reuse and
submodel invocation for hierarchical modeling. The Dymolatranslator utilizes graph theoretical
methods for causality assignment, for sorting and for finding minimal systems of simultaneous
equations. Computer algebrais used for solving for the unknowns and to make simplifications of
the equations. Constructs for hybrid modeling, including instantaneous equations, was
introduced in 1993 (EImqvist et.al. 1993). Crossing functions for efficient handling of state
events are automatically generated. A graphical editor is used to build icons and to make model
compositions (Elmqvist et.al. 1996). Major application areas include multi-body systems, drive-
trains, power electronics and thermal systems.

gPROMS

gPROMS (http://www.ps.ic.ac.uk/gPROM S/, Barton and Pantelides 1994, Oh and Pantelides
1996) isagenera process modeling system. The language is a further devel opment of
SPEEDUP. Continuous parts of the process are modelled by DAE'’s. A task concept handles the
discrete events. Continuous models and tasks are combined into a single entity called process.
The gPROM S language has constructs for certain kinds for partial differential equations. The
major application domain is chemical process modeling.

MOSES

MOSES (Modular Object-oriented Software Environment for Simulation)
(http://www.elet.polimi.it/section/automeng/control/00) is a prototype system for object-oriented
modeling based on the experience with Omola. It consists of a"Model Definition Language”
(MDL), a"DataModel" (DM) yielding minimum mismatch with MDL, and an object-oriented

40

Modelica Tutorial and Rationale

data base system based on GemStone to meet the hard data management problemsinvolved in
complex system modeling. Combined continuous and discrete-time (hybrid) systems are
supported. The main application areais robotics.

NMF

The Neutral Model Format (NMF) (http://urd.ce.kth.se/, Sahlin et.al. 1996) is alanguage in the
Dymola and Omolatradition and was first proposed as a standard to the building and energy
systems simulation community in 1989. The language is formally controlled by a committee
within ASHRAE (Am. Soc. for Heating, Refrigerating and Air-Conditioning Engineers). Several
independently developed NMF tools and model libraries exist, and valuable lessons on language
standardization and devel opment of reusable model libraries have been learned. Salient features
of NMF are: (1) good support for model documentation, (2) dynamical vector and parameter
dimensions (amodel can, e.g., calculate required spatial resolution for PDE), (3) full support for
callsto foreign models (e.g. legacy or binary Fortran or C models) including foreign model event
signals.

ObjectM ath

ObjectMath (Object Oriented Mathematical Modeling Language),
(http://www.ida.liu.se/labs/pelab/omath/, Fritzson et.al. 1995) is a high-level programming
environment and modeling language designed as an extension to Mathematica. The language
integrates object-oriented constructs such as classes, and single and multiple inheritance with
computer algebra features from Mathematica. Both equations and assignment statements are
included, as well as functions, control structures, and symbolic operations from standard
Mathematica. Other features are parameterized classes, hierarchical composition and dynamic
array dimension sizes for multi-dimensional arrays. The environment provides a class browser
for the combined inheritance and composition graph and supports generation of efficient code in
C++ or Fortran90. The user can influence the symbolic transformation of equations or
expressions by manually specifying symbolic transformation rules, which also gives an
opportunity to control the quality of generated code. The main application area so far has been in
mechanical systems modeling and analysis.

Omola

Omola (http://www.control.lth.se/~cace/omsim.html, Andersson 1984, Mattsson et.al. 1993) is
an object-oriented and equation based modeling language. M odels can be decomposed
hierarchically with well-defined interfaces that describe interaction. All model components are
represented as classes. Inheritance and specialization support easy modification. Omola supports
behavioral descriptionsin terms of differential-algebraic equations (DAE), ordinary differential
equations (ODE) and difference equations. The primitives for describing discrete events allow
implementation of high level descriptions as Petri nets and Grafcet. An interactive environment
called OmSim supports modeling and simulation: graphical model editor, consistency analysis,
symbolic analysis and manipulation to simplify the problem before numerical simulation, ODE
and DAE solvers and interactive plotting. Applications of Omola and OmSim include chemical
process systems, power generations and power networks.

