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1. Introduction

There definitely is an interoperability problem amongst the large variety of modeling and

simulation environments available today, and it gets more pressing every year with the trend

towards ever more complex and heterogeneous systems to be simulated. The main cause of this

problem is the absence of a state-of-the-art, standardized external model representation. Modeling
languages, where employed, often do not adequately support the structuring of large, complex

models and the process of model evolution in general. This support isusually provided by

sophisticated graphical user interfaces - an approach which is capable of greatly improving the

user’s productivity, but at the price of specialization to a certain modeling formalism or
application domain, or even unigueness to a specific software package. It therefore is of no help
with regard to the interoperability problem.

Among the recent research results in modeling and simulation, two concepts have strong
relevance to this problem:

¢ Object oriented modeling languages already demonstrated how object oriented concepts
can be successfully employed to support hierarchical structuring, reuse and evolution of
large and complex models independent from the application domain and specialized
graphical formalisms.

¢ Non-causal modeling demonstrated that the traditional simulation abstraction -the
input/output block- can be generalized by relaxing the causality constraints, i.e., by not
committing ports to an 'input’ or ‘output’ role early, and that this generalization enables both
more simple models and more efficient simulation while retaining the capability to include
submodels with fixed input/output roles.

Examples of object-oriented and/or non-causal modeling languages include: ASCEND, Dymola,
gPROMS, NMF, ObjectMath, Omola, SIDOPS+, Smile, U.L.M., ALLAN, and VHDL-AMS.

The combined power of these concepts together with proven technology from existing modeling
languages justifies a new attempt at introducing interoperability and openness to the world of
modeling and simulation systems.

Having started as an action within ESPRIT project "Simulation in Europe Basic Research
Working Group (SIiE-WG)" and currently operating as Technical Committee 1 within Eurosim, a
working group made up of simulation tool builders, users from different application domains, and
computer scientists has made an attempt to unify the concepts and introduce a common modeling
language. This language, callgldbdelica, is intended for modeling within many application

domains (for example: electrical circuits, multi-body systems, drive trains, hydraulics,
thermodynamical systems and chemical systems) and possibly using several formalisms (for
example: ODE, DAE, bond graphs, finite state automata and Petri nets). Tools which might be
general purpose or specialized to certain formalism and/or domain will store the models in the
Modelica format in order to allow exchange of models between tools and between users. Much of
the Modelica syntax will be hidden from the end-user because, in most cases, a graphical user
interface will be used to build models by selecting icons for model components, using dialogue
boxes for parameter entry and connecting components graphically.

The work started in the continuous time domain since there is a common mathematical
framework in the form of differential-algebraic equations (DAE) and there are several existing
modeling languages based on similar ideas. There is also significant experience of using these
languages in various applications. It thus seems to be appropriate to collect all knowledge and
experience and design a new unified modeling language or neutral format for model



representation. The short range goal was to design a modeling language for differential-algebraic
equation systems with some discrete event features to handle discontinuities and sampled
systems. The design should be extendible in order that the goal can be expanded to design a
multi-formalism, multi-domain, general-purpose modeling language. Thisis areport of the design
state as of September 1997, Modelicaversion 1.0.

The object-oriented, non-causal modeling methodol ogy and the corresponding standard model
representation, Modelica, should be compared with at least four aternatives. Firstly, established
commercia general purpose simulation tools, such as ACSL, EASY 5, SIMULINK, System
Build and others, are continually developed and Modelicawill have to offer significant practical
advantages with respect to these. Secondly, special purpose simulation programs for electronics
(Spice, Saber, etc), multibody systems (ADAMS, DADS, SIMPACK, etc), chemical processes
(ASPEN Plus, SpeedUp, etc) have specialized GUI and strong model libraries. However, they
lack the multi-domain capabilities. Thirdly, many industrial simulation studies are still done
without the use of any general purpose simulation tool, but rather relying on numerical
subroutine libraries and traditional programming languages. Based on experience with present
tools, many usersin this category frequently doubt that any general purpose method is capable of
offering sufficient efficiency and robustness for their application. Forthly, an IEEE supported
alternative language standardization effort is underway: VHDL-AMS.

Most engineers and scientists recognize the advantages of an expressive and standardized
modeling language. Unlike afew years ago, they are today ready to sacrifice reasonable amounts
of short-term advantages for the benefit of abstract things like potential abundance of compatible
tools, sound model architecture, and future availability of ready-made model libraries. In this
respect, thetime isripe for a new standardization proposal. Another significant argument in favor
of anew modeling language lies in recent achievements by present languages using anon-causal
modeling paradigm. In the last few years, it hasin several cases been proved that non-causal
simulation technigques not only compare to, but outperform special purpose tools on applications
that are far beyond the capability of established block oriented simulation tools. Examples exist in
multi-body and mechatronics simulation, building simulation, and in chemical process plant
simulation. A combination of modern numerical techniques and computer algebra methods give
rise to this advantage. However, these non-causal modeling and simulation packages are not
general enough, and exchange of models between different packagesis not possible, i.e. anew
unified language is needed. Furthermore, text books promoting the object-oriented, non-causal
methodology are now available, such as Cellier (1991), and university courses are given in many
countries.

The next section will give an introduction to the basic concepts of Modelica by means of asmall
example. Requirements for this type of language are then discussed. Section 4 isthe main section
and it gradually introduces the constructs of Modelica and discusses the rationale behind them. It
isfollowed by an overview of present object-oriented equation based modeling languages that
have been used as a basis for the Modelica language design. The design rationale from a
computer science point of view is given in section 6. Syntax and detailed semantics aswell asthe
Modelica standard library are presented in the appendices.

2. Moddlica at a Glance

To give an introduction to Modelicawe will consider modeling of asimple electrical circuit as
shown below.
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The system can be broken up into a set of connected electrical standard components. We have a
voltage source, two resistors, an inductor, a capacitor and a ground point. Models of these
components are typically available in model libraries and by using a graphical model editor we
can define amodel by drawing an object diagram very similar to the circuit diagram shown above
by positioning icons that represent the models of the components and drawing connections.

A Modelica description of the complete circuit looks like

nodel circuit
Resi stor R1(R=10);
Capacitor C(C=0.01);
Resi stor R2(R=100);
I nductor L(L=0.1);
Vsour ceAC AC;
G ound G

equat i on

connect ( ) /| Capacitor circuit
connect (
connect (
connect (
connect (
connect (
connect (
t

end circui

5; /1 Inductor circuit

/!l Gound

For clarity, the definition of the graphical layout of the composition diagram (here: electric circuit
diagram) is not shown, although it is usually contained in a Modelica model as annotations
(which are not processed by a Modelicatranslator and only used by tools). A composite model of
this type specifies the topology of the system to be modeled. It specifies the components and the
connections between the components. The statement

Resi stor R1(R=10);

declares acomponent R1 to be of classResi st or and sets the default value of the resistance, R,
to 10. The connections specify the interactions between the components. In other modeling
languages connectors are referred as cuts, ports or terminals. The language element connect isa
special operator that generates equations taking into account what kind of quantities that are
involved as explained below.

The next step in introducing Modelicaisto explain how library model classes are defined.

A connector must contain all quantities needed to describe the interaction. For electrical
components we need the quantities voltage and current to define interaction viaawire. The types
to represent them are declared as

type Voltage = Real (unit="V");



type Current = Real (unit="A");

where Real isthe name of a predefined variable type. A real variable has a set of attributes such
as unit of measure, initial value, minimum and maximum value. Here, the units of measure are set
to be the Sl units.

In Modelica, the basic structuring element is aclass. There are seven restricted classes with
specific names, such as model, type (a class which is an extension of built-in classes, such as
Real, or of other defined types), connector (a class which does not have equations and can be
used in connections). For avalid model it isfully equivalent to replace themodel, type, and
connector keywords by the keyword class, because the restrictions imposed by such a specialized
class are fulfilled by avalid model.

The concept of restricted classes is advantageous because the modeller does not have to learn
several different concepts, but just one: the class concept. All properties of a class, such as syntax
and semantic of definition, instantiation, inheritance, genericity are identical to al kinds of
restricted classes. Furthermore, the construction of Modelicatranglatorsis simplified considerably
because only the syntax and semantic of aclass has to be implemented aong with some
additional checks on restricted classes. The basic types, such asReal or | nt eger are built-in
type classes, i.e., they have al the properties of a class and the attributes of these basic types are
just parameters of the class.

There are two possibilities to define a class: The standard way is shown above for the definition
of the electric circuit (model circuit). A short hand notation is possible, if a new classisidentical
to an existing one and only the default values of attributes are changed. The types above, such as
Voltage, are declared in this way.

A connector classis defined as

connector Pin
Vol t age v;
flow Current i;
end Pin;

A connection connect (Pi n1, Pi n2),withPi n1 and Pi n2 of connector classPi n, connects
the two pins such that they form one node. Thisimplies two equations, namely Pi n1. v =
Pin2.vandPinl.i + Pin2.i = 0.Thefirst equation indicates that the voltages on both
branches connected together are the same, and the second corresponds to Kirchhoff’s current law
saying that the currents sum to zero at a node (assuming positive value while flowing into the
component). The sum-to-zero equations are generated when the prefix flow is used. Similar laws
apply to flow rates in a piping network and to forces and torques in mechanical systems.

When devel oping models and model libraries for a new application domain, it is good to start by
defining a set of connector classes. A common set of connector classes used in all componentsin
the library supports compatibility of the component models.

A common property of many electrical componentsis that they have two pins. This means that it
is useful to define an "interface" model class,

partial nodel TwoPin "Superclass of elenents with two electrical pir
Pin p, n;
Vol t age v;
Current i

equation
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i =p.i;
end TwoPi n;

that hastwo pins, p and n, aquantity, v, that defines the voltage drop across the component and a
guantity, i , that defines the current into the pin p, through the component and out from the pin n.
The equations define generic relations between quantities of a simple electrical component. In
order to be useful a constitutive equation must be added. The keyword parti al indicates that
thismodel classisincomplete. The key word is optional. It is meant as an indication to a user that
it isnot possible to use the class as it is to instantiate components. Between the name of aclass
and its body it is allowed to have astring. It istreated as a comment attribute and is meant to be a
documentation that tools may display in special ways.

To define amodel for aresistor we exploit TwoPi n and add a definition of parameter for the
resistance and Ohm’ s law to define the behavior:

nmodel Resistor "ldeal electrical resistor”
ext ends TwoPi n;
paraneter Real R(unit="Chn') "Resistance";
equat i on
Ri = v;
end Resi stor;

The keyword parameter specifies that the quantity is constant during a simulation run, but can
change values between runs. A parameter is a quantity which makesit simple for a user to modify
the behavior of amodel.

A model for an electrical capacitor can also reuse the TwoPin as follows:

nodel Capacitor "ldeal electrical capacitor”
ext ends TwoPi n;
paraneter Real C(unit="F") "Capacitance";
equat i on
C:der(v) =1i;
end Capacitor;

whereder (v) meansthetime derivative of v. A model for the voltage source can be defined as

nodel Vsour ceAC " Si n-wave vol tage source”
ext ends TwoPi n;
paranet er Vol tage VA = 220 "Anplitude";
paraneter Real f(unit="Hz") = 50 "Frequency";
constant Real PI=3.141592653589793;

equation
v = VA*sin(2*Pl*f*tinme);

end Vsour ceAC,

In order to provide not too much information at this stage, the constant PI is explicitly declared,
although it is usually imported from the Modelica standard library (see appendix). Finally, we
must not forget the ground point.

nmodel G ound "G ound"
Pin p;

equat i on
p.v = 0;

end G ound;

The purpose of the ground model is twofold. First, it defines a reference value for the voltage
levels. Secondly, the connections will generate one Kirchhoff’s current law too many. The ground



model handles this by introducing an extra current quantity p. i , which implicitly by the
equations will be calculated to zero.

Comparison with block oriented modeling

If the above model would be represented as a block diagram, the physical structure will not be
retained as shown below. The block diagram is equivalent to a set of assignment statements
calculating the state derivatives. In fact, Ohm’slaw is used in two different waysin this circuit,
once solving for i and once solving for u.
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This example clearly shows the benefits of physically oriented, hon-causal modeling compared to
block oriented, causal modeling.
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3. Requirementsfor Multi-domain Modeling

In this section, the most important requirements used for the Modelica language design are
collected together.

The Modelicalanguage should support both ODE and DAE (differential-algebrai c equations)
formulations of models. The mixture of DAE and discrete events should be possible and be
defined in such away that efficient simulation can be performed. Other data types than real, such
asinteger, Boolean and string should be supported. External functions written in common
programming languages need to be supported in addition to a data type corresponding to external
object references. It should be possible to express information about units used and minimum and
maximum allowed values for avariable in order that a modeling tool might do consistency
checking. It should be possible to parameterize models with both values of certain quantities and
also with respect to model representation, i.e., allowing, for example, to select different levels of
detail for amodel. Component arrays and the connection of elements of such arrays should be
supported. In order to allow exchange of models between different tools, also a certain
standardization of graphical attributes for icon definitions and object diagrams should be done
within the Modelica definition.

Certain modeling features will be added in later stages of the Modelica design. One exampleisto
alow partial differential equations. More advanced discrete event modeling facilities will also be
considered then, for example to alow queue handling and dynamical creation of model instances.

Besides requirements for modeling in general, every discipline has its specific peculiarities and
difficulties which often require special consideration. In the following sections, such



reguirements from multiple domains are presented.

Block Diagrams

Block diagrams consist of input/output blocks. For the definition of linear state space systems and
transfer functions matrices and matrix equations are needed. Thisis most conveniently done with
aMATLAB-like notation.

It isalso important to support fixed and variable time delays. This could be done by calling an
external function which interpolatesin past values. However, if adelay is defined via a specific
language construct, it isin principle possible to use a specific integrator to take care of the delay
which can be done in a better numerical way than in the first case. Therefore, a delay operator
should be defined in the language which |eaves the actual implementation to the Modelica
trandator. Furthermore, interpolation in 1-, 2-, n-dimensional tables with fixed and variable grids
has to be supported, because technical models often contain tables of measured data.

If it isknown that a component is an input/output block, local analysis of the equationsis
possible which improves the error diagnostics considerably. For example, it can be detected
whether the number of unknown variables of the block matches the number of equationsin the
block. Therefore, it should be possible to state explicitly that a model component is an
input/output block.

Multi-Body Systems

Multi-body systems are used to model 3-dimensional mechanical systems, such as robots,
satellites and vehicles. Nearly al variables in multi-body system modeling are vectors or matrices
and the equations are most naturally formulated as matrix equations. Therefore, support of
matricesis essential. This should include the cross operator for the vector cross-product because
this operation often occurs in mechanical equations. It is convenient to have multi-body objects
with severa interfaces, but without requiring that every interface has to be connected for amodel.
For example, revolute and prismatic joints should have an additional interface to attach adrive
train to drive the joint.

Usually, multi-body algorithms are written in such away that components cannot be connected
together in an arbitrary way. To ensure that an erroneous connection cannot be created, it should
be possible to define rules about the connection structure. Rules help to provide a meaningful
error message as early as possible.

In order that Modelicawill be attractive to use for modeling of multi-body systems, efficiency is
crucial. It must be possible that Modelica generated code is as efficient as that of special purpose
multi-body programs. For that, operators likesymmetric and orthogonal are necessary in order
to be able to state that a matrix is symmetric or orthogonal, respectively.

Electrical and Electronic Circuits
Models of different complexity to describe electrical components are often needed. Therefore, it
should be easy to replace a specific model description of a component by another onein the

model of an electrical circuit.

It might be advantageous to implement complicated elements, such as detailed transistor models,
by procedural code. This may be either an external C or C++ function or aModelica function. In



any case, the model equations are already sorted and are not expanded, i.e., every instance uses
the same "function call". Thisis especially important, if alarge number of instances are present.

It isessentia that SPICE net list descriptions of electrical circuits can be used within Modelica,
because vendor models of electric hardware components are described in this format. It seems
sufficient to provide the SPICE component models as classes in aModelicalibrary and to rely on
an external tool which transforms a SPICE net list description into a composite Modelica model.

Besides non-linear simulation, small signal analysisis often needed for electrical circuits. This
implies linearization and frequency response calculation. Numerical linearization introduces
unnecessary errors. For electrical circuitsit isalmost always possible to symbolically differentiate
the components. Special language constructs are probably not needed because in principle
Modelicatrandators can be realized which derive the (symbolically) linearized components
automatically. Modern electric circuit programs use symbolic Jacobians to enhance the efficiency.
Similar to linearization, it should be possible to compute the symbolic Jacobian from a Modelica
model by symboalic differentiation. If a component is provided as external function, it should be
possible to provide an external function for the corresponding Jacobian of the component as well.