41

Modelica Tutorial and Rationale

SIDOPS+

SIDOPS+ (http://www.rt.el .utwente.nl/proj/modsim/modsim.htm) supports nonlinear
multidimensional bond-graph and block-diagram models, which can contain continuous-time
parts and discrete-time parts(Breunese and Broenink, 1997). The language has facilities for
automated modeling support like polymorphic modeling (separation of the interface and the
internal description), multiple representations (component graphs, physical concepts like bond
graphs or ideal physical models and (acausal) equations or assignment statements), and support
for reusability (e.g. documentation fields, physical types). Currently, SIDOPS+ is mainly used in
the field of mechatronics and (neural) control. It isthe model description language of the
package 20-SIM (Broenink, 1997). SIDOPS+ is the third generation of SIDOPS which started as
amodel description language for single-dimensiona bond-graph and block-diagram models.

Smile

Smile (http://www first.gmd.de/smile/smile0.html) is an object-oriented and equation-based
modeling and simulation environment. The object-oriented and imperative features of Smile’s
model description language are very similar to Objective-C. Equations may either be specified
symbolically or as procedures; external modules can be integrated. Smile also has a dedicated
experiment description language. The system consists of translators for the above-mentioned
languages, a simulation engine offering several numeric solvers, and components for interactive
experimenting, visualization, and optimization. Smile’'s main application domain traditionally has
been the simulation of solar energy equipment and power plants (Tummescheit and Pitz-Paal,
1997), but thanks to its object-oriented modeling features it is applicable to other classes of
complex systems as well. An extension of Smile to support Modelicais planned (Erngt, et.al.,
1997).

U.L.M. - Allan

The goal of ALLAN (Pottier, 1983; Jeandel 1997) isto free engineers from computer science
and numerical aspects, and to work towards capitalization and reuse of models. This means non-
causal and hierarchical modeling. A graphical representation of the model is associated to the
textual representation and can be enhanced by a graphical editor. A graphical interface is used
for hierarchical model assembly. The discrete actions at the interrupts in continuous behavior are
managed by events. Automatons (Synchronous or asynchronous) are available on events.
FORTRAN or C code can be incorporated in the models. Two trandators toward the
NEPTUNIX and ADASSL (modified DASSLRT) solvers are available. Main application
domains are energy systems, car electrical circuits, geology and naval design.

The language U.L.M. has been designed in 1993 with the same features as the ALLAN language
in a somewhat different implementation (Jeandel, 1996). It isamodel exchange language linked
to ALLAN. All aspects of modeling are covered by the textual language. There is an emphasis
on the separation of the model structure and the model numerical data for reuse purposes. It also
has an interesting feature on model validation capitalization.

VHDL-AMS
VHDL-AMS (http://www.vhdl.org/analog, IEEE, 1997) is an extension to the discrete circuit

42

Modelica Tutorial and Rationale

modeling language VHDL for combined continuous and discrete models. Structuring is done by
means of entities and architectures. An entity defines the external view of a component including
its parameters (generics), its discrete signal interface and its continuous interface (ports). The
architecture associated with an entity describes the implementation which may contain equations
(DAE’s). VHDL-AMSisalarge and rich modeling language targeted mainly at the application
domain of electronics hardware. Severa extensions of VHDL towards full object orientation
have been proposed (see e.g. Benzakki, et.al., 1997), but the continous modeling extensions of
VHDL-AMS were not yet taken into account in this work.

6. Design Rationale

As aready pointed out in the beginning of this chapter, Modelicais an object oriented, equation-
based, declarative data-oriented modeling language for non-causal modeling of physical systems.
In this section we give a short rationale of the language from a computer science point of view
by explaining some of the design principles and decisions behind the language in its current
form.

The following are a set of general principles and design goals that have been applied more or less
consistently during the design of the Modelicalanguage. We give several examples how these
goals have influenced the current design.

» Engineering tool

The Modelicalanguage is designed to be an engineering tool for modeling of realistic
physical systems, usually with the aim of simulating, optimizing or controlling such
systems. Thus, the language has to fulfill the requirements of engineering, such as
allowing efficient implementation, coping with large physical systems composed of
different kinds of subsystems.

* Rdiability and correctness

The language as an engineering tool should support the construction of reliable and
correct software. This goal is rather fundamental to the overall design of Modelica. For
example, readability of system modelsisimportant since this contributesto reliability in
engineering, even at the cost of more verbose code. Thisisthe main reason for having
named parameter passing in Modelica, also present in Ada. The strong typing in
Modelica has been introduced to provide partial verification of internal consistency. The
declarative and functional style of Modelica helps avoid certain errors and enhances code
reuse.

» Coping with system evolution

Large software systems are always evolving, e.g. by adding new functionality, adapting
to new hardware, enhancing performance, etc. Most large software systems are alwaysin
atransitional situation where most things work and a few things do not work. We say that
an evolving system isreliableif it does not break too often or too extensively in spite of

43

Modelica Tutorial and Rationale

change. The strong type system of Modelicais one way of controlling system evolution,
by partialy verifying system models at each stage. The Modelica class and package
concepts, integrated with the type system, provide a module mechanism to control system
complexity.

Generality, uniformity

The design of Modelica emphasizes generality and uniformity. This makes the language
easier to learn, yet powerful. Therefore the concepts of model, type, connector, block,
package and function in Modelica have been designed to be just restricted versions of the
general class concept. A general static and strong type system designed by Luca Cardelli
(Cardelli 1988, Cardelli 1991), has been adopted for Modelica. This type system
integrates object orientation with multiple inheritance, subtyping, and parametric
polymorphism - the |atter also known as generics in Ada and templatesin C++. Another
example of uniformity and generality isthat named and positional parameter passing is
available for both class specialization and function callsin Modelica.

Declarativity and referential transparency

Most high level specification languages are declarative, including Modelica, since this
allows expressing properties of systems without specifying in detail how, or in what
order, such properties should be realized. For example, Modelica views object orientation
as a declarative structuring concept for mathematical modeling in contrast to the non-
declarative view of languages like SmallTalk, which regard object orientation as message
passing between (dynamically) created objects. Modelica functions are declarative and
encourages afunctional programming style. They are essentially side effect free
mathematical functions. The body of afunction is called an algorithm section. From the
equation point of view, such an algorithm section can be regarded as a strongly connected
set of equations.

Adherence to common de facto language standards

Modelicatries to be somewhat compatible with several existing common programming
languages, since this makes Modelica easier to learn and to use for engineers. For
example, Modelica has adopted some of the Java syntax and the UniCode character
standard, and uses the Matlab notation for matrix operations.

High level of abstraction

Since Modelicais a specification language, it is designed to allow abstraction from
unnecessary detail. The language obtains its strong abstraction power by being based on
equations integrated with object oriented structuring concepts and object connection
mechanisms.

Codereuse

Code reuse is adesirable but hard-to-reach goal for software development. Modelica
contributes to this goal in several ways. Its non-causal equation-based modeling style

Modelica Tutorial and Rationale

permits model components to be reused in different contexts, automatically adapting to
the data flow order in specific ssmulation applications, i.e. the Modelica compiler
automatically arranges equations for solution with particular inputs or outputs. Object
orientation and polymorphism significantly enhances the potential for reuse of Modelica
model components.

 Mathematical foundation

The Modelica language has a strong mathematical foundation in the sense that a
Modelicamodel is expanded (from a semantic point of view) into a set of differential-
algebraic equations. Thus, Modelicais primarily equation-based. Equations can be
conditional, to represent discrete-event features and enable hybrid modeling.

7. Examples

Modelica has been used to model various kinds of systems. Otter et.al., 1997 describes modeling
of automatic gearboxes for the purpose of real-time simulation. Such models are non-trivial
because of the varying structure during gear shift utilizing clutches, free wheels and brakes.
Mattsson, 1997 discusses modeling of heat exchangers. Class parameters of Modelica are used
for medium parameterization and regular component structures are used for discretization in
space of the heat exchanger. Tummescheit et.al., 1997 discusses thermodynamical and flow
oriented models. Broenink, 1997 describes a Modelica library with bond graph models for
supporting the bond graph modeling methodology. Franke, 1998 models a central solar heating
plant using Modelica. Mosterman et.al., 1998 describes a Petri-Net library written in Modelica

8. Conclusions

The Modelica effort has been described and a definition of Modelica has been given. Version 1.0

was finished in September 1997. For Modelica 1.3, as defined in this report (together with the \
Language Specification) from December 1999, the semantic specification was considerably \
enhanced, especially for redeclarations, array language elements, hybrid features, lexical scoping

and library support. Furthermore, a partial formal specification of the language semantics was
developed (Kagedal, 1998). More than 20 papers have been written about various aspects of
Modelica. See the URL below.