Chemical and Ther modynamic Systems

Processing systems for chemical or energy production are often composed of complex structures.
The modeling of these systems needs encapsulation of detailed descriptions and abstraction into
hierarchiesin order to handle the complexity. To increase the reuse of submodelsin complex
structures there is aneed for an advanced concept of parameterization of submodels. Especialy,
component arrays and class parameters are needed. An example is a structure parameter for the
change of the number of traysin adistillation plant.

In order to achieve a high degree of model reuse, all medium specific data and calcul ation should
be encapsulated in a medium properties submodel. In most cases the thermodynamic properties of
the medium will be calculated externally by one of the many available specialized software
packages. Thusit is necessary to provide a calling interface to externa functionsin ordinary
programming languages. Keeping in mind both efficient simulation and model reuse, there
should be a uniform way how thermodynamic properties of different externa packages can be
accessed from Modelica models.

Many applications in process engineering and power plant simulation can only be captured
adequately with distributed parameter models. A method of lines (MOL) grid discretisation
(either finite difference, finite volume or finite element methods) is the state of the art of al but a
few very specialized simulation packages for modeling partia differential equations (PDES).
Modelicais envisaged as alanguage that is both open to future advances in numerical techniques
and as an exchange format for many existing software environments. Existing simulation
environments should be able to simulate Modelica code after preprocessing to DAE form.
Support for PDE is planned for future versions of Modelica.

Energy domain systems

Simulation in the energy domain sector is mainly used for improving or designing technical
systems: boilers, kilns, HVAC systems, pressure governors, etc. The first characteristic of these
systemsisthat they are complex and multi-domain. For example the building energy domain
dealswith all types of heat exchanges, with fluid flows, with combustion, with particle pollution,
with system controls, automatons etc. Modelica needs to address all these issues. It stresses the
need for non-causal hierarchical modeling. To a certain extent temperature distribution and PDE
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are relevant for improvement studies. Matrices and PDE features are useful. Combustion models
need to address thermodynamic tables by means of a suitable feature. But, the main requirements
of this domain are linked with user-friendliness, reuse, documentation, capitalization for study
efficiency and reproducibility. This means that it is necessary to isolate models, isolate numerical
data, isolate validation runs, integrate validity checks (domains, constraints, units, etc.) and in
order to produce automatic documentation include documentation features.

Bond graphs

Bond graphs (Karnopp and Rosenberg, 1968; Breedveld, 1985) are designed to model the energy
flow of physical systemsusing asmall set of unified modeling primitives, such as storage,
transformation and dissipation of (free) energy. Bond graphs are in principle labeled and directed
graphs, in which the vertices represent submodels and the edges represent an ideal energy
connection between power ports. This connection is a point-to-point connection, i.e. only one
bond can be connected to a power port. When preparing for simulation, the bonds are embodied
as two-signal connections with opposite directions. This signal direction depends on both the
internal description of the submodel and the structure of the bond graph where the submodel is
used; it is an algorithmic process. Conseguently, the model equations are non-causal. Within
some submodel equations, the power directions of the connected bonds are used in generating the
proper equations. As a consequence, it must be possible to define rules about the connection
structure, especially that only one-to-one connections are possible. Furthermore, it must be
possible to inquire the direction of a connection in a component, in order that the positive energy
flow direction can be deduced. Since bond graphs can be mixed with block-diagram parts,
bond-graph submaodels can have power ports, signal inputs and signal outputs as their interfacing
elements. Furthermore, aspects like the physical domain of abond (energy flow) can be used to
support the modeling process, and should therefore be incorporated in Modelica. Note that the
power bonds can be multi dimensional, i.e., are composed of a matrix of single power bonds.
This multi-bond feature is used to describe, e.g., 3D mechanical systemsin an elegant and
compact way.

Finite Automata and Extensions

Finite automata are used to model discrete systems, such as discrete control devices aswell as
switching structure of clutches or idealized thyristors. Several extensions are popular, e.g., Petri
nets, grafcet and state charts. It seems more flexible and powerful to build component libraries of
e.g., Petri nets and state charts, using basic Modelica language constructs instead of having direct
built-in language elements. Besides basic event handling, realization requires multi-assignment
statements: When the token of a Petri Net is removed from a place and moved to one or more
other places, the whole operation has to be treated as one non-separabl e operation. Furthermore,
several equations for the same variable are present because the state (or number of tokens) of a
place can be switched off from all transitions which are connected to this place (several
assignments to the same variable, but performed at different events).

4. Modelica L anguage Rationale and Overview

Modeling the dynamic behavior of physical systemsimpliesthat oneisinterested in specific
properties of alimited class of systems. These restrictions give a means to be more specific then
is possible when focusing on systemsin general. Therefore, the physical background of the
models should be reflected in Modelica.

Nowadays, physical systems are often complex and span multiple physical domains, whereas
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mostly these systems are computer controlled. Therefore, hierarchical models (i.e., models
described as connected submodels) using properties of the physical domains involved should
easily be described in Modelica. To properly support the modeler (i.e. to be able to perform
automated modeling), these physical properties should be incorporated in Modelicain such a
way, that checking consistency, like checking against basic laws of physics, can be programmed
easily in the Maodelicatranglators. Examples of physical properties are the physical quantity and
the physical domain of avariable. Thisimplies that a suitable representation for physical systems
modeling is more than a set of pure mathematical differential equations.

4.1 Basic L anguage Elements

The language constructs will be developed gradually starting with small examples, and then
extended by considering practical issues when modeling large systems.

Handling large models means careful structuring in order to reuse model knowledge. A model is
built-up from

» basic components such as Real, Integer, Boolean and String
structured components, to enable hierarchical structuring
component arrays, to handle real matrices, arrays of submodels, etc
equations and/or algorithms (= assignment statements)

connections

functions

Some means of declaring variable propertiesis needed, since there are different kinds of
variables, Parameters should be given values and there should be a possibility to give initial
conditions.

Basic declarations of variables can be made as follows:

Real u, y(start=1);
paraneter Real T=1;

Real isthe name of a predefined class or type. A Real variable has an attribute calledst art to
giveitsinitial value. A component declaration can be preceded by aspecifier like constant or
parameter indicating that the component is constant, i.e., its derivative is zero. The specifier
parameter indicates that the value of the quantity is constant during simulation runs. It can be
modified when a component is reused and between simulation runs. The component name can be
followed by amodification to change the value of the component or its attributes.

Equations are composed of expressions both on the left hand side and the right hand side like in
the following filter equation.

equati on
T*der(y) +vy = u;

Time derivative is denoted by der ().

4.2 Classesfor Reuse of M odeling Knowledge

Assume we would like to connect two filtersin series. Instead of repeating the filter equation, it is
more convenient to make a definition of afilter once and create two instances. Thisis done by

declaring aclass. A class declaration contains alist of component declarations and alist of
equations preceded by the keyword equation. An example of alow passfilter classis shown

12



below.

cl ass LowPassFilter
paraneter Real T=1
Real u, y(start=1);

equation
Trder(y) +y =u
end LowPassFilter;

The model class can be used to create two instances of the filter with different time constants and
"connecting” them together as follows

class FilterslnSeries
LowPassFilter F1(T=2), F2(T=3);

equati on
Fl.u = sin(time);
F2.u = Fl.y;

end FilterslnSeries;

In this case we have used a modification to modify the time constant of thefiltersto T=2 and T=3
respectively from the default value T=1 given in the low-passfilter class. Dot notation is used to
reference components, like u, within structured components, like F1. For the moment it can be
assumed that all components can be reached by dot-notation. Restrictions of accessibility will be
introduced later. The independent variable is referenced astime.

If the FiltersnSeries model is used to declare components at a higher hierarchical level, it is still
possible to modify the time constants by using a hierarchical modification:

nodel ModifiedFilterslnSeries
FilterslnSeries F12(F1(T=6), F2(T=11));
end ModifiedFilterslnSeries;

The class concept is similar as in programming languages. It is used for many purposesin
Modelica, such as model components, connection mechanisms, parameter sets, input-output
blocks and functions. In order to make Modelica classes easier to read and to maintain, special
keywords have been introduced for such special uses, model, connector, record, block, type
and package. It should be noted though that the use of these keywords only apply certain
restrictions, like records are not allowed to contain equations. However, for avalid model, the
replacement of these keywords by class would give exactly the same model behavior. In the
following description we will use the specialized keywords in order to convey their meaning.

Records

It is possible to introduce parameter sets asrecords which is arestricted form of class which may
not have any equations:

record FilterData
Real T;
end FilterData;

record TwoFilterData
FilterData F1, F2;
end TwoFil t erDat a;

nodel ModifiedFilterslnSeries
TwoFi | ter Data TwoFil terDatal(F1(T=6), F2(T=11));

13



FilterslnSeries F12=TwoFi | t er Dat al
end ModifiedFilterslnSeries;

The modification F12=TwoFi | t er Dat al is possible since al the components of
TwoFilterDatal (F1, F2, T) are presentinFilterslnSeries.Moreabouttype
compatibility can be found in section 4.4.

Packages

Class declarations may be nested. One use of that is maintenance of the name space for classes,
i.e., to avoid name clashes, by storing a set of related classes within an enclosing class. Thereisa
special kind of class for that, called package. A package may only contain declarations of
constants and classes. Dot-notation is used to refer to the inner class. Examples of packages are
given in the appendix where the Modelica standard package is described which is always
available for aModelicatrandator.

Information Hiding

So far we have assumed all components to be accessible from the outside by dot-notation. To
develop librariesin such away isabad principle. Information hiding is essential from a
mai ntenance point of view.

Considering the FiltersinSeries example, it might be a good ideato just declare two parameters
for the time constants, T1 and T2, the input, u and the output y as accessible from the outside.
The realization of the model, using two instances of model LowPassFilter, is a protected detail.
Modelica allows such information hiding by using the heading protected.

nodel FilterslnSeries2
paraneter Real T1=2, T2=3;
i nput u;
out put vy;

pr ot ect ed
LowPassFilter F1(T=T1), F2(T=T2);

equation
Fl.u = u;
F2 u = Fl.vy;
y F2.y;
end F|It erslnSeri es2;

Information hiding does not control interactive environments though. It is possible to inspect and
plot protected variables. Note, that variables of aprotected section of aclass A can be accessed
by aclass which extends class A. In order to keep Modelica simple, additiona visibility rules
present in other object-oriented languages, such as private (no access by subtypes), are not used.

4.3 Connections

We have seen how classes can be used to build-up hierarchical models. It will now be shown how
to define physical connections by means of arestricted class called connector .

We will study modeling of asimple electrical circuit. Thefirst issue is then how to represent pins

and connections. Each pin is characterized by two variables, voltage and current. A first attempt
would be to use a connector as follows.
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connector Pin
Real v, i;
end Pin;

and build aresistor with two pins p and n like
nodel Resi stor

Pin p, n; /1 "Positive" and "negative" pins.
paraneter Real R "Resistance";

equation
Rp.i = p.v - n.v;
n.i =p.i; /1 Assume both n.i and p.i to be positive

/1 when current flows fromp to n.
end Resistor;

A descriptive text string enclosed in " " can be associated with a component like R. A comment
which is completely ignored can be entered after //. Everything until the end of the lineis then
ignored. Larger comments can be enclosed in /* */.

A simple circuit with series connections of two resistors would then be described as:

nmodel FirstCrcuit
Resi stor R1(R=100), R2(R=200);

equation
Rl.n = R2. p;
end FirstCrcuit;

The equation R1.n = R2.p represents the connection of pin n of R1 to pin p of R2. The semantics
of this equation on structured components is the same as

Rl.n.v
Rl.n.i

R2.p.v
R2.p.i

This describes the series connection correctly because only two components were connected.
Some mechanism is needed to handle Kirchhoff’s current law, i.e. that the currents of al wires
connected at a node are summed to zero. Similar laws apply to flowsin a piping network and to
forces and torques in mechanical systems. The default rule is that connected variables are set
equal. Such variables are called across variables. Real variables that should be summed to zero
are declared with prefix flow. Such variables are also called through variables. In Modelicawe
assume that such variables are positive when the flow (or corresponding vector) isinto the
component.

connector Pin
Real v;
flow Real i;
end Pin;

It is useful to introduce units in order to enhance the possibility to generate diagnostics based on
redundant information. Modelica allows deriving new classes with certain modified attributes.
The keyword type is used to define a new class, which is derived from the built-in data types or
defined records. Defining Voltage and Current as modifications of Real with other attributes and
a corresponding Pin can thus be made as follows:

type Vol tage
type Current

Real (unit="VvV");
Real (unit="A");
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connector Pin
Vol t age v;
flow Current i;
end Pin;

nodel Resistor
Pin p, n; /1 "Positive" and "negative" pins.
paraneter Real R(unit="Chni') "Resistance";

equati on
R:p.i = - n.
p.i + n. 0; /] Positive currents into conponent.

end Resi stor

We are now able to correctly connect three components at one node.

nodel SinpleGrcuit
Resi stor R1(R=100), R2(R=200), R3(R=300);

equation
connect (R1. p, R2.p);
connect (R1. p, R3.p);
end SinpleCircuit;

connect isaspecial operator that generates equations taking into account what kind of variables
that are involved. The equations are in this case equivalent to

Rl.p.v = R2. p.v;
Rl.p.v = R3.p.v;
Rl.p.i + R.p.i + R3.p.i = 0;

In certain cases, amode library might be built on the assumption that only one connection can be
made to each connector. Thereisabuilt-in function car di nal i t y(c) that returns the number of
connections that has been made to a connector c. It is also possible to get information about the
direction of a connection by using the built-in function di r ect i on(c) (provided cardinality(c)
== 1). For a connection, connect(cl, c2), direction(cl) returns-1 and direction(c2) returns 1. An
example of the use of cardinality and direction is the bond graph componentsin the standard
Modelicalibrary (Appendix C).

4.4 Partial Models and I nheritance

A very important feature in order to build reusable descriptions is to define and reuse partial
models. Since there are other electrical components with two pins like capacitor and inductor we
can define a TwoPin as a base for al of these models.

partial nodel TwoPin
Pin p, n;
Vol tage v "Voltage drop";

equati on
V = p.vV - n.v;
p.i +n.i =0;

end TwoPi n;
Such a partial model can be extended or reused to build a complete model like an inductor.
nodel |nductor "ldeal electrical inductance"

ext ends TwoPi n;
paraneter Real L(unit="H') "Inductance";
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equati on
L*der (i) = v;
end | nduct or;

Thefacility is similar to inheritance in other languages. Multiple inheritance, i.e., several extends
statements, is supported.

The type system of Modelicais greatly influenced by type theory (Abadi and Cardelli 1996), in
particular their notion of subtyping. Abadi and Cardelli separate the notion of subclassing (the
mechanism for inheritance) from the notion of subtyping (the structural relationship that
determines type compatibility). The main benefit is added flexibility in the composition of types,
while still maintaining a rigorous type system.

Inheritance is not used for classification and type checking in Modelica. An extends clause can
be used for creating a subtype relationship by inheriting all components of the base class, but it is
not the only meansto create it. Instead, aclass A is defined to be asubtype of class B, if class A
contains al the public components of B. In other words, B contains a subset of the components
declared in A. This subtype relationship is especially used for class parameterization as explained
in the next section.

Assume, for example, that a more detailed resistor model is needed, describing the temperature
dependency of the resistance:

nodel TenpResi stor "Tenperature dependent electrical resistor”
ext ends TwoPi n;

paraneter Real R  (unit="0hnl') "Resi stance for ref. Tenp.";

paraneter Real RT (unit="0Chnm degC') "Tenp. dep. Resistance.";

paraneter Real Tref(unit="degC") "Ref erence tenperature.";
equat i on

v = i*(R+ RT*(T-Tref));
end TenpResi stor;

It is not possible to extend this model from the ideal resistor model Resi st or discussed in
Chapter 2, because the equation of the Resi st or class needs to be replaced by a new equation.
Still, the TenpResi st or isasubtype of Resi st or because it contains al the public
components of Resi st or .

4.5 Class Parameterization

We will now discuss a more powerful parameterization, not only involving values like time
constants and matrices but also classes. (This section might be skipped during the first reading.)
Assume that we have the description (of an incomplete circuit) as above.

nodel SinpleCrcuit
Resi stor R1(R=100), R2(R=200), R3(R=300);

equati on
connect (Rl1. p, R2.p);
connect (RL. p, R3.p);
end SinpleCrcuit;

Assume we would like to utilize the parameter values given for R1.R and R2.R and the circuit
topology, but exchange Resistor with the temperature dependent resistor model, TempResistor,
discussed above. This can be accomplished by redeclaring R1 and R2 as follows.

nodel RefinedSinpleCrcuit = SinpleGrcuit(
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redecl are TenpResistor R1,
redecl are TenpResistor R2);

Since TempResistor is a subtype of Resistor, it is possible to replace the ideal resistor model.
Values of the additional parameters of TempResistor can be added in the redeclaration:;

redecl are TenpResistor RL(RT=0.1, Tref=20);

Thisisavery strong modification of the circuit model and there is the issue of possible
invalidation of the model. We thus think such modifications should be clearly marked by the
keyword redeclar e. Furthermore, we think the modeller of the SimpleCircuit should be able to
state that such modifications are not allowed by declaring a component asfinal.

final Resistor R3(R=300);

It should also be possible to state that a parameter is frozen to a certain value, i.e., isnot a
parameter anymore:

Resi stor R3(final R=300);

To use another resistor model in the model SimpleCircuit, we needed to know that there were two
replaceabl e resistors and we needed to know their names. To avoid this problem and prepare for
replacement of a set of models, one can define areplaceable class, ResistorModel. The actual
class that will later be used for R1 and R2 must have Pins p and n and a parameter R in order to
be compatible with how R1 and R2 are used within SimpleCircuit2. The replaceable model
ResistorModel is declared to be a Resistor model. This meansthat it will be enforced that the
actual classwill be a subtype of Resistor, i.e., have compatible connectors and parameters.
Default for ResistorModel, i.e., when no actual redeclaration is made, isin this case Resistor.
Note, that R1 and R2 are in this case of class ResistorModel.

nodel SinpleCrcuit?2
repl aceabl e nodel ResistorMdel = Resistor;

prot ect ed
Resi st or Model R1(R=100), R2(R=200);
final Resistor R3(final R=300);

equation
connect (RL. p, R2.p);
connect (RL. p, R3.p);
end SinpleCircuit?2;

Binding an actual model TempResistor to the replaceable model ResistorModel is done as
follows.

nodel RefinedSinpleCrcuit2 =
Simpl eCircui t2(redecl are nmodel Resi storMdel = TenpResistor);

Another case where redeclarations are needed is extensions of interfaces. Assume we have a
definition for aTank in amodel library:

connector Stream

Real pressure;

fl ow Real vol uneFl owRat e;
end Stream

nodel Tank
paranmeter Area=1;
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repl aceabl e connector TankStream = Stream
TankStream I nlet, Qutlet;
Real |evel;

equation
/1 Mass bal ance.
Area*der (| evel)
Qutlet.pressure
end Tank;

I nl et.vol umeFl owRate + CQutl et. vol umeFl owRat e;
Inlet.pressure;

We would like to extend the Tank to model the temperature of the stream. Thisinvolves both
extension to interfaces and to model equations.

connect or Heat Stream
extends Stream
Real tenp;

end Heat Stream

nodel Heat Tank
extends Tank(redecl are connector TankStream = Heat Strean;

Real tenp;

equati on
/1 Energy bal ance.
Area*Level *der(tenp) = Inlet.volumeFl owRate*Inlet.tenp +

Qutl et. vol umeFl owRat e*Qut | et . t enp;
Qutlet.temp = tenp; // Perfect mxing assuned.

end Heat Tank;

The definition of HeatTank above is equivalent to the following definition (which has been
automatically produced by a Modelica trandator).

nodel Heat TankT
paraneter Area=1;

connect or TankStream
Real pressure;
fl ow Real vol uneFl owRat €;
Real tenp;

end TankSt ream

TankStream I nlet, Qutlet;

Real | evel;
Real tenp;
equation

Area*der (| evel) Inlet.vol uneFl owRate + Qutl et. vol unmeFl owRat e;
Qutl et. pressure Inlet.pressure;
Area*l evel *der(tenp) = Inlet.volunmeFl owRate*Inlet.tenp +
Qut |l et. vol uneFl owRat e*Qut | et . t enp;
Qutlet.tenp = tenp;
end Heat TankT;

Replaceable classes are also very convenient to separate fluid properties from the actual device
where the fluid is flowing, such as a pump.

4.6 Matrices
A matrix variable can be declared by appending dimensions after a component name.

Real S[3, 3];
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It isalso possible to make a matrix type

type Transformation = Real [3, 3];
Transformation S;

The following definitions are appropriate for modeling 3D motion of mechanical systems.

type Position = Real (unit="nt");
type Position3 = Position[3];

type Force = Real (unit="N");
type Force3 = Force[3];

type Torque = Real (unit="N.nt);
type Torque3d = Torque[ 3];

It is now possible to introduce the variables that are interacting between rigidly connected bodies
in afree-body diagram.

connect or MosCut
Transformation S "Rotation matrix describing frame A"
" with respect to the inertial frame";

Posi tion3 ro "Vector fromthe origin of the inertial”
" frame to the origin of frame A",
fl ow Force3 f "Resultant cut-force acting at the origin"

" of frame A";
fl ow Torque3 t "Resultant cut-torque with respect to the
" origin of frame A';
/1l Velocities and accel erations omtted.
end MsCut;

Such a definition can be used to model arigid bar as follows.

nodel Bar "Massless bar with two nechanical cuts.”
MosCut a b;
par anet er
Position3 r[3] =0, 0, 0]
"Position vector fromthe origin of cut-frame A"
" to the origin of cut-frame B";

equation
/1l Kinematic relationships of cut-frane A and B
b.S =a.s§
b.rO =a.r0 + a.S*r;
/'l Relations between the forces and torques acting at
11 cut-frane A and B
0 =af + b.f;
0 =a.t + b.t - cross(r, a.f);
/1 The function cross defines the cross product
11 of two vectors

end Bar;

Matrix expressions are formed in asimilar way asin MATLAB. The operators +, -, * and / can
operate on either scalars, vectors or two-dimensional matrices of type real, integer or Boolean.
Division isonly possible with ascalar. A row vector expression or matrix of columnsis formed
as [expry, expr,, ... expr,]. A column vector or matrix of rowsis formed as [expr;; expr,; ...
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expr,], i.e. with semicolon as separator between rows. Submatrices can be formed by utilizing :
notation for index ranges, A[i1:i2, j1:j2]. The then and el se branches of if-then-else expressions
may contain matrix expressions provided the dimensions are the same. There are several built-in
matrix functions like zeros, ones, identity, transpose, skew (skew operator for 3 x 3 matrices) and
cross (cross product for 3-dimensional vectors). The function linspace(il, i2, n) returns arow
vector [il, i1 + (i2-i1)/(n-1), ..., 12], i.e., nlinearly spaced valuesin therangeil toi2.

Matrix sizes and indices in equations must be constant during simulation. If they depend on
parameters, it is amatter of "quality of implementation™ of the translator whether such parameters
can be changed at simulation time or only at compilation time.

Block Diagrams

We will now illustrate how the class concept can be used to model block diagrams as a special
case. It is possible to postulate the data flow directions by using the prefixesinput and output in
declarations. This also alows checking that only one connection is made to an input, that outputs
are not connected to outputs and that inputs are not connected to inputs on the same hierarchical
level.

A matrix can be declared without specific dimensions by replacing the dimension with a colon:
A[:, :]. The actual dimensions can be retrieved by the standard function size. A genera state
space model is an input-output block (restricted class, only inputs and outputs) and can be
described as

bl ock St at eSpace
paraneter Real Al:, :],
B[ size(A 1), :],
d:, size(A 2)],
D si ze(C, 1), size(B, 2)]=0;

i nput Real u[size(B, 2)];
out put Real y[size(C 1)];
pr ot ect ed

Real x[ size(A 2)];

equati on
assert(size(A 1) == size(A 2), "Matrix A nust be square.");
der (x) = A*x + B*u;
y = C'x + D'u;

end St at eSpace;

Assert is a predefined function for giving error messages taking a Boolean condition and a string
as arguments. The actual dimensions of A, B and C are implicitly given by the actual matrix
parameters. D defaults to a zero matrix:

bl ock Test St at eSpace
St at eSpace S(A =[0.12, 2; 3, 1.5], B=1[2, 7; 3, 1], C=]0.1,

equati on

S.u=[time; sin(tinme)];
end Test St at eSpace;

The block classisintroduced to allow better diagnostics for pure input/output model

components. In such a case the correctness of the component can be analyzed locally which is not
possible for components where the causality of the public variables is unknown.

4.7 Repetition, Algorithms and Functions
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Regular Equation Structures

Matrix equations are in many cases convenient and compact notations. There are, however, cases
when indexed expressions are easier to understand. A loop construct, for, which alow indexed
expressions will be introduced below.

Consider evaluation of a polynomial function
n .
y = sumc; X
i =0

with agiven set of coefficients ¢ in avector a[n+1] with gi] = ¢,_;. Such asum can be expressed
in matrix form as a scalar product of the form
transpose(a) * [1; x; x"2; ... x"n]
if we could form the vector of increasing powers of x. A recursive formulation is possible.
xpowers[ 1] = 1;
xpower s[ 2: n+1] = xpowers[1l:n]*x;

y = transpose(a) * xpowers;

The recursive formulation would be expanded to

xpowers[ 1] = 1;
xpower s[ 2] = xpowers[ 1] *x;
xpower s[ 3] = xpower s[ 2] *x;

kbbmers[n+1] = xpower s[ n] *x;
y = transpose(a) * xpowers;

The recursive formulation above is not so understandabl e though. One possibility would be to
introduce a specia matrix operator for element exponentiation asin MATLAB (/). The
readability does not increase much though.

Matrix equations like
xpower s[ 2: n+1] = xpowers[ 1: n] *x;
can be expressed in aform that is more familiar to programmers by using afor loop:

for i in 1:n |oop
xpowers[i +1] = xpowers[i]*x;
end for;

Thisfor-loop is equivalent to n equations. It is also possible to use a block for the polynomial
evaluation:

bl ock Pol ynoni al Eval uat or
paraneter Real a[:];
i nput Real x;
out put Real v;

pr ot ect ed
constant n = size(a, 1)-1,;
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Real xpowers[n+1];

equation
xpowers[ 1] = 1;
for i in 1:n |oop
xpowers[i+1] =
end for;
y = transpose(a) * xpowers;
end Pol ynom al Eval uat or

xpower s[i]*x;

The block can be used as follows:
Pol ynoni al Eval uator pol yeval (a=[1, 2, 3, 4]);
Real p;
equation
pol yeval . x = timne;
p = polyeval .y;
It isalso possibleto bind the inputs and outputs in the parameter list of the invocation.
Pol ynom al Eval uat or pol yeval (a=[1, 2, 3, 4], x=tine, y=p);
Regular Model Structures

The for construct is also essential in order to make regular connection structures for component
arrays, for example:

Component conponent s[ n];

equati on
for i in 1:n-1 |oop
connect (conponents[i].Qutlet, conponents[i+1l].Inlet);
end for;
Algorithms

The basic describing mechanism of Modelica are equations and not assignment statements. This
gives the needed flexihility, e.g., that a component description can be used with different
causalities depending on how the component is connected. Still, in some situations it is more
convenient to use assignment statements. For example, it might be more natural to define adigital
controller with ordered assignment statements since the actual controller will be implemented in
such away.

Itis possible to call external functions written in other programming languages from Modelica
and to use all the power of these programming languages. This can be quite dangerous because
many difficult-to-detect errors are possible which may lead to simulation failures. Therefore, this
should only be done by the simulation specialist if tested legacy code is used or if aModelica
implementation is not feasible. In most cases, it is better to use a Modelicaalgorithm which is
designed to be much more secure than calling external functions.

The vector xvec in the polynomia evaluator above had to be introduced in order that the number
of unknowns are the same as the number of equations. Such arecursive calculation schemeis
often more convenient to express as an algorithm, i.e., a sequence of assignment statements,
if-statements and loops, which allows multiple assignments:

al gorithm

y :=0;
Xpower := 1,
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for i in 1:n+1 | oop

y 1=y + a[i]*xpower;
Xpower = xpower *x;
end for;

A Modelicaagorithm isafunction in the mathematical sense, i.e. without internal memory and
side-effects. That is, whenever such an algorithm is used with the same inputs, the result will be
exactly the same. If afunction is called during continuous integration thisis an absolute
prerequisite. Otherwise the mathematical assumptions on which the integration algorithms are
based on would be violated. An internal memory in an algorithm would lead to a model giving
different results when using different integrators. With this restriction it is also possible to
symbolically form the Jacobian by means of automatic differentiation. This requirement is also
present for functions called only at event instants (see below). Otherwise, it would not be
possible to restart a simulation at any desired time instant, because the simulation environment
does not know the actual value of the internal algorithm memory.

In the algorithm section, ordered assignment statements are present. To distinguish from
equationsin the equation sections, a special operator, :=, isused in assignments (i.e. given
causality) in thealgorithm section. Severa assignments to the same variable can be performed.
Besides assignment statements, an algorithm may contain if-then-else expressions, if-then-else
constructs (see below) and loops using the same syntax as in an equation-section.

Outputs, i.e., variables that appear on the left hand side of the equal sign, which are conditionally
assigned, areinitialized to their start value whenever the algorithmisinvoked. Due to this feature
it isimpossible for afunction to have a memory. Furthermore, it is guaranteed that the output
variables always have awell-defined value.

Within an equation section of a class, algorithms are treated as expressions (one output) or as
equations (severa outputs). Especially, algorithms are sorted together with all other equations.
For the sorting process, the calling of afunction with n output arguments istreated as n implicit
equations, where every equation depends on all output and on all input arguments. This ensures
that the implicit equations remain together during sorting (and can be replaced by the algorithm
invocation afterwards), because the implicit equations of the function form one algebraic loop.

In addition to the for loop, there is awhile loop which is mostly used within algorithms:

whil e condition | oop
{ equation }
end whil e;

Functions

The polynomial evaluator aboveis a special input-output block since it does not have any states.
Since it does not have any memory, it would be possible to invoke the polynomial function asa
function, i.e. memory for variables are allocated temporarily while the algorithm of the function is
executing. Modelica allows a specialization of a class called function which has only public

inputs and outputs, one algorithm and no equations.

The polynomial evaluation can thus be described as:
function Pol ynoni al Eval uat or 2
input Real a[:];
i nput Real x;
out put Real v;

pr ot ect ed
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Real Xpower ;

al gorithm
y 1= 0;
xpower = 1;
for i in 1:size(a, 1) loop
y :=y + a[i]*xpower;
Xpower = xXpower*Xx;
end for;

end Pol ynom al Eval uat or 2

A function declaration is similar to a class declaration but starts with thefunction keyword. The
input arguments are marked with the keyword input (since the causality isinput). The result
argument of the function is marked with the keyword output.

No internal states are allowed, i.e., the der- and new- operators are not alowed. Any class can be
used as an input and output argument. All public, non-constant variables of a classin the output
argument are the outputs of afunction.

Instead of creating a polyeval object as was needed for the block Polynomial Evaluator:
Pol ynom al Eval uat or pol yeval (a=[1, 2, 3, 4], x=tine, y=p);

it is possible to invoke the function as usual in an expression.
p = Polynoni al Eval uator2(a=[1, 2, 3, 4], x=tinme);

It is also possible to invoke the function with positional association of the actual arguments:
p = Pol ynom al Evaluator2([1, 2, 3, 4], tine);

Similar to Java, Modelica functions can have only one output argument. Thisis not a severe
restriction, because arecord can be returned in which the desired output arguments are collected
together. Since the appropriate style of a Modelica function call with multiple argumentsis not
yet fully clear - use afunctional style as Matlab or Mathematicado it, or use a procedura style, as
C, C++ and Fortran do it - it is not supported in the current version of Modelica.

External functions

It is possible to call functions defined outside of the Modelica language. The body of an external
function is marked with the keyword ext er nal :

function |og
i nput Real x;
out put Real v;
ext erna
end | og;

Thereisa"natura" mapping from Modelicato the target language and its standard libraries. The
C language is used as the least common denominator.

The arguments of the external function are taken from the Modelicadeclaration. If thereisa
scalar output, it is used as the return type of the external function; otherwise the results are
returned through extra function parameters. Arrays of simple types are mapped to an argument of
the simple type, followed by the array dimensions. Storage for arrays as return values is allocated
by the calling routine, so the dimensions of the returned array is fixed. More details are discussed
in the appendix.
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4.8 Hybrid Models
Discontinuous M odels

If-then-else expressions alow modeling of a phenomenawith different expressionsin different
operating regions. A limiter can thus be written as

y = if u > HighLint then Hi ghLimt
else if u < LowLimt then LowLinmt else u;

This construct might introduce discontinuities. If thisis the case, appropriate information about
the crossing points should be provided to the integrator. The use of crossing functionsis
described later.

More drastic changes to the model might require replacing one set of equations with another
depending on some condition. It can be described as follows using matrix expressions:

0 =if cond_A then

[ expression_All - expression_Alr
expressi on_A2l - expression_A2r ]
else if cond_B then
[ expression_Bll - expression_Blr
expression_B2|l - expression_B2r ]
el se
[ expression_Cll - expression_Clr
expression_C2l - expression_C2r ];

The size of the vectors must be the same in al branches, i.e., there must be equal number of
expressions (equations) for al conditions.

It should be noted that the order of the equations in the different branches isimportant. In certain
cases systems of simultaneous equations will be obtained which might not be present if the
ordering of the equations in one branch of the if-construct is changed. In any case, the model
remains valid. Only the efficiency might be unnecessarily reduced.

Conditional Models

It isuseful to be able to have models of different complexities. We will now introduce
conditional equations to support this and easy change of behavior descriptions by just setting a
parameter.