The design of standard function and model libraries is in progress. There is ongoing work to
write books on the Modelica language and on Modelica model libraries. Several Modelica tools
are also under development. There are discussions to extend the Modelica design into, for
example, handling partial differential equations and discrete event models, see EImquvist et.al.
1998.

More information and the most actual status of the Modelica effort can be found at
URL: http://ww. Modelica.org

45

Modelica Tutorial and Rationale

9. Acknowledgments

The authors are thankful for all the feedback that has been obtained from various people that
have reviewed different versions of the design.

10. References
Abadi M., and L. Cardelli: A Theory of Objects. Springer Verlag, ISBN 0-387-94775-2, 1996.

Andersson M.: Object-Oriented Modeling and Smulation of Hybrid Systems. PhD thesis ISRN
LUTFD2/TFRT--1043--SE, Department of Automatic Control, Lund Institute of Technology,
Lund, Sweden, December 1994.

Barby J.A.: "The need for a unified modeling language and VHDL-A". In Proceedings of the
1996 |EEE International Symposium on Computer-Aided Control System Design, pp. 258--263,
Dearborn, Mi, USA, September 1996.

Barton P.I., and C.C. Pantelides: "Modeling of combined discrete/continuous processes".
AIChE J., 40, pp. 966--979, 1994.

Benzakki J., and Djafri B.: "Object-Oriented Extensionsto VHDL - the LaM|I proposal”. Proc.
CHDL'97, pp. 334-347.

Biersack M., V. Friesen, S. Jahnichen, M. Klosegnd M. Simons "Towards an architecture
for smulation environments.” In Vren and Birta, Eds., Proceedings of the Summer Computer
Smulation Conference (SCSC'95), pp. 205--212. The Society for Computer Simulation, 1995.

Breedveld P.C "Multiple bond graph elementsin physical systems theory”. Journal of the
Franklin Institute, vol. 319, no. /2 pp. 1-36, 1985.

Breunese A.P.J.and J.F. Broenink: Modeling mechatronic systems using the SDOPS+
language, Proceedings of ICBGM’97, 3rd International Conference on Bond Graph Modeling
and Simulation, Phoenix, Arizona, January 12-15, 1997, SCS Publishing, San Diego, California,
Simulation Series, Vol.29, No.1, ISBN 1-56555-050-1, pp 301-306.

Broenink J.F: Modeling, Smulation and Analysis with 20-S M, Journa A, (Benelux quarterly
journal on automatic control), Vol 38 no 3, 1997. See a so http://www.rt.el.utwente.nl/20sim.

Broenink J.F.: "Bond-Graph Modeling in Modelica'. ESS97 - European Smulation
Symposium, Oct., 1997.

Cardarelli F.: Sientific Unit Conversion. Springer Verlag, 1997.

Cardelli L. : "Typesfor Data-Oriented Languages (Overview)", in J. W. Schmidt, S. Ceri and M.
Missikof (Eds.): Advancesin Database Technology - EDBT'88, Lecture Notesin Computer

46

Modelica Tutorial and Rationale

Science n. 303, Springer-Verlag, 1988.

Carddli L.: "Typeful Programming"”, in E. J. Neuhold and M. Paul (Eds.): Formal description of
Programming Concepts, Springer-Verlag, 1991. Also published as SRC Research Report 45,
Digital Equipment Corporation.

Céllier F.E: Continuous system modeling. Springer Verlag, ISBN 0 387 97502 0, 1991.

Elmqgvist H.: A Sructured Model Language for Large Continuous Systems. PhD thesis, ISRN
LUTFD2/TFRT--1015--SE, Department of Automatic Control, Lund Institute of Technology,
Lund, Sweden, May 1978.

Elmqvist H., D. Brick, and M. Otter: Dymola --- User’s Manual. Dynasim AB, Research Park
Ideon, Lund, Sweden, 1996.