Consider the case when a control system switches between two different controllers, depending
on the situation. It can be described by two complementing conditional equations:

bl ock Controll er
paraneter Real k1, k2, k3, k4;
par anet er Bool ean sinpl e=true;
i nput Real e;
out put Real v;
pr ot ect ed
Real yl, y2, x;
equati on
if sinple then
yl = kl*e
el se
der(x) = k2*e
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y2 = k3*x + k4*e;
end if;

y = if sinple then yl else y2;
end Controller

The condition of theif branches may only depend on constants and parameters declared findl, i.e.,
possible to evaluate at compile time. This allows models of different complexity to be contained
in one class, such that it is easy to switch between these models by just changing the value of a
parameter. In the present Modelica definition conditional equations cannot contain dynamic
conditions becauseit is not yet clear in which way atranslator can handle such systems
automatically in an efficient way.

For more complex models, conditional components are needed as shown in the next example
where the two controllers are model ed itself as subcomponents:

bl ock Controller
i nput Bool ean sinpl e=true;
i nput Real e;
out put Real v;
prot ect ed
Controllerl cl(u=e, enabl e=sinple);
Controller2 c2(u=e, enabl e=not sinple);
equation
y = if sinple then cl.y else c2.vy;
end Controller

Attribute enabl e is built-in Boolean input of every block with default equation "enable=true". It
allows enabling or disabling a component. The enable-condition may be time and state
dependent. If enable=false for an instance, its equations are not evaluated, all declared variables
are held constant and all subcomponents are disabled. Specia consideration is needed when
enabling a subcomponent. The reset attribute makes it possible to reset all variablesto their
Start-values before enabling. The reset attribute is propagated to al subcomponents. The previous
controller example could then be generalized as follows, taking into account that the Boolean
variable simple could vary during a simulation.

bl ock Controller
i nput  Bool ean sinpl e=true;
i nput Real e
out put Real y
prot ect ed
Controllerl cl(u=e, enabl e=sinple, reset=true);
Controller2 c2(u=e, enabl e=not sinple, reset=true);
equation
y = if sinple then cl.y else c2.vy;
end Controller;

Discrete Event and Discrete Time M odels
The actions to be performed at events are specified by awhen-statement.
when condi tion do
assi gnnent s
end when;
The assignments are executed when the condition becomes true. It is possible to use avector of

conditions. In such a case the assignments are executed whenever any of the conditions becomes
true.
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Special actions can be performed when the simulation starts and when it finishes by testing the
built-in predicates initial() and terminal( ). A special operator new( ) can be used to assign new
values to the continuous states of amodel at an event.

Let’'s consider discrete time systems or sampled data systems. They are characterized by the
ability to periodically sample continuous input variables, calculate new outputs influencing the
continuous parts of the model and update discrete state variables. The output variables keep their
values between the samplings. We need to be able to activate equations once every sampling.
Assume there is a built-in function sample(Start, Interval) that is true when time=Start +
n*Interval, n>=0. A discrete first order state space model could then be written as

bl ock Di screteStateSpace
paraneter Real a, b, c, d;
par anet er Real Period=1;
i nput Real u;
out put Real v;

prot ect ed
Real x;

equation
when sanpl e(0, Period) do
new( X) a*x + b*u;
y = Cc*X + d*u;
end when;
end Di screteStateSpace;

Note, that the special notation, new(x), is used to denote the value of the state variable x after the
sampling.

In this case, the first sampling is performed when simulation starts. With Start > 0, there would
not have been any equation defining new(x) and y initialy. All variables being defined by
conditional equations hold their values between the activation of the equations and have the value
of their Start-attribute before the first sampling, i.e., they are discrete state variables.

For non-periodic sampling a somewhat more complex method for specifying the samplings would
be used. The sequence of sampling instants could be calculated by the model itself and kept in a
discrete state variable, say NextSampling. We would then like to activate a set of equations once
when the condition time>= NextSampling becomes true. An alternative formulation of the above
discrete system would thus be.

bl ock Di screteStat eSpace
paraneter Real a, b, c, d;
par anet er Real Period=1;
i nput Real u;
out put Real v;

prot ect ed
Real x, Next Sanpling(Start=0);

equation
when tinme >= Next Sanpling do
new(x) := a*x + b*u;
y = Cc*X + d*u;
new( Next Sanpling) := tinme + Period;
end when;

end Di screteStateSpace;
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Trandator pragmasfor efficient smulation

If the conditions used in if-the-el se expressions contain relations with dynamic variables, the
corresponding derivative function f might not be continuous and have as many continuous partial
derivatives as required by the integration routine in order for efficient simulation. If the resulting
if-then-else expression is not smooth, the modeller should have the possibility to give this extra
information to the integrator. Modern integrators have indicator functions for such discontinuous
events. For arelation like vl > v2, aproper indicator functionisvl - v2. One way of giving a hint
to the simulation software of possible discontinuitiesis to embed each such relation in a function
event asfollows.

y =if event (u > HighLinit) then Hi ghLinit
elseif event(u < LowLimit) then LowLinit else u;

One might argue that such event handling should always be used for relations. Thiswould,
however, slow down simulation in certain cases because events would be generated even if the
relations would be used as boundaries for piecing together functions smoothly.

For conditional equations and Boolean equations (see bel ow), the situation is somewhat different
since more drastic changes in the model might occur, such as changing number of state variables.
It thus seems appropriate that events are always generated. However, in some cases the event
does not need to be triggered exactly when the condition becomes true. It might be sufficient to
wait until the next step of the integration has been completed. Such events are sometimes called
step events. An appropriate translator pragma for that would be to use a function switch(relation).

Synchronization and event propagation

Propagation of events can be done by the use of Boolean variables. A Boolean equation like
Qut. Overflowing = Hei ght > MaxLevel ;

in alevel sensor might define a Boolean variable, Overflowing, in an interface. Other

components, like a pump controller might react on this by testing Overflowing in their

corresponding interfaces

Punmping = I n. Overfl owi ng or StartPunping;
Del taPressure = if Punping then DP el se O;

A connection like
connect (Level Sensor. Qut, PunpController.In);
would generate an equation for the Boolean component StartPump
Level Sensor. Qut. Start Punp = PunpController.In. StartPunp;
For ssimulation, this equations needs to be solved for PumpController.In.StartPump. Boolean

equations aways needs to have avariable in either the left hand part or the right hand part or in
both in order to be solvable.

An event (arelation becoming true or false) might involve the change of continuous variables.
Such continuous variables might be used in some other relation, etc. Propagation of events thus
might require evaluation of both continuous eguations and conditional equations.

Iteration of discrete states at events
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Consider the following ideal model of a diode
O=if u>0or i >0then u else i;

To understand this model, first consider the case wheni > 0, i.e. the diode is conducting. The
voltage over the diode is then zero according to the equation in the first branch. When the current
decreases just below zero, an event occurs due to the condition i>0, the diode opens and the
second equation branch is selected, i=0. Typically the voltage is negative for awhile. When u
becomes alittle positive again, an event occurs due to the condition u>0. If such adiode model is
used in, for example, arectifier circuit, typically anonlinear system of equations occur involving
u and i of the diode and some other variables. Since u and i occur in Boolean relations, the
nonlinearities are not smooth, i.e., solving the nonlinear system of equations by means of
Newton-Raphson technique is not appropriate. Between the opening and closing of the diode, the
conditionu >0 or i > 0is constant though. The solution procedure could take this into account, if
the modeller would introduce a Boolean state variable which only changes at the events.

0 =if Closed then u else i;
new(Cosed) =u >0 or i > 0;

The last equation will not longer belong to the system of simultaneous equations due to the use of
the new-operator, i.e., the nonlinearity has been removed. After an event, when new(Closed) has
changed, the equations are recal culated to ensure that the new values are consistent. This
recalculation is performed until no Boolean or integer variables change, i.e. thisisafix point
iteration over Boolean and integers for finding the solution to a system of equations that might
involve Boolean, integer and rea variables.

During simulation at least u>0 would always be checked and the exact time for the crossing
would be determined even if the condition would already be true due to i>0. Checking condition
i>0 might be skipped when u>0 (short circuit evaluation of or). The model can be simulated
more efficiently by rewriting the last equation as

new(Closed) = if Closed theni > 0 else u > 0;

The reason is that only one of the crossingsi>0 or u>0 needs to be checked at each step
depending on the condition Closed.

This style of modeling, introducing mode state variables, has shown to give efficient simulations
of ideal diodes, thyristors, friction, etc. Even if there is a certain amount of rewriting of equations,
or rather a certain way of thinking, when modeling, it is essential that Modelica supports this style
in order to get efficient simulation.

Conditional Equationswith Causality Changes

The following example models a breaking pendulum - a simple variable structure model. The
number of degrees-of-freedom increases from one to two when the pendulum breaks. The
example shows the needs to transfer information from one set of state variables (phi, phid) to
another (pos, vel) at an event. Consider the following description with a parameter Broken.

nodel Breaki ngPendul um
paraneter Real nm=l, g=9.81, L=0.5;

par anet er Bool ean Broken;

i nput Real u;

Real pos[2], vel[2];

constant Real PI=3.141592653589793;
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Real phi(start=Pl/4), phid;

equation
vel = der(pos);

i f not Broken then

/'l Equations of pendul um

pos = [L*sin(phi); -L*cos(phi)];
phid = der(phi);

ntL*L*der (phid) + nmrg*L*sin(phi) = u

el se;
/'l Equations of free flying nass
ntder(vel) = nt[0; -gd];
end if;
end Breaki ngPendul um

This problem is non-trivial to simulateif Broken would be a dynamic variable because the
defining equations of the absolute position "pos’ and of the absolute velocity "vel" of the mass
change causality when the pendulum breaks. When "Broken=false", the position and the velocity
are calculated from the Pendulum angle "phi" and Pendulum angular velocity "phid”. After the
Pendulum is broken, the position and velocity are state variables and therefore known quantities
in the model.

As already mentioned, conditional equations with dynamic conditions are presently not supported
because it is not yet clear in which way atranslator can handle such a system automatically. It
might be that atranslator pragmais needed to guide the translation process. It is possible to
simulate variable causality systems, such as the breaking pendulum, by reformulating the problem
into aform where no causality change takes place using conditional block models:

record Pendul unDat a
paraneter Real m g, L;
end Pendul unDat a;

partial nodel BasePendul um
Pendul umDat a p;
i nput Real u;
output Real pos[2], vel[2];
end BasePendul um

bl ock Pendul um
ext ends BasePendul um
constant Real PI=3.141592653589793;
out put Real phi(start=Pl/4), phid,
equati on
phid = der(phi);
p. n*p. L*p. L*der (phid) + p.nfp.g*p.L*sin(phi) = u;

pos [p. L*sin(phi); -p.L*cos(phi)];
vel der (pos);
end Pendul um

bl ock Br okenPendul um

ext ends BasePendul um
equati on

vel = der(pos);

p. nrder(vel) = p.n¥[0; -p.g];
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end BrokenPendul um

nodel Breaki ngPendul un
ext ends BasePendul um(p. me1, p.g=9.81, p.L=0.5);
i nput Bool ean Broken

pr ot ect ed
Pendul um (p=p, u=u, enabl e=not Broken);
Br okenPendul um (p=p, u=u, enabl e=Broken);
equat i on

when Broken do

new( Br okenPendul um pos) = Pendul um pos;
new( Br okenPendul um vel ) = Pendul um vel
end when
al gorithm

if not Broken then

pos : = Pendul um pos;
vel := Pendul um vel
el se
pos : = BrokenPendul um pos;
vel := BrokenPendul um vel
end if

end Breaki ngPendul ung;

Thisrewriting scheme is always possible and resultsin alarger model. It has the drawback that
the same physical variable is represented by several model variables. In some cases, such as for
the breaking pendulum, it is possible to avoid this drawback:

nodel Breaki ngPendul un8
paraneter Real nmrl, g=9.81

i nput Bool ean Broken

i nput Real u;

Real pos[2], vel[2];

constant Real Pl =3.141592653589793;
Real phi(start=Pl/4), phid;

Real L=0.5, Ldot;

equati on
pos = [L*sin(phi); -L*cos(phi)];
vel = der(pos);
phid = der(phi);
Ldot = der(L);

0 = if not Broken then [
/'l Equations of pendul um
ntder (phid) + nmrg*L*sin(phi) - u;
der (Ldot)]

el se
/1l Equations of free flying nass
ntder(vel) = nf[0; -gd];

end Breaki ngPendul uns;

The trick was to use complete polar coordinates including the length, L and to give a differentia
equation for L in the non Broken mode. If the derivatives of some variables are not calculated
during the "not Broken"-phase, the variables "pos’ and "vel" can be considered as algebraic
variables. A simulator thus has the possibility to remove them from the set of active state
variables.

4.9 Unitsand Quantities
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The built-in "Real" type of Modelica has additional attributes to define unit properties of
variables:

type Real
paraneter StringType quantity
paraneter StringType unit
paraneter StringType displayUnit

" "unit in equations";
" "default display unit";

end Real ;

/1 define quantity types

type Force = Real (final quantity="Force", final unit="N");

type Angle Real (final quantity="Angle", final unit="rad",
di spl ayUni t ="deg");

/1 use the quantity types
Force f1 , 2 (displayUnit="kp");
Angl e al pha, beta(displayUnit="rad");

The quantity attribute defines the category of the variable, like Length, Mass, Pressure. Theunit
attribute defines the unit of avariable as utilized in the equations. That is, all equationsin which
the corresponding variable is used are only correct, provided the numeric vaue of the variableis
given with respect to the defined unit. Finally, displayUnit gives the default unit to be used in
tools based on Modelicafor interactive input and output. If, for example, a parameter value is
input viaamenu, the user can select the desired unit from alist of units, using the "displayUnit"
value as default. When generating M odelica code, the tool makes the conversion to the defined
"unit" and stores the used unit in the "displayUnit" field. Similarly, a ssmulator may convert
simulation results from the "unit" into the "displayUnit" unit before storing the results on file. All
of these actions are optional. If tools do not support units, or a specific unit cannot be found in the
unit database, the value of the "unit" attribute could be displayed in menus, plots etc.

The quantity attribute is used as grouping mechanism in an interactive environment: Based on the
guantity name, alist of unitsis displayed which can be used as displayUnit for the underlying
physical quantity. The quantity name is needed because it isin general not possible to determine
just by the unit whether two different units belong to the same physical quantity. For example,

type Torque
type Energy

Real (final quantity="Mnent O Force”, final unit

“N. ni
Real (final quantity="Energy" , final unit="J"

)

the units of type Torque and type Energy can be both transformed to the same base units, namely
"kg.m2/s2". Still, the two types characterize different physical quantities and when displaying the
possible displayUnits for torque types, unit "J' should not be in such alist. If only aunit nameis
given and no quantity name, it is not possible to get alist of displayUnitsin asimulation
environment.

Together with Modelica a standard package of predefined quantity and connector typesis
provided in the form as shown in the example above. Thiswill give some help in standardization
of the interfaces of models. Note, that the prefix final defines that the quantity and unit values of
the predefined types cannot be modified.

Conversion between unitsis not supported within the Modelica language. This simplifiesa
Modelicatrandator considerably, especially because a unit-database with its always incomplete
collection of unitsis not needed, see e.g. (Cardarelli 1997). As a consequence, the semantics of a
correct Modelicamodel isindependent of the unit attributes and the Modelica translator can
ignore them during code generation. Especially, the unit attributes need not be checked for a
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connection, i.e., connected variables may have different quantities and units.

Much more support on units and quantities will be given by tools based on Modelica. Thiswill be
considered as "quality of implementation". An object-diagram editor may, for example, support
automatic unit conversion when two interfaces are connected. Asageneral rule it will always be
allowed to connect any variable to a variable which has no quantity and unit associated with it.
Furthermore, a Modelica translator may optionally check equations on correct dimensionality
(thiswill produce only warning messages, i.e., code will be produced anyway). The equation
"f=m*a" would, for example, produce awarning, if "f" isgivenin "N.m" because then the units
are not compatible to each other. The variables in the equations may have non-SI units.

Therefore, for example, the compiler will not detect that "f=m*a" is an error, if the units"N" for
"f*, "g" for "'m" and "m/s*2" for "a" are used. Dimension checking is done by transforming the
"guantity” information into one of the seven base "quantities’ (like "Mass", "Length").

Usually, units are associated with types. There are however elements where instances may have a
different unit by redefinition of the quantity type. Example:

type Voltage = Real (final quantity="Voltage", final unit="V");

nodel Si neSi gha
paraneter Real freq (unit="Hz" );
par anet er Angl e phi;

repl aceabl e type SineType = Real

par anet er Si neType Anplitude;

out put Si neType v;

constant Real PI=3.141592653589793;
equati on

y = Anmplitude*sin(2*Pl*freq*time + phi);
end Si neSi gnal

nodel Circuit
Si neSi gnal sig(redecl are SineType = Vol tage);
Vol t ageSour ce Vsour ce;

equat i on
connect (sig.y, Vsource.in);
end Circuit;

In ablock diagram library thereis ageneral sine signal generator. When it is used to generate a
voltage sine for a voltage source, the output of the signal generator should have a unit of "V".
This can be accomplished by having the type of the amplitude and of the output as a replaceable
type which can be changed appropriately when this signal generator is instantiated.

4.10 Annotationsfor Graphics and Documentation

In addition to the mathematical model with variables and equations, additional information is
needed for example to represent icons, graphical layout, connections and extended
documentation. Graphically representing models as interconnected submodels displayed asicons,
supports their quick understanding. As most contemporary tools provide facilities to build models
graphically, Modelica has language constructs to represent icons, graphical layout and the
connections between submodels.

Modelica supports property lists for the various components. Such lists can be used to store
graphical, documentation and tool related annotations. Each component can have alist designated



by the keyword annotation. The value of such annotations can be according to any class, i.e,, it
can be created using a class modification. The strong type checking is abandoned in this case
because of the need for various modeling tools to use different kinds of annotations. Since such
annotation values are normally generated and read by tools, i.e., not directly edited by humans,
there is areduced need for having redundant type information. However, in order that graphical
and documentation information can be exchanged between tools, a minimum set of annotation
components are specified.

Graphical representation of models
Graphica annotation information is given in three separate contexts:

e Annotations associated with a component, typically to specify position and size of the
component.

e Annotations of aclass to specify the graphical representation of itsicon (see above),
diagram, and common properties such asthe local coordinate system.

¢ Annotations associated with connections, i.e., route, color of connection line, etc.

The example below shows the use of such graphical attributes to define aresistor.

nodel Resistor
Pin p annotation (extent=[-110, -10; -90, 10]);
Pin n annotation (extent=[ 110, -10; 90, 10]);

paraneter R "Resistance in [Chn]"

equat i on
Rp.i = p.v - n.v;
ni =p.i;

public
annotation (Icon(
Rect angl e(extent=[-70, -30; 70, 30], style(fillPattern=1)),
Text (extent =[-100, 55; 100, 110], string="%anme=9R"),
Li ne(poi nts=[-90, 0; -70, 0]),
Li ne(poi nts=[ 70, 0; 90, 0])
));

end Resi stor;

Theresistor has two pins, and we specify two opposite corners of the extent of their graphical
representation. An icon of the Resistor is defined by arectangle, atext string and two lines. For
the rectangle we specify additional style attributes for fill pattern.

The extent specified for a component is used to scale the icon image. The icon isdrawn in the
master coordinate system specified in the component’s class. Theicon is scaled and trandlated so
the coordinate system is mapped to the region defined in the component declaration.

The attribute set to represent component positions, connections and various graphical primitives
for building iconsis shown below. The attribute structures are described through Modelica
classes. Points and extents (two opposite points) are described in matrix notation.

type Point = Real [2]; I [x, vy]
type Extent = Real[2,2]; I [x1, yl; x2, y2]

record Coordi nat eSyst em /1l Attribute to class
Ext ent extent;
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Poi nt grid;
Poi nt si ze;
end Coordi nat eSyst em

record Pl acenent /1 Attribute for conponent
Ext ent extent;
Real rotation;

end Pl acenent ;

record Style
Integer color[3], fillColor[3]; /1 RGB
Integer pattern, fillPattern, thickness, gradient, snooth, arrow,
String font;

end Styl e;

record Route /] Attribute for connect
Poi nt points[:];
Style style;
String | abel;

end Rout e;

/1 Definitions for graphical elenents
record Line = Route;

record Pol ygon = Route;

record G aphicltem
Extent extent;
Style style;

end G aphicltem

record Rectangle = Graphicltem
record Ellipse = Gaphicltem

record Text
extends Graphicltem
String string;

end Text;

record BitMp

extends G aphicltem

String URL; /1 Nanme of bitmap file
end Bit Mp;

The graphical unit of the master coordinate system used when drawing lines, rectangles, text etc.
is the baseline spacing of the default font used by the graphical tool, typically 12 pointsfor a 10
point font (note: baseline spacing = space between text lines).

Documentation of models

In practical modeling studies, documenting the model is an important issue. It is nhot only for
writing areport on the modeling work, but a so to record additional information which can be
consulted when the model is reused. This information need not necessarily be completely
structured and standardized in the sense that M odelica language constructs are available for all
aspects. The following aspects should typically be recognized:

History information

Major milestones, like creation, important changes, release into public accessibility should
be recorded. Information to store are the author, date and a brief description. This
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functionality is comparable with version control of software, using tools such as SCCS or
RCS. If aspecific modeling procedure is used, the mile stones of such a procedure can be
recorded in this part.

Referencesto literature
References to external documents and/or scientific literature for understanding the model,
its context and/or underlying theory should be mentioned here. The format can be like a
literature referencelist in an scientific article.

Validation information
This concerns the reference (model or measurement data) to which the model is validated
and criteriafor validation. Also the simulation experiments used for the validation should be
mentioned.

Explanation and sketches
A brief text describing the model or device, akind of 'manual page’ of the model. Schematic
drawings or sketches can be incorporated for better understanding.

User advice
This extension of the explanation part, concerns additional remarks giving hints for reuse of
the model.

Basic documentation functionality is available in Modelica. This consists of an annotation
attribute Docunent at i on which isfurther structured into key/text pairs.

annot ati on (Docunentati on(
keyl "Text string",
key2 "Text string"

));

Currently, no further detail on structuring information is given. The information is given asplain
text in the appropriate category. It islikely that companies have their own way of documenting
their models and experiments, so that different ways of filling in the documentation information
are needed.

5. Overview of Present Languages

In this chapter an overview is given on the languages which have been used as starting point for
the Modelicadesign, i.e., Modelica builds upon the experience gained with these languages.

Since the definition of CSSL in 1967 (Strauss, 1967), most modeling languages are essentially
block oriented with inputs and outputs and the mathematical models are defined as assignment
statements for auxiliary variables and derivatives. Physical equations thus need to be transformed
to aform suitable for calculations. The only aid in transforming the equations to an algorithm for
calculating derivatives is automatic sorting of the equations.

The languages that form the base of Modelica, al have general equations, i.e. expression =
expression, as the basic element. Hierarchical decomposition and reuse are typically supported by
some kind of model class. Typically, the languages have provisions to describe physical
connection mechanisms, i.e. to associate a set of variables with some kind of port. Such ports can
be used at higher hierarchical levels when connecting submodels without having to deal with
individual variables.

ASCEND

ASCEND (Advanced System for Computation in ENgineering Design) was devel oped at
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Carnegie Méellon University, PA, USA to be arapid model building environment for complex
models comprising large sets of nonlinear algebraic equations (Piela 1989, Pielaet.al. 1991). The
language istextual. It supports quantity equations, single inheritance and hierarchical
decomposition, but it does not have well defined submodel interfaces. The application domain is
chemical process modeling. Later versions support dynamic continuous time modeling.

Dymola

Dymola (Dynamic Modeling Language), as introduced already in 1978 (Elmqvist, 1978), is based
on equations for non-causal modeling, model types for reuse and submodel invocation for
hierarchical modeling. The Dymolatranslator utilizes graph theoretical methods for causality
assignment, for sorting and for finding minimal systems of simultaneous equations. Computer
algebrais used for solving for the unknowns and to make simplifications of the equations.
Constructs for hybrid modeling, including instantaneous equations, was introduced in 1993
(Elmqvist et.al. 1993). Crossing functions for efficient handling of state events are automatically
generated. A graphical editor is used to build icons and to make model compositions (EImqvist
et.al. 1996). Mgjor application areas include multi-body systems, drive-trains, power electronics
and thermal systems.

gPROMS

gPROMS (Barton and Pantelides 1994, Oh and Pantelides 1996) is a general process modeling
system. The language is a further development of SPEEDUP. Continuous parts of the process are
modelled by DAE'’s. A task concept handles the discrete events. Continuous models and tasks are
combined into a single entity called process. The g°PROM S language has constructs for certain
kinds for partia differential equations. The major application domain is chemical process
modeling.

MOSES

MOSES (Modular Object-oriented Software Environment for Simulation) is a prototype system
for object-oriented modeling based on the experience with Omola. It consists of a"Maodel
Definition Language” (MDL), a"DataModel" (DM) yielding minimum mismatch with MDL,
and an object-oriented data base system based on GemStone to meet the hard data management
problems involved in complex system modeling. Combined continuous and discrete-time (hybrid)
systems are supported. The main application areais robotics.

NME

The Neutral Model Format (NMF) (Sahlin et.al. 1996) is alanguage in the Dymolaand Omola
tradition and was first proposed as a standard to the building and energy systems simulation
community in 1989. The language is formally controlled by a committee within ASHRAE (Am.
Soc. for Heating, Refrigerating and Air-Conditioning Engineers). Several independently
developed NMF tools and model libraries exist, and valuable |essons on language standardization
and development of reusable model libraries have been learned. Salient features of NMF are: (1)
good support for model documentation, (2) dynamical vector and parameter dimensions (a model
can, e.g., calculate required spatial resolution for PDE), (3) full support for callsto foreign
models (e.g. legacy or binary Fortran or C models) including foreign model event signals.

ObjectMath

ObjectMath (Object Oriented Mathematical Modeling Language), (Fritzson et.al. 1995) isa
high-level programming environment and modeling language designed as an extension to
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Mathematica. The language integrates object-oriented constructs such as classes, and single and
multiple inheritance with computer algebra features from Mathematica. Both equations and
assignment statements are included, as well as functions, control structures, and symbolic
operations from standard Mathematica. Other features are parameterized classes, hierarchical
composition and dynamic array dimension sizes for multi-dimensional arrays. The environment
provides a class browser for the combined inheritance and composition graph and supports
generation of efficient code in C++ or Fortran90. The user can influence the symbolic
transformation of equations or expressions by manually specifying symbolic transformation rules,
which also gives an opportunity to control the quality of generated code. The main application
area so far has been in mechanical systems modeling and analysis.

Omola

Omola (Andersson 1984, Mattsson et.al. 1993) is an object-oriented and equation based modeling
language. Models can be decomposed hierarchically with well-defined interfaces that describe
interaction. All model components are represented as classes. Inheritance and specialization
support easy modification. Omola supports behavioral descriptions in terms of
differential-algebraic equations (DAE), ordinary differential equations (ODE) and difference
equations. The primitives for describing discrete events alow implementation of high level
descriptions as Petri nets and Grafcet. An interactive environment called OmSim supports
modeling and simulation: graphical model editor, consistency analysis, symbolic analysis and
manipulation to simplify the problem before numerical simulation, ODE and DAE solvers and
interactive plotting. Applications of Omola and OmSim include chemical process systems, power
generations and power networks.

SIDOPS+

SIDOPS+ supports nonlinear multidimensional bond-graph and block-diagram models, which
can contain continuous-time parts and discrete-time parts (Breunese and Broenink, 1997). The
language has facilities for automated modeling support like polymorphic modeling (separation of
the interface and the internal description), multiple representations (component graphs, physical
concepts like bond graphs or ideal physical models and (acausal) equations or assignment
statements), and support for reusability (e.g. documentation fields, physical types). Currently,
SIDOPS+ is mainly used in the field of mechatronics and (neural) control. It isthe model
description language of the package 20-SIM (Broenink, 1997). SIDOPS+ is the third generation
of SIDOPS which started as amodel description language for single-dimensiona bond-graph and
block-diagram models.

Smile

Smileis an object-oriented and equation-based modeling and simulation environment. The
object-oriented and imperative features of Smile's modeldescription language are very similar to
Objective-C. Equations may either be specified symbolically or as procedures; external modules
can be integrated. Smile also has a dedicated experiment description language. The system
consists of tranglators for the above-mentioned languages, a simulation engine offering several
numeric solvers, and components for interactive experimenting, visualization, and optimization.
Smile’'s main application domain traditionally has been the simulation of solar energy equipment
and power plants (Tummescheit and Pitz-Paal, 1997), but thanks to its object-oriented modeling
features it is applicable to other classes of complex systems aswell. An extension of Smile to
support Modelicais planned (Erngt, et.al., 1997).

U.L.M. - Allan
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The goal of ALLAN (Pottier, 1983; Jeandel 1997) isto free engineers from computer science and
numerical aspects, and to work towards capitalization and reuse of models. This means
non-causal and hierarchical modeling. A graphical representation of the model is associated to the
textual representation and can be enhanced by a graphical editor. A graphical interface is used for
hierarchical model assembly. The discrete actions at the interrupts in continuous behavior are
managed by events. Automatons (synchronous or asynchronous) are available on events.
FORTRAN or C code can be incorporated in the models. Two trand ators toward the NEPTUNIX
and ADASSL (modified DASSLRT) solvers are available. Main application domains are energy
systems, car electrical circuits, geology and naval design.

The language U.L.M. has been designed in 1993 with the same features as the ALLAN language
in asomewhat different implementation (Jeandel, 1996). It is amodel exchange language linked
to ALLAN. All aspects of modeling are covered by the textual language. There is an emphasis on
the separation of the model structure and the model numerical data for reuse purposes. It also has
an interesting feature on model validation capitalization.

VHDL-AMS

VHDL-AMS (IEEE, 1997) is an extension to the discrete circuit modeling language VHDL for
combined continuous and discrete models. Structuring is done by means of entities and
architectures. An entity defines the external view of acomponent including its parameters
(generics), its discrete signal interface and its continuous interface (ports). The architecture
associated with an entity describes the implementation which may contain equations (DAE'’S).
VHDL-AMSisalarge and rich modeling language targeted mainly at the application domain of
electronics hardware. Several extensions of VHDL towards full object orientation have been
proposed (see e.g. Benzakki, et.al., 1997), but the continous modeling extensions of VHDL-AMS
were not yet taken into account in this work.

6. Design Rationale

As already pointed out in the beginning of this chapter, Modelicais an object oriented,
equation-based, declarative data-oriented modeling language for non-causal modeling of physical
systems. In this section we give a short rational e of the language from a computer science point of
view by explaining some of the design principles and decisions behind the language in its current
form.

The following are a set of general principles and design goal s that have been applied more or less
consistently during the design of the Modelica language. We give several examples how these
goals have influenced the current design.
¢ Engineering tool
The Modelicalanguage is designed to be an engineering tool for modeling of realistic
physical systems, usually with the aim of simulating, optimizing or controlling such
systems. Thus, the language has to fulfill the requirements of engineering, such as allowing
efficient implementation, coping with large physical systems composed of different kinds of
subsystems.
¢ Reliability and correctness

The language as an engineering tool should support the construction of reliable and correct

40



software. This goal is rather fundamental to the overall design of Modelica. For example,
readability of system modelsisimportant since this contributes to reliability in engineering,
even at the cost of more verbose code. Thisisthe main reason for having named parameter
passing in Modelica, also present in Ada. The strong typing in Modelica has been
introduced to provide partial verification of internal consistency. The declarative and
functional style of Modelica helps avoid certain errors and enhances code reuse.

Coping with system evolution

Large software systems are always evolving, e.g. by adding new functionality, adapting to
new hardware, enhancing performance, etc. Most large software systems are dwaysin a
transitional situation where most things work and a few things do not work. We say that an
evolving system isreliable if it does not break too often or too extensively in spite of
change. The strong type system of Modelicais one way of controlling system evolution, by
partialy verifying system models at each stage. The Modelica class and package concepts,
integrated with the type system, provide a module mechanism to control system complexity.

Generality, uniformity

The design of Modelica emphasizes generality and uniformity. This makes the language
easier to learn, yet powerful. Therefore the concepts of model, type, connector, block,
package and function in Modelica have been designed to be just restricted versions of the
general class concept. A genera static and strong type system designed by Luca Cardelli
(Cardelli 1988, Cardelli 1991), has been adopted for Modelica. This type system integrates
object orientation with multiple inheritance, subtyping, and parametric polymorphism - the
|atter also known as genericsin Ada and templatesin C++. Another example of uniformity
and generality isthat named and positional parameter passing is available for both class
specialization and function callsin Modelica.

Declarativity and referential transparency

Most high level specification languages are declarative, including Modelica, since this
allows expressing properties of systems without specifying in detail how, or in what order,
such properties should be realized. For example, Modelica views object orientation as a
declarative structuring concept for mathematical modeling in contrast to the non- declarative
view of languages like Small Talk, which regard object orientation as message passing
between (dynamically) created objects. Modelica functions are declarative and encourages a
functional programming style. They are essentially side effect free mathematical functions.
The body of afunction is called an algorithm section. From the equation point of view, such
an algorithm section can be regarded as a strongly connected set of equations.

Adherence to common de facto language standards

Modelicatries to be somewhat compatible with several existing common programming
languages, since this makes Modelica easier to learn and to use for engineers. For example,
Modelica has adopted some of the Java syntax and the UniCode character standard, and
uses the Matlab notation for matrix operations.