Elmqvist H., F.E. Cellier, and M. Otter : ** Object-oriented modeling of hybrid systems.” In
Proceedings of European Smulation Symposium, ESS93. The Society of Computer Simulation,
October 1993.

EImqvist H., S.E. Mattsson,and M. Otter.: "Modelica- An International Effort to Design an
Object-Oriented Modeling Language”, Summer Computer Simulation Conference -98 , Reno,
Nevada, USA, July 19-22, 1998.

Ernst T., S. Jahnichen,and M. Klose: "The Architecture of the Smile/M Simulation
Environment”. Proc. 15th IMACS World Congress on Scientific Computation, Modelling and
Applied Mathematics, Vol. 6, Berlin, Germany, pp. 653-658, 1997

Franke R.: “Modeling and Optimal Design of a Central Solar Heating Plant with Heat Storage
in the Ground Using Modelica”, Eurosim '98 Simulation Congress, Helsinki, Finland, April 14-
15, 1998.

Fritzson P., L. Viklund, D. Fritzson, andJ. Herber: "High-level mathematical modeling and
programming"1EEE Software, 12:3, July 1995.

Gautier T., P. Le Guernic, and O. Maffeis.: “For a New Real-Time Methodology”,
Publication Interne No. 870, Institut de Recherche en Informatique et Systemes Aleatoires,
Campus de Beaulieu, 35042 Rennes Cedex, France, 1994.

Halbwachs N., P. Caspi, P. Raymond, and D. Pilaud. “The synchronous data flow
programming language LUSTRE". Proc. of the IEEE, 79(9), pp. 1305--1321, Sept. 1991.

|EEE: "Standard VHDL Analog and Mixed-Signal Extensions". Technical Report IEEE 1076.1,
IEEE, March 1997.

Jeandel A., F. Boudaud, Ph. Ravier, andA. Buhsing: "U.L.M: Un Langage de Modélisation, a
modelling language". IRroceedings of the CESA'96 IMACS Multiconference. IMACS, Lille,
France, July 1996.

Jeandel A., Ph. Ravier, andA. Buhsing: "U.L.M.: Reference guide". Technical Report M
DeéGIMA.1205, Gaz de France, 1995.

a7

Modelica Tutorial and Rationale

Jeanddl A., F. Boudaud., and E. Lariviere: "ALLAN.Simuation release 3.1 description"
M.DéGIMA.GSA1887. GAZ DE FRANCE, DR, Saint Denis La plaine, FRANCE, 1997.

Karnopp D.C., andR.C. Rosenberg: Analysis and simulation of multiport systems - the bond
graph approach to physical system dynamics. MIT Press, Cambridge, MA, USA, 1968.

KloasM., V. Friesen, andM. Simons: "Smile - A simulation environment for energy systems."
In Sydow, Ed.,Proceedings of the 5th International IMACS-Symposium on Systems Analysis and
Smulation (SAS95), volume 18--19 oBystems Analysis Modelling Smulation, pp. 503--506.
Gordon and Breach Publishers, 1995.

Kagedal D.:"A Natural Semantics specification for the equation-based modeling language
Modelica," LITH-IDA-Ex-98/48, Link6ping University, Sweden, 1998.

Mattsson S.E., M. Andersson, andK. J. Astrém: "Object-oriented modelling and simulation”.
In Linkens, Ed., CAD for Control Systems, chapter 2, pp. 31--69. Marcel Dekker Inc, New Y ork,
1993.

Mattsson S.E: "On Modelling of Heat Exchangersin Modelica'. ESS97 - European Smulation
Symposium, Oct., 1997.

Mosterman P. J.,and G. Biswas "A Formal Hybrid Modeling Scheme for Handling
Discontinuitiesin Physical System Models". Proceedings of AAAI-96, pp. 905-990, August 2.-
4., Portland, OR, 1996 (http://www.vuse.vanderbilt.edu/~pjm/papers/aaai 96/p.html).

Mosterman P. J., M. Otter, H. EImqvist: "Modeling Petri Nets as Local Constraint Equations
for Hybrid Systems Using Modelica', Summer Computer Simulation Conference -98 , Reno,
Nevada, USA, July 19-22, 1998.

Oh M., and C.C. Pantelides"A modelling and simulation language for combined lumped and
distributed parameter systems'. Computers and Chemical Engineering, 20, pp. 611--633, 1996.