High level of abstraction
Since Modelicais a specification language, it is designed to allow abstraction from
unnecessary detail. The language obtains its strong abstraction power by being based on

equations integrated with object oriented structuring concepts and object connection
mechanisms.
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e Codereuse

Code reuseis adesirable but hard-to-reach goal for software development. Modelica
contributes to this goal in several ways. Its non-causal equation-based modeling style
permits model components to be reused in different contexts, automatically adapting to the
data flow order in specific simulation applications, i.e. the Modelica compiler automatically
arranges equations for solution with particular inputs or outputs. Object orientation and
polymorphism significantly enhances the potential for reuse of Modelica model
components.

o Mathematical foundation

The Modelicalanguage has a strong mathematical foundation in the sense that a Modelica
model is expanded (from a semantic point of view) into a set of differential-algebraic
equations. Thus, Modédlicais primarily equation-based. Equations can be conditional, to
represent discrete-event features and enable hybrid modeling.

7. Examples

Modelica has been used to model various kinds of systems. (Otter et.al. 1997) describes modeling
of automatic gearboxes for the purpose of real-time simulation. Such models are non-trivial
because of the varying structure during gear shift utilizing clutches, free wheels and brakes.
(Mattsson 1997) discusses modeling of heat exchangers. Class parameters of Modelica are used
for medium parameterization and regular component structures are used for discretization in
space of the heat exchanger. (Tummescheit et.al. 1997) discusses thermodynamical and flow
oriented models. (Broenink 1997) describes a Modelica library with bond graph models for
supporting the bond graph modeling methodology.

8. Conclusions

The Modelica effort has been described and a definition of Modelica has been given. This report
(September 1997) defines Modelica version 1.

The next phase involves design of standard function and model libraries. Thereis ongoing work
to write books on the Modelica language and on Modelica model libraries. Several Modelica
tools are also under development. There are discussions to extend the Modelica design into, for
example, handling partial differential equations and discrete event models.

More information and the most actual status of the Modelica effort can be found at

URL: http://ww. Dynasi m se/ Model i ca
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Appendix
Appendix A. Mathematical Description of Hybrid DAEs

In this section, the mapping of a Modelica model into an appropriate mathematical description
form is discussed.

The result of the modeling process is a set of ordinary differential equations, often accompanied
with algebraic constraint equations, thus forming a set of Differential and Algebraic Equations
(DAE). The initial values of the state variables need to be specified, implying that the DAE is
mathematically formulated as a so-called Initial Value Problem. This DAE is used for simulation
or other analysis activities. DAEs may have discontinuities or the structure of a DAE may change
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at certain pointsin time. Such types of DAEs are called hybrid DAEs. Events are used to stop
continuous integration at discontinuities of ahybrid DAE. After applying the discontinuous
change, the integration is restarted. A hybrid DAE is mathematically described by a set of
equations of the form

(1a) Residue Equations: 0
(1b) Monitor Functions: z:

(1c) Update Functions : [mX]:

f(dx/dt, x, y, t, m, df/[dx/dt;y] i
g(dx/dt, x, y, t, m
h(dx/dt, x, y, t, m xpPost)

Additionally, every equation is afunction of the parametersp and of the input functions u(t).
This dependency is not explicitly shown in (1) for clarity of the equations. The variables have the
following meaning:

t  time, the independent (real) variable.
X(t) (real) variables appearing differentiated.
y(t) (real) algebraic variables.

u(t) known (real) functions of time.

m discrete variables of any type (real, integer, string, ...) defining the current mode.
p parameters, i.e., constant variables.

The residue equations (1a) are used for continuous integration. During integration, the discrete
variablesm are not changed. The monitor functions (1b) are also evaluated during continuous
integration. If one of the signals z crosses zero, the integration is halted and an event occurs. The
special case of atime event, "z =t - te", isaso included. For efficiency reasons, time events are
usually treated in a specia way, since the time instant of such an event is known in advance. At
every event instant, the update functions (1c) are used to determine new values of the discrete
variables and of new initial values for the states x. The change of discrete variables may
characterize a new structure of a DAE where elements of the state vector x are disabled. In other
words, the number of state variables, algebraic variables and residue equations of a DAE may
change at event instants by disabling the appropriate part of the DAE. For clarity of the equations,
thisis not explicitly shown by an additional index in (1).

In (Mosterman and Biswas 1996) it is shown that for the update functions h it is hecessary to
distinguish the usage of x in equations and assignment statements from the usage in Boolean
expressions, such as"if x > 0 then ...". Changes of discrete variables may cause jumpsin state
variables, and Boolean expressions may have to utilize the values immediately after the jump
occurred. In (1) these state variables are supplied as additional function argument xP°%, where the
index "post" stands for "posterior” value. The update functions are used in the following iteration
procedure to determine new consistent initial conditions:

xNeW = x

| oop
[ nfeéw xnew . = h(dx/dt, x, y, t, m x"&W
if m'®W == mthen break

repeat
m : = nfew
[ meW x"eW : = h(dx/dt, x, y, t, m x"&W
until nf®W == m
x .= xhew
solve "0 = f(dx/dt, x, y, t, m" for dx/dt and y (x,t,mare fixi
end | oop
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If, for example, several ideal Coulomb friction elements are used in amodel, it is not possible to
decide in advance the mode of each friction element (whether it is stuck or it slides) when the
relative velocity is zero. An iteration is needed to determine the modes which are compatible with
the forces and torques acting on the mechanical device. According to (Mosterman and Biswas
1996) an inner loop is needed in order not to converge to a physically wrong solution. The
equations of the inner loop are always evaluated with the state vector x of the last consistent mode
m. Theinner loop isiterated until the next consistent mode m isfound. The start of an integration
istreated as an event instant, i.e., an iteration also takes place at the initial time. At every step of
the iteration anon-linear equation has to be solved. In order that thisis possible, the Jacobian of
the non-linear equation needs to be regular, as it was stated in (1a).

The hybrid DAE (1) is not the most general one, but it has a clearly defined view and structure.
Especiadly, (1a) can be transformed into state space form, at least numerically, since the Jacobian
isrequired to be regular. Generalizations are possible in the direction of higher index DAEs
where the Jacobian of (1a) issingular. Thisleads to additiona difficulties during integration and
especially for event restart because the non-linear equation cannot be solved due to the singular
Jacobian. Other generalizations concern the determination of theinitial configuration by allowing
the specification of any variable at theinitial time and by calculating the remaining ones. A third
generalization may use other algorithms to determine a consistent configuration after an event
occurred, e.g., by solving a complementary problem, see (Pfeiffer and Glocker 1996) for details.
For a certain class of higher index DAE systems, agorithms are available to automatically
differentiate selected equations of (1a), choose appropriate variables to be no longer states (=
dummy derivative method) and transform to a DAE (1) with aregular Jacobian.

The Modelicalanguage allows a direct and convenient specification of physical systems. A
Modelica translator maps a Modelica model into a hybrid DAE (1), or in one of its
generalizations if these are available. The mapping into (1) is straightforward by expanding al
class definitions (flattening the inheritance tree) and adding the equations and assignment
statements of the expanded classes for every instance of the model to (1). The resulting hybrid
DAE usually contains a huge number of sparse equations. Therefore, direct smulation of a hybrid
DAE (1) which was generated by a Modelica translator requires sparse matrix methods.

There are several simulation environments available, such as Allan, Dymola, gPROMS, |da
(NMF) or Omola, which preprocess (1) symbolically to arrive at aform which can be evaluated
much more efficiently by numerical algorithms. Especialy, efficient graph-theoretical algorithms
are available to transform (1) automatically into the following form which is calledsorted hybrid
DAE:

(2a) Residue Equations: 0 = fridxi/dt,yl,x,t,m, dfr/[dxi/dt;yi] i
(2b) Exp. dx-Functions: dx&dt := fX(dxi/dt,yl, x,t, m

(2c) Exp. y-Functions : ye = fy(dxi/dt,y,x,t,m

(2d) Monitor Functions: z =g (dxi/dt,yl,x,t,m

(2e) Update Functions : [ mX] = h (dxi/dt,yl, x,t, mxpPost)

where the vector of algebraic variablesy is split into implicit variablesy' and explicitly solvable
algebraic variablesy®. The vector of state derivatives dx/dt is split into implicit variables dx'/dt
and explicitly solvable variables dx®/dt, respectively. When using an implicit integrator, only
equations (2a,2b) need to be solved during continuous integration. Equations (2c) are effectively
hidden from the solver. They need only be evaluated for external usage (e.g., to store output
points to be plotted). At initial time and at events, only the non-linear equation (2a) hasto be
solved. Again the dimension of the original equations has reduced considerably. It is also possible
to use explicit integration methods, such as Runge-Kutta algorithms. During continuous
integration, the integrator providesx and t. The model function solves (2a) for the implicit
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variables, uses the result to evaluate (2b) and returns the complete vector of state derivatives
dx/dt. This procedure is useful for real-time simulation where only explicit one-step methods can
be used and for non-stiff systems where the number of implicit equationsis small and/or linear.

To summarize, a Modelicatransator maps a Modelica model into the hybrid DAE (1). By a
subsequent symbolic processing, (1) can be transformed into the sorted hybrid DAE (2).

Appendix B. Formal Specification of M odelica
Appendix B.1. Modelica Syntax

The following syntactic meta symbols are used (extended BNF):

[ 1 optional
{ } repeat zero or nore tines

The following lexica units are defined:

IDENT = // ldentifiers have the sane definition as in Java
STRING = // String constant as in C

UNSI GNED_NUMBER = // Deci mal numnber notation

Keywords and built-in operators of the Modelicalanguage are written in bold face. Modelica uses
the same comment syntax as C++ and Java.

M od€l definition

nodel _definition:

{ class_definition ";" | inport STRING ";" }
Class definition
class_definition :
[ partial ]
( class | nodel | record | block | connector | type |

package | function )
| DENT conment
( conposition end | DENT |
"=" IDENT [ array_dinmensions ] [ class_nodification ] )

conposition
el enent _|i st
{ public element_list |
protected el ement _|ist |
equati on_cl ause |
al gorithm cl ause

}

[ external ]

el ement _|i st
{ element ";" | annotation ";" }

el enent :
[ final 1 ( [ replaceable ] class_definition | extends_clause |
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conponent _cl ause )
Extends

ext ends_cl ause :
extends nanme [ class_nodification ]

Component clause

conmponent _cl ause:
type_prefix type_specifier conponent |ist

type_prefix :
[ flow] [ paraneter | constant ] [ input | output ]

type_specifier
name

conponent _|i st
conponent _declaration { ",

conmponent _decl aration }

conponent _decl aration :
decl arati on conmment

decl aration :
I DENT [ array_dinmensions ] [ nodification ]

array_di nensi ons :
"[" subscript { "," subscript } "]"

M odification

nodi fi cation :
class_nodification
| "=" expression

class_nodi fication :
"(" { argunent list } ")"

argunent _|i st
argurment { ",

argurent }
ar gunent
el enent _nodi fication
| el enent_redecl aration

el enment _nodi fication :
[ final ] conponent_reference nodification

el enment _redecl aration :
redeclare [ final ]
( [ replaceable ] class_definition | extends_clause | component ¢

conponent _cl ausel :
type_prefix type_specifier conponent _declaration

Equations

equati on_cl ause
equation { equation ";" | annotation ";" }
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al gorithmcl ause

algorithm{ equation ";" | annotation ";" }
equation :
( sinmple_expression [ ( "=" | ":=" ) expression ]

| conditional _equation

| for_clause

| while_clause )
coment

condi ti onal _equation :
i f expression then

{ equation ";" }

{ elseif expression then
{ equation ";" }

[ else
{ equation ";" }

end if

for_clause :
for I DENT in expression
{ equation ";" }
end for

expression | expression ] |oop

whi | e_cl ause :
whi | e expression | oop

{ equation ";" }
end while
Expressions

expression :
si nmpl e_expressi on
| if expression then sinple_expression el se expression

si npl e_expression :
logical _term{ or logical _term}

| ogical _term:
| ogi cal _factor { and |ogical _factor }

| ogi cal _factor
[ not ] relation

relation :
arithmetic_expression [ rel _op arithnetic_expression ]

rel _op :
" <ll | " <:l| | " >ll | n >:|l | n ::H | " <>|l

arithmeti c_expression
[ add_op ] term{ add_op term}

add_op :
n +ll | n - n

term:
factor { mul _op factor }

mul _op :
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nwan | |l/||

factor
primary [ "~" primry ]

pri mary
UNSI GNED_NUMBER
| STRI NG
| time
| false
| true
| conponent _reference
| name "(" { function_argunents } ")"
| "(" expression ")"
I

"[" row_expression { ";" row_expression } "]"
nane :

IDENT [ "." nane ]
conmponent _ref erence :

| DENT [ subscripts ] [ "." conponent_reference ]
r ow_expression :

expression { "," expression }
function_argunents

expression { "," expression }

| I'DENT "=" expression { "," IDENT "=" expression }

subscripts

"[" subscript { "," subscript } "]"
subscri pt

" | expression [ ":" expression [ ":" expression ] ]
coment

[ STRiNG ] [ annotation ]

annot ation :
annotation class_nodification

Appendix B.2. Modelica Semantics

Overview

The Modelicalanguage is specified by means of a set of rulesfor trandating a model described
in Modelicato the corresponding model described as aflat hybrid DAE. The key issues of the
trandation (or instantiation in object-oriented terminology) are:

e Expansion of inherited base classes

e Parameterization of base classes, local classes and components

* Generation of connection equations from connect statements
The flat hybrid DAE form consists of

¢ Declarations of constants, parameters and variables.

» Differential and algebraic equations.
¢ |nstantaneous equations.
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The semantic specification should be read together with the Modelica grammar. Non-normative
text, i.e., examples and comments, are enclosed in[ ], comments are set initalics.

Fundamentals

A classisinstantiated in a context which consists of an environment and an ordered set of
parents. The environment contains arguments which modify elements of the class (e.g., parameter
changes). The environment is built by merging class modifications. The set of parents are the
lexically enclosing classes and the set of top-level classes; the set of parents are used for looking
up names of types etc.

[ Example:
class C1 ... end Ci;
class C2 ... end C2;
class C3
Real x=3;
Cly;
end C3;

The (artificial) parent of class C3 isa set containing C1 and C2. The parent of the declaration of
x isthe partially instantiated class C3.]

Lookup is done by searching parents from the innermost class outwards. [ For example, in the
declaration of y, C1isnot found in C3, so the lookup continuesin the parent of C3 (which
contains C1 and C2).]

Names are typically looked up in a partially instantiated class. [ This means that a declaration can
refer to a name previously inherited.]

The name of a declared element shall not have the same name as any other element in its parent
class or any of the parent class base classes.

The elements of aclass are instantiated in the order of declaration.

[ The following larger example demonstrates several aspects:

class C1
class Cl1
par aneter Real x;
end Cl11;
end Ci;

class C2
class C21

end.bzx
end C2;

class C3
extends Ci;
Cl1l t(x=3); /1 ok, Cl1 has been inherited fromCl
C21 u; /1l error, C21 has not yet been inherited
extends C2;

end C3;
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The environment of the declaration of t is (x=3). The environment is built by merging class
modifications, as shown by:

class C1
paraneter Real a;
end Ci1;

class C2
par anet er Real b;
end C2;

class C3
par anet er Real x1; /1 No default val ue
paraneter Real x2 = 2; /1 Default value 2
paranmeter Cl x3; /1 No default value for x3.a
paraneter Cl x4(a=4); /1l x4.a has default val ue 4
ext ends Ci; /1 No default value for inherited el enent
extends C2(b=6); /1l Inherited b has default value 6
end C3;

class ¢4
extends C3(x2=22, x3(a=33), x4(a=44), Cl(a=55), b=66);
end C4;

Outer modifications override inner modifications, e.g., b=66 overrides the nested class
modification of ext ends C2(b=6) . Thisisknown as merging of modifications:
mer ge( (b=66), (b=6)) becomes (b=66).

An instantiation of class C4 will give an object with the following variables:

Variable Default value
x1 none

X2 22

x3.a 33

x4.a 44

a 55

b 66

The last argument of the C3 modification shows that an inherited element (here, b=66) can be
directly referred to, without specifying its base classasin C1(a=55) .]

Subtyping and type equivalence

For any classes Sand C, Sisasupertype of C and C isasubtype of Sif they are equivalent or if:

* every public declaration element of S also existsin C (according to their names)
¢ those element typesin S are supertypes of the corresponding element typesin C.

A base classisthe class referred to in an extends clause. The class containing the extends clause
is called the derived class. [ All base classes of C are supertypes of C, but other classes not
related by inheritance can also be supertypes of C.]

Two types T and U are equivalent if:
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e T and U denote the same built-in type (one of Real Type, IntegerType, StringType or
BooleanType), or

e TandU areclasses, T and U contain the same public declaration elements (according to
their names), and the elementstypesin T are equivalent to the corresponding element types
inU.

Short class definition

A class definition of the form

class I DENT; = IDENT, class_nodification ;

isidentical to the longer form

cl ass | DENT,
extends | DENT, class_nodification ;
end | DENT;

L ocal class definition

Thelocal classisinstantiated with the partially instantiated parent of the local class. The
environment is the modification of any parent class el ement modification with the same name as
the local class, or an empty environment.

The instantiated local class becomes an element of the instantiated parent class.
[ The following example demonstr ates parameterization of a local class:
class C1
class Voltage = Real (unit="V");
Vol tage v1, v2;
end CI1;
class C2
extends C1(Voltage(unit="kV"));
end C2;

Instantiation of class C2 yields a local instance of class Voltage with unit "kV". The variables vl
and v2 thus have unit "kV".]

Extendsclause
The name of the base classislooked up in the partially instantiated parent of the extends clause.
The found base class is instantiated with a new environment and the partially instantiated parent
of the extends clause. The new environment is the result of merging

e arguments of all parent environments that match namesin the instantiated base class

¢ the modification of a parent element-modification with the same name as the base class

e theoptional class modification of the extends clause
in that order.

[ Examples of the three rules are given in the following example;



class A
paraneter Real a, b;
end A

class B
ext ends A(b=3); /'l Rule #3
end B;

class C
extends B(a=1, A(b=2)); /1 Rules #1 and #2
end C

]

The elements of the instantiated base class become elements of the instantiated parent class.

[ From the exampl e above we get the following instantiated class:

cl ass Ci nstance
paranet er Real a=1;
par anet er Real b=2;
end G nstance;

The ordering of the merging rules ensures that, given classes A and B defined above,

class C2
B bconp(b=1, A(b=2));
end C2;

yields an instance with bconp. b=1, which overrides b=2.]
The declaration elements of the instantiated base class shall either

e Not aready exist in the partially instantiated parent class|[i.e., have different names)] .
* Have atypeidentical to the type of any element of the instantiated parent class with the
same name. In this case, the element of the instantiated base classisignored.

Otherwise the mode! isincorrect.

[ The second rule says that if an element is inherited multiple times, the first inherited element
overrides later inherited elements:

class A
parameter Real a, b;
end A

class B
extends A(a=1);
ext ends A(b=2);
end B;

Class B iswell-formed and yields an instantiated object with elements a and b inherited from the
first extends clause:

cl ass Bi nstance

par anet er Real a=1;
par anet er Real b;
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end Bi nst ance;

]

Equations of the instantiated base class that are syntactically equivalent to equationsin the
instantiated parent class are discarded.

Component clause

If the type specifier of the component denotes a built-in type (Real Type, IntegerType, €tc.), the
instantiated component has the same type and argument.

If the type specifier of the component does not denote a built-in type, the name of the typeis
looked up in the partially instantiated parent. The found type is instantiated with a new
environment and the partially instantiated parent of the component. The new environment is the
result of merging

¢ the modification of parent element-modification with the same name as the component
» the modification of the component declaration

in that order.

Equation
The instantiated equation isidentical to the non-instantiated equation.

Names in an equation shall be found by looking up in the partialy instantiated parent of the
equation.

Redeclar ation

A redeclar e construct replaces the declaration of an extends clause, local class or component in
the modified element with another declaration. The type specified in the redeclaration shall be a
subtype of the typein the origina declaration.

The element modifications of the redeclaration and the original declaration are merged in the
usual way.

[Example:

class A
par anet er Real x;
end A

class B
paraneter Real x, v; /[l Bis a subtype of A
end B;

class C
A a(x=1);
end C

class D

extends C(redeclare B a(y=2));
end D

56



which effectively yields a class D2 with the contents

class D2
B a(x=1, y=2);
end D2;

]

The following additional constraints apply to redeclarations:

an element declared asfinal cannot be redeclared

an element declared as constant can only be redeclared with constant

an element declared as parameter can only be redeclared with parameter or constant
alocal function can only be redeclared asfunction

Modelica does not allow a protected element to be redeclared as public, or a public element to be
redeclared as protected.

Generation of connection equations
The two main tasks are to:

e Build connection sets from connect statements.
¢ Generate equations for the complete model.

For every use of the connect operator
connect (a, b);

the components a and b form a connection set. If aor b already occur in a previously encountered
connection set, these sets are merged to form one connection set. Composite connector types are
broken down into primitive components. Each connection set is used to generate equations for
across and through (zero-sum) variables of the form

al = a2 = ... = an;
z1 + z2 + (-2z3) + ... + zn = 0;

In order to generate equations for through variables[using the f / owprefix], aconnector is
regarded as an outer connector with respect to its parent M if it isan element of M. It isan inner
connector if it isan element of acomponent of M. The sign used for the connector variable z

aboveis+1 for inner connectors and -1 for outer connectors|[ z3 in the example above] .

A connection set shall contain either only flow variables or only non-flow variables.

Appendix B.3. Unit Expressions

Unless otherwise stated, the syntax and semantics of unit expressionsin Modelica are conform
with the international standards | SO 31/0-1992 "General principles concerning quantities, units
and symbols* and SO 1000-1992 "SI units and recommendations for the use of their multiples
and of certain other units". Unfortunately, neither these two standards nor other existing or
emerging 1SO standards define aformal syntax for unit expressions. There are recommendations
and Modelica exploits them.

Examples for the syntax of unit expressions used in Modelica: "N.m", "kg.m/s2", "kg.m.s-2"
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"Urad", "mm/s".
The Syntax of Unit Expressions

uni t _expression
unit_nunerator [ "/" unit_denom nator ]

uni t _numer at or
"1" | unit_factors | "(" unit_expression ")"

uni t _denom nat or
unit_factor | "(" unit_expression ")"

The unit of measure of adimension free quantity is denoted by "1". The | SO standard does not
define any precedence between multiplications and divisions. The | SO recommendation isto
have at most one division, where the expression to the right of "/* either contains no
multiplications or is enclosed within parentheses. It is also possible to use negative exponents, for
example, "J(kg.K)" may be written as"J.kg-1.K-1".

unit_factors:
unit_factor [ unit_nmulop unit_factors ]

uni t _nul op:

The I SO standard allows that a multiplication operator symbol isleft out. However, Modelica
enforces the | SO recommendation that each multiplication operator is explicitly written out in
formal specifications. For example, Modelica does not support "Nm" for newtonmeter, but
requiresit to written as"N.m".

The preferred |SO symbol for the multiplication operator is a"dot" abit above the base line: ™.

Modelica supports the SO alternative ".", which is an ordinary "dot" on the base line.

unit_factor:
unit_operand [ unit_exponent ]

uni t _exponent:
[ " +Il | " - " ] I nt eger

The I SO standard does not define any operator symbol for exponentiation. A unit_factor consists
of aunit_operand possibly suffixed by a possibly signed integer number, which isinterpreted as
an exponent. There must be no spacing between the unit_operand and a possible unit_exponent.

uni t _operand:
unit_synmbol | unit_prefix unit_synbol

unit_prefix:
Y| Zz| E|] P| T] G| M| k| h|] da|] d|] c| m|] u] p]|] f ] a] z

A unit_symbol isastring of letters. A basic support of unitsin Modelica should know the basic
and derived units of the SI system. It is possible to support user defined unit symbols. In the base
version Greek lettersis not supported, but full names must then be written, for example "Ohm".

A unit_operand should first be interpreted as a unit_symbol and only if not successful the second
alternative assuming a prefixed operand should be exploited. There must be no spacing between
the unit_symbol and a possible unit_prefix. The value of the prefixes are according to the SO
standard. The letter "u" is used as a symbol for the prefix micro.
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Examples

e The unit expression "m" means meter and not milli (10'3), since prefixes cannot be used in
isolation. For millimeter use "mm" and for squaremeter, mz, write "m2".

e The expression "mm2" means mm? = (10-3m)2 = 10°°m. Note that exponentiation includes
the prefix.

The unit expression "T" means Tesla, but note that the letter "T" is aso the symbol for the
prefix terawhich has amultiplier value of 1012,

Appendix B.4. Restricted Classes

The keyword class can be replaced by one of the following keywords:. record, type, connector,
model, block, package or function. Certain restrictions will then be imposed on the content of
such a definition. The following table summarizes the restrictions.

No equations are alowed in the definition or in any of its components. May not be
used in connections.

\type \M ay only be extension to the predefined types, records or matrix of type.
\connector \No equations are allowed in the definition or in any of its components.
\model \May not be used in connections.

block Fixed causality, input-output block. Each component of an interface must either have
Causality equal to Input or Output. May not be used in connections.

\package \May only contain declarations of classes and constants.

Same restrictions as for block. Additional restrictions. no equations, only one
algorithm section.

record

function

Appendix B.5. Summary of Prefixes

The following prefixes are available to class declarations. partial (needs to extended), final (can
not be extended), replaceable (aloca class which may be redeclared).

A component clause may have the prefix final (the class of a component can not be exchanged).

A modification may contain the prefixesfinal (can not be modified anymore), [ final ] redeclare
(the class of a component is exchanged) and [ final ] redeclare class (or restricted class) (a
replaceable classis redeclared).

It should be noted that the final and partial prefixes does not change the semantics of avalid
model.

Appendix B.6. Variable Attributes

The attributes of the predefined variable types are described below with Modelica syntax
although they are predefined. The definitions use basic types Real Type, IntegerType,
BooleanType and StringType correponding to machine representations.

final type Real

Real Type val ue; /'l Accessed without dot-note
paraneter StringType quantity ="
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paraneter StringType unit ="" "Unit used in equations"

paraneter StringType displayUnit ="" "Default display unit";

par anet er Real Type m n=-Inf, max=+Inf; // Inf denotes a |large

par anet er Real Type start = 0; /1 Initial and restart
equat i on

assert(value >= nin and value <= max, "Variable value out of linit

end Real ;

final type Integer

I nt eger Type val ue; /'l Accessed wi t hout dot-note

par anet er | ntegerType mi n=-Inf max=+Inf;

paraneter |ntegerType start = O; /1 Initial and restart val ue
equati on

assert(value >= nin and value <= max, "Variable value out of linit

end | nteger;

final type Bool ean

Bool eanType val ue; /1 Accessed without dot-notat
par anet er Bool eanType start = false; // Initial and restart val ue

end Bool ean;

final type String

StringType val ue; /1 Accessed w t hout dot-notati
paraneter StringType start =""; /1 Initial and restart val ue
end String;

Appendix B.7. External Function Interface

The purpose isto alow calls to functions defined outside of the Modelicalanguage. The design

goals were;

e C functions are used as the least common denominator. It is planned that other languages
(C++, Fortran) will be supported in the future too.

e A mapping of argument types from Modelica to the target language should be defined.

e The mapping should be "natural" in the sense that there is a mapping from Modelicato
standard libraries of the target language.

It should be possible to specify inverse and Jacobian functions. Details will be specified in a
future Modelicarelease.

The format of an external function declaration is as follows.

function | DENT
[ input-declarations |
[ output-declaration ]

ext erna

end | DENT,;
Examples of Modelica function declarations:
function |og
i nput Real x;

out put Real v;
ext erna
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end | og;

function Pol ynoni al Eval uat or 2
input Real a[:];
i nput Real x;
out put Real v;
ext erna
end Pol ynom al Eval uat or 2;

functi on Force3D

i nput Real c=1.0;
i nput Real s;

out put Real f[3];
ext erna

end Force3D
The corresponding declarations in the C language are:

extern doubl e | og(double x);
extern doubl e Pol ynomi al Eval uat or 2(double t* a, size_t dinl, double
extern void Force3D(doubl e ¢, double s, double *f, size_t dinl);

Mapping of argument types

The arguments of the external function are declared in the same order asin the Modelica
declaration. The single Modelica function output parameter specifies the return type of the
external function.

Simpletypes

Arguments of simple types are by default mapped as follows:

C
Modelica Input Output

(return value)
Real doubl e doubl e
Integer i nt i nt
Boolean |i nt i nt
String |const char *|const char *

Strings are nul-terminated to facilitate calling of C functions.

Arrays

Arrays of simple types are mapped to an argument of the simple type, followed by n arguments of
typesi ze_t with the corresponding array dimensions. Thetypesi ze_t isaC unsigned integer
type. Storage for arrays as return values is allocated by the calling routine, so the dimensions of
the returned array isfixed.

Arrays are stored in column-mgjor order according to the Fortran conventions, in order to be
compatible with most standard numerical libraries.
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Modedlica c
Input and output
T[dim1] T*, size_t diml
T[dim1, dim2] T*, si ze_t diml, size_t dim2
T[...] T*, size_t diml, ..., size_ t dimn

Records

A Modelicarecord class that contains simple types, other record elements, or arrays with fixed
dimensions thereof, are mapped as follows:

e Therecord classis represented by a struct in C.

* Each element of the Modelicarecord is mapped to its corresponding C representation.
The elements of the Modelicarecord class are declared in the same order in the C struct.

* Arrays are mapped to the corresponding C array.

For example,
record R struct R {
Real x; doubl e x;
I nteger y[10]; . i nt y[ 10] ;
Real z; is mapped to doubl e z;
end R b

Appendix C. Modelica Standard Library

Modelica seeksto influence the trivial decisions of model design process by providing package
M odelica, an extensive standard library of type and inter face definitions which is always
available with aModelicatrandator. If, as far as possible, standard quantity types and connectors
arerelied on in modeling work, model compatibility and thereby reuse is enhanced. Achieving
model compatibility, without having to resort to explicit coordination of modeling activities, is
essential to the formation of globally accessible libraries. Naturally, amodeller is not required to
use the standard library and may also add any number of local base definitions.

The library will be amended and revised as part of the ordinary language revision process. It is
expected that informal standard base classes will develop in various domains and that these
gradually will be incorporated into the Modelica standard library.

The type definitionsin the library are based on 1SO 31-1992. Several | SO quantities have long
names that tend to become awkward in practical modeling work. For this reason, shorter
alias-names are also provided if necessary. Using, e.g., "ElectricPotential" repeatedly in a model
becomes cumbersome and therefore "V oltage" is also supplied as an aternative.

The standard library is not limited to pure Sl units. Whenever common engineering practice uses
adifferent set of (possibly inconsistent) units, corresponding quantities will be allowed in the
standard library, for example English units. It is also frequently common to write models with
respect to scaled Sl unitsin order to improve the condition of the model equations or to keep the
actual values around one for easier reading and writing of numbers.

The connectors and partial models will get predefined graphical attributesin order that the basic
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visual appearanceisthe samein al Modelicabased systems.

The Modelica package is till under development. This appendix displays the draft status as of
September 1997.

package Mbdelica

/* The Model i ca package is a standardi zed, pre-defined package,
that is shipped together with a Mdelica translator. The package
provi des constants, types, connectors, partial nodels and sone
of ten used nodel conponents in various disciplines. Especially,
the foll owi ng sub-packages are avail abl e:

Sl uni t . Types defining Slunits of SO 1000.
Constant : Mathematical and physical constants.
Interface: Basic interfaces in various disciplines
Si gnal : Real and Bool ean signal generators.

The foll owi ng conventions are used in the whol e package:

- Class and instance nanes are witten in upper and | ower case
letters, e.g., "ElectricCurrent”. An underscore is only used
at the end of a name to characterize a | ower or upper index,
e.g., body_l ow up.

- Type names start always with an upper case letter. Instance names

always with a lower case letter with only a few exceptions accordir
comon engi neering practice, such as "T" for a tenperature instance

- Usually, Slunits are used via pre-defined Slunit types.

- Preferred instance nanes for connectors:
p,n: positive and negative side of a partial nodel.
a,b: side "a" and side "b" of partial nodel
if the two connectors are conpl etely equival ent.
*/

package Sl unit

/* This package provides predefined types based on the international ste

on units (1SO 31-1992 "Ceneral principles concerning quantities, unit
synbol s" and |1 SO 1000-1992 "SI units and recommendati ons for the use
their multiples and of certain other units"). The ordering of the tyg
declarations follows | SO 31. The nam ng of the types follows the fo
conventi on:

- Modelica quantity names are defined according to the recommendati or

| SO 31. Sone of these nane are rather |ong, such as
"Ther nodynam cTenperature”. Shorter alias nanes are defined in
appropri ate subpackages, e.g., "type Tenp_K = Ther nodynam cTenper at

- Modelica units are defined according to the SI base units w thout
mul tiples (only exception "kg").

- For some quantities, nore convenient units for an engi neer are def
"displayUnit", i.e., the default unit for display purposes
(e.g., displayUnit="deg" for quantity="Angle").

- The type name is identical to the quantity nane, follow ng
t he convention of type nanes.
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All

quantity and unit attributes are defined as final

in order

that they cannot be redefined to another val ue.