Otter M., C. Schlegel,and H. EImqvist: "Modeling and Realtime Simulation of an Automatic
Gearbox using Modelica'. ESS97 - European Smulation Symposium, Oct., 1997.

Piela P.C: ASCEND: An Object-Oriented Environment for Modeling and Analysis. PhD thesis
EDRC 02-09-89, Engineering Design Research Center, Carnegie Mellon Univeristy, Pittsburgh,
PA, USA, 1989.

Piela P.C., T.G. Epperly, K.M. Westerbergand A.W. Westerberg "ASCEND: An object-
oriented computer environment for modeling and analysis: the modeling language”. Computers
and Chemical Engineering, 15:1, pp. 53--72, 1991.

Pfeiffer F., and C. Glocker: "Multibody Dynamics with Unilateral Contacts" John Wiley, 1996.

Pottier M: "Extensions et applications envisageables des procédures complémentaires établies
pour accéder au progiciel ASTEC 3 : ALLAN 6" Technical report M.D6 n°4034. GAZ DE
FRANCE, DETN, Saint Denis La plaine, FRANCE, 1983.

Sahlin P., A. Bring, andE.F. Sowell: "The Neutral Model Format for building simulation,

48

Modelica Tutorial and Rationale

Version 3.02". Technical Report, Department of Building Sciences, The Royal Institute of
Technology, Stockholm, Sweden, June 1996.

Strauss J.C., D.C. Augustin, M..S. Fineberg, B.B. Johnson, R.N. Linebarger, and F.H.
Sanson: The SCI Continuous System Smulation Language (CSSL). Simulation, December 1967.

Tummescheit H., T. Ernst and M. Klose: "Modelicaand Smile - A Case Study Applying
Object-Oriented Concepts to Multi-facet Modeling”. ESS97 - European Smulation Symposium,
Oct., 1997.

Tummescheit H., and R. Pitz-Paal: "Simulation of a solar thermal central receiver power
plant”. Proc. 15th IMACSWorld Congress on Scientific Computation, Modelling and Applied
Mathematics, Vol. 6, Berlin, Germany, pp. 671-676, 1997.

Vangheluwe H. L., Eugéne J.H. Kerckhoffsand Ghislain C. Vansteenkiste"Simulation for
the Future: Progress of the ESPRIT Basic Research working group 8467". In Bruzzone and
Kerckhoffs, Eds., Proceedings of the 1996 European Smulation Symposium (Genoa), pp. XXI1X
-- XXXI1V. Society for Computer Simulation International (SCS), October 1996.

Viklund L., and P. Fritzson: "ObjectMath --- An object-oriented language and environment for
symbolic and numerical processing in scientific computing”. Scientific Programming, 4, pp. 229-
-250, 1995.

49

	ModelicaTM - A Unified Object-Oriented Language for Physical Systems Modeling
	Contents�€
	1. Introduction
	2. Modelica at a Glance

	Comparison with block oriented modeling
	3. Requirements for Multi-domain Modeling
	
	Block Diagrams
	Multi-Body Systems
	Electrical and Electronic Circuits
	Chemical and Thermodynamic Systems
	Bond graphs
	Finite Automata and Extensions

	4. Modelica Language Rationale and Overview

	4.1 Basic Language Elements
	4.2 Classes for Reuse of Modeling Knowledge
	
	
	Records
	Packages
	Information Hiding

	4.3 Connections
	4.4 Partial Models and Inheritance
	4.5 Class Parameterization
	4.6 Matrices
	
	
	Block Diagrams

	4.7 Repetition, Algorithms and Functions
	
	
	Regular Equation Structures
	Regular Model Structures
	Algorithms
	Functions
	External functions

	4.8 Hybrid Models
	
	
	Discontinuous Models
	Conditional Models

	4.9 Units and Quantities
	4.10 Annotations for Graphics and Documentation
	5. Overview of Present Languages

	ASCEND
	Dymola
	gPROMS
	MOSES
	NMF
	ObjectMath
	Omola
	SIDOPS+
	Smile
	U.L.M. - Allan
	VHDL-AMS
	6. Design Rationale
	7. Examples
	8. Conclusions
	9. Acknowledgments
	10. References