Some quantities,

" Angul ar Accel erati on",
*/

// Part 1: Space and tine
type Angle

type SolidAngle

type Length

type Area

type Vol une

type Tine

type Angul ar Vel ocity

type Velocity

type Angul ar Accel erati on

type Accel eration

// Part

//. ..
// 3: Mechani cs
Mass

Part
type
type Density
type LinearDensity
type MonmentOfl nerti a
type Monmentum
type Force
type Angul ar Monent um
type Monment Of For ce
type Pressure
type Normal Stress
type Dynami cViscosity
type KinematicViscosity

type SurfaceTension

whi ch are obviously al so inportant but are not
explicitly nentioned in the |1SO 1000 standard,

such as

are al so incl uded.

Real (final quantity="Angle",
final unit ="rad",
Di spl ayuni t ="deg");

Real (final quantity="Soli dAngle",
final unit ="sr");

Real (final quantity="Length",
final unit ="nl);

Real (final quantity="Area",
final unit ="n2");

Real (final quantity="Vol ume",
final unit ="m");

Real (final quantity="Tine",
final unit ="s");

Real (final quantity="Angul arVel ocity",
final unit ="rad/s");

Real (final quantity="Velocity",
final unit ="mls");

Real (final quantity="Angul ar Accel eration",
final unit ="rad/ s2");

Real (final quantity="Accel eration",
final unit ="ms2");

Real (fi
fi

Real (fi
fi
Real (fi
fi
Real ( fi
fi
Real (fi
fi
Real (fi
fi
Real (fi
fi
Real (fi
fi
Real (fi
fi
Real (fi
fi
Real (fi
fi
Real (fi

nal
nal
i nal
i nal
nal
nal
nal
nal
nal
nal
nal
nal
nal
nal
nal
nal
nal
nal
nal
nal
nal
nal
nal
nal
nal

2: Periodic and rel ated phenonens

quantity="Mass",

unit ="kg", m n=0);
quantity="Density",

uni t ="kg/ nB8", m n=0);
quantity="Li nearDensity",
unit ="kg/ nf', mi n=0);
quantity="MnentCf |l nertia",
unit ="kg*m2");
quantity="Mass",

uni t ="kg.nls");
quantity="Force",

uni t ="N");
quantity="Mass",

uni t ="kg. n2/s");

quant i t y="Mnent Of Force",
uni t ="N.m);
quantity="Pressure",

uni t ="Pa", mn=0);
quantity="Normal Stress",

uni t ="Pa");

quant i ty="Dynam cVi scosity",
unit ="Pa.s", mn=0);
quantity="Ki nemati cVi scosity",
uni t ="nmR/s", mn=0);

quantity="SurfaceTensi on",



//

type

type

Part
type

type

type
type
type
type
type
type

type
type

type
type
type
type
type
type
type
type
type
type

final

uni t ="Nm);

Ener gy = Real (final quantity="Energy",
final unit ="J");
Power = Real (final quantity="Power",
final unit ="W);
4: Heat
Ther nodynam cTenperature = Real (final quantity="Thernodynani cTel
final unit ="K", mn=0
Di spl ayuni t ="degC');
Cel si usTenper at ure = Real (final quantity="Cel siusTenperat!
final unit ="degC', mn = -2
Li near Expansi onCoef fi ci ent = Real (final quantity=" Linear
final unit ="1/K");
Cubi cExpansi onCoef fi ci ent = Real (final quantity="Cubi cEx
final unit ="1/K");
Rel ati vePressur eCoef fi ci ent = Real (final quantity="Relativ
final unit ="1/K");
Pr essur eCoef fi ci ent = Real (final quantity="Pressurt
final unit ="Pa/K");
| sot her mal Conpressibility = Real (final quantity="Isotheri
final unit ="1/Pa");
| sentropi cConpressibility = Real (final quantity="Isentro
final unit ="1/Pa");
Heat = Ener gy,
Heat Fl owRat e = Real (final quantity="HeatFl o)
final unit ="W);
Densi t yOf Heat FI owRat e = Real (final quantity="Density
final unit ="Wm2");
Ther mal Conductivity = Real (final quantity="Ther mal
final unit ="W(mK)");
Coef fi ci ent Of Heat Tr ansf er = Real (final quantity="Coeffic
final unit ="W(m2.K)"
Sur faceCoefficient O Heat Transfer = Real (final quantity="Surface
final unit ="W(m2.K)"
Ther mal | nsul ance = Real (final quantity="Ther nal
final unit ="m2. KKW);
Ther mal Resi st ance = Real (final quantity="Ther nal
final unit ="KIW);
Ther mal Conduct ance = Real (final quantity="Thernal
final unit ="WK");
Thermal Di ffusivity = Real (final quantity="Ther nal
final unit ="m2/s");
Heat Capacity = Real (final quantity="Heat Capi
final unit ="J/K");
Speci fi cHeat Capacity = Real (final quantity="Specifi
final unit ="J3/(kg.K")

/* The specific heat capacity is nmost often taken in a "direction”

e. at constant

shoul d be specified in the appropriate aliases

*/

type
type
type
type

Rat i oOf Speci fi cHeat Capacities

| sentropi cExponent
Ent r opy

Speci fi cEnt r opy
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nal
nal
nal
nal

i nal
i nal

nal

pressure or constant vol une. which one is neant

quantity="Rati oO Spe

uni t

="1"):

quantity="lsentropic

uni t

="1"):

quantity="Entropy",

uni t

=3/ K'Y ;

quant i ty="Speci fi cEni



final unit ="J3/(kg.K)");
type Specifi cEnergy = Real (final quantity="SpecificEnt
final unit ="J3/kg");

/* In thernodynanics, energy comes in nmany flavors. The ones defined
are defined as aliases to the basic one. Al of these energy forne

defined in a specific, i. e. divided by nass version.
*/
type Ther nodynami cEner gy = Energy;
type Hel mhol t zFr eeEner gy = Energy;
type G bbsFreeEnergy = Energy;
type Ent hal py = Energy;

type Speci ficTher nodynani cEner gy
type Speci ficHel mhol t zFr eeEner gy
type SpecificG bbsFreeEner gy
type Speci fi cEnt hal py

Speci fi cEner gy;
Speci fi cEner gy;
Speci fi cEner gy;
Speci fi cEner gy;

type PlanckFunction = Real (final quantity="Pl anckFunction",
final unit ="J/kg");

Part 5: Electricity and magnetism
type ElectricCurrent Real (final quantity="ElectricCurrent”,

final unit ="A");

type El ectricCharge = Real (final quantity="ElectricCharge",
final unit =C");

type ElectricPotential = Real (final quantity="ElectricPotential"
final unit ="V');

type Capacitance = Real (final quantity="Capacitance"
final unit ="F", mn=0);

type I nductance = Real (final quantity="Inductance"
final unit ="H', mn=0);

type Resi stance = Real (final quantity="Resistance"
final unit ="Chm', m n=0);

type Conduct ance = Real (final quantity="Conductance"
final unit ="S", mn=0);

/...

Part 6: Light and rel ated el ectromagnetic radiations

type Luminouslintensity = Real (final quantity="Lum nouslntensity",
final unit ="cd");

/]

Part 7: Acoustics
//. ..

Part 8: Physical chenistry and nol ecul ar physics

type Anount Of Substance = Real (final quantity="Anunt & Subst ance”
final unit ="mol ", m n=0);

/]

Part 9: Atonic and nucl ear physics

Part 10: Nucl ear reactions and ionizing radiations
/7. ..
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// Part 11: Characteristic nunbers
// Mbomentum transport
type Reynol dsNunmber = Real (final quantity="Reynol dsNunber",

final unit ="1");

Real (final quantity="Eul er Nunber",
final unit ="1");

i nal quantity="FroudeNunber",
final unit ="1");

Real (final quantity="G ashof Nunber",
final unit ="1");

Real (final quantity="Weber Nunber",
final unit ="1");

i nal quantity="MachNunber",
final unit ="1");

Real (final quantity="KnudsenNunber",
final unit ="1");

Real (final quantity="Strouhal Nunber",
final unit ="1");

type Eul er Nunber

type FroudeNunber

I
(ZE
=3

—~
N

type G ashof Nunber

type Weber Nunber

type MachNumber

1
(ZE
=3

—~
i

type KnudsenNunber

type Strouhal Nunber

// Transport of heat
type Fouri er Nunber

Real (final quantity="FourierNunber",
final unit ="1");
Real (final quantity="Pecl et Nunber",
final unit ="1");
Real (final quantity="Rayl ei ghNunber",
final unit ="1");
i nal quantity="Nusselt Number",
final unit ="1");
Nussel t Nunber ; /1 The nane Bi ot nunber, Bi
/1 when the Nusselt nunber
/'l for convective transport
Real (final quantity="StantonNunber",
final unit ="1");

type Pecl et Nunber

type Rayl ei ghNunber

type Nussel t Nunber

1
(‘;l?
=3

—~
i

type Bi ot Nunmber

type Stant onNunber

// Constants of natter
type Prandt| Nunber = Real (final quantity="Prandt| Nunber",
final unit ="1");
type Schni dt Nunber = Real (final quantity="Schni dt Nunber",
final unit ="1");
Real (final quantity="Nunber",
final unit ="1");

type Lew sNunber

// Part 12: Solid state physics
//. ..

end Slunit;

package Const ant

/* This package provides often needed constants */
extends Slunit;

// Mat henmatical constants
constant Real PI = 3.14159265358979;
constant Real E = 2.71828182845904;

/* Constants of nature

(from E. R Cohen, and B.N. Taylor: The 1986 Adjustnent of the Fundar
Physi cal Constants, CODATA Bulletin, Perganon: Elnsford, NY, .
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see al so: http://physics. ni st. gov/ PhysRef Dat a/ codat a86/ arti cl e
http://physics. ni st. gov/ PhysRef Dat a/ codat a86/ codat at

*/
const ant Real N A (final unit="nol-1")
= 6.0221367e23 "Avogadro constant";
constant Velocity C = 299792458 "Velocity of light in\
const ant Real G (final unit="nB.kg-1.s-2")
= 6.67259%e-11 "Uni versal gravity cons
constant Acceleration G EARTH = 9. 81 "Gravity accel eration c
constant Real H (final unit="J.s")
= 6. 6260755e- 34 "Pl ancks constant";
const ant Real K (final unit="J.K-1")
= 1. 380658e-23 "Boltznmann constant";
const ant Real RO (final unit="J.mol-1.K-1")
= 8.314510 "Uni versal gas constant
const ant Real SIGVA  (final unit="Wm2.K-4")
= 5.67051e-8 "Stefan Bol t zmann const
constant Real T ZERO (final unit="degC")
= -273.15 "Absol ute zero tenperat
/1

end Const ant;

package I nterface

/* This package provides interface definitions, i.e., types, connectors i
partial nodels, in various disciplines. It is organized in sub-packac
Bl ock . Interfaces for input/output blocks.
BondGr aph . Interfaces for bondgraphs.
Electric . Interfaces for electric systens.
Mechani c . Interfaces for mechani c systens.

Ther nodynami c Interfaces for thernodynam c systens.
*/

package Bl ock

/* This package provides types, connectors and partial nodels for
i nput / out put bl ocks.

*/

extends Slunit;

// Partial nodels for continuous input/output control blocks
partial block SISO "Single input, single output (continuous) bl ock"”

input Real u "lnput signal”;
output Real y "Qutput signal";

end Sl SG,

partial block M SO "Miltiple input, single output (continuous) bl ock"
input Real u[:] "lnput signal vector”;
out put Real y "Qut put signal";

end M SG,

partial block MMO "Miltiple input, nmultiple output (continuous) bl oc
input Real u[:] "lnput signal vector”;
output Real y[:] "Qutput signal vector”;

end M MO,
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//

partial block MMX>» "Miltiple input, single output (continuous) bl ock
"with equal nunber of inputs and outputs"

i nput Real u[:] "I nput signal vector";
out put Real y[size(u,1)] "Qutput signal vector";
end M MOs;

partial block SO "Single output (continuous) block"
output Real y "CQutput signal"”;
end SO

partial block MO "Miltiple output (continuous) block"
output Real y[] "Qutput signal vector";
end MO

Partial nodels for Bool ean input/output blocks
partial block SISCb "Single input, single output (Boolean) block"

i nput Boolean u "lnput signal”;
out put Boolean y "Qutput signal";

end Sl SCb;

partial block MSCb "Multiple input, single output (Boolean) block"
i nput Boolean u[] "lnput signal vector";
out put Bool ean y "Qut put signal";

end M SQb;

partial block MMX» "Multiple input, nmultiple output (Boolean) bl ock"
i nput Boolean u[] "lnput signal vector";
out put Bool ean y[] "CQutput signal vector";

end M Mb;

partial block MMX>xb "Miltiple input, single output (Boolean) bl ock"
"with equal nunber of inputs and outputs"

i nput Bool ean u[] “I nput signal vector";
out put Bool ean y[size(u,1)] "Qutput signal vector";
end M MXsb;

partial block SOb "Single output (Boolean) block"
out put Boolean y "CQutput signal";
end SQb;

partial block Mob "Miltiple output (Boolean) block"
out put Bool ean y[] "OQutput signal vector";
end Mx;

end Bl ock;

package BondG aph

| *
*/

Thi s package provi des types, connectors and partial nodels for
bond graphs

extends Slunit;

//
//

Bond Graph power connector.
Both effort and flow are "across" vari abl es.

connector BondPort "Bond Graph power port"”
Real e "Effort variable";
Real f "Flow vari abl e";

end BondPort ;
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partial nodel OnePortPassive "One port passive bond graph el enent”
BondPort p "Generic power port p";

equat i on
assert (cardinality(p)==1, "Power ports have only one edge connecte
assert(direction(p) ==1, "Power direction towards el ement for pas

end OnePort Passi ve;

partial nodel OnePortEnergetic "One port storage el ement, being passi
ext ends OnePort Passi ve;

Real state "Conserved quantity";
end OnePort Energeti c;

partial nodel OnePortActive "One port active bond graph elenment: the

BondPort p;

equat i on
assert(cardinality(p)== 1, "Power ports have only one edge connect
assert(direction(p) ==-1, "Power direction fromthe el enent for ¢

end OnePort Acti ve;

partial nodel TwoPortPassive "Two port passive bond graph el enent”
BondPort Pow n, PowQut;

equati on
assert(cardinality(Powin) == 1, "Power ports have only one edge cc
assert(direction (Powln) ==+1, "power direction towards the el ent
assert(cardinality(Powut)== 1, "Power ports have only one edge c¢
assert(direction (PowQut)==-1, "Power direction fromthe el ement

end TwoPort Passi ve;

end BondG aph;

package El ectric

| *
*/

Thi s package provi destypes, connectors and partial nodels for
the electric domain.

extends Slunit;

//

//

//

Commonl y used short nanes for electric types
type Current El ectricCurrent;

type Charge El ect ri cChar ge;

type Vol tage El ectricPotenti al ;

Connector types for electric conponents
connector Pin "Pin of an electric conmponent”

Vol t age v "Potential at the pin";
flow Current i "Current flowing into the pin";
end Pin;

Partial nodels for electric conponents
partial nodel TwoPin "Conponent with two electric pins"

Pin p "Positive pin";

Pin n "Negative pin";

Voltage v "Voltage drop between the two pins”;
equation

V = p.V - Nn.v;
end TwoPi n;
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partial nodel TwoPort "Conponent with two electric ports”

Pi n pl "Positive pin of the left port";

Pi n nl "Negative pin of the left port";

Pin pr "Positive pin of the right port";

Pin nr "Negative pin of the right port";

Vol tage vl "Voltage drop over the left port";

Vol tage vr "Voltage drop over the right port”;
equation

vl =pl.v - nl.v;

VI = pr.v - nr.v,
end TwoPort ;

end El ectric;

package Mechani c

| *
*/

Thi s package provi des types, connectors and partial nodels for
t he nmechani ¢ domai n.

extends Slunit;

//

//

Conmonl y used short names for mechanic types

type Position = Length;

type Distance = Length(final m n=0);

type Inertia = MomentOflnerti a;

type Torque = Morent O For ce;

Connector types for nmechani c conponents

connector TransVel "1D translational mechanical flange cut on vel oci
Vel ocity v "Absolute velocity of the flange with respect to base
flow Force f "Cut-force directed into the flange to drive it";

end TransVel ;

connector DriveVel "1D rotational nechanical flange cut on velocity
Angul arVel ocity w "Absolute angular velocity of flange with respec
flow Torque t "CQut-torque directed into the flange to drive it

end DriveVel;

connector TransPos "1D translati onal nechanical flange cut”
Position s "Absolute position of flange with respect to base";
Vel ocity v "Absolute velocity of flange with respect to base";

Accel eration a "Absolute acceleration of flange with respect to be
fl ow Force f "Cut-force directed into flange to drive it";
end TransPos;

connector DrivePos "1D rotational mechanical flange cut”
"for positional drive trains."
Angl e r "Absolute rotation angle of flange cut with
Angul ar Vel ocity w "Absolute angular velocity of flange with re
Angul ar Accel eration a "Absolute angul ar accel eration of flange wit
"respect to base";
flow Torque t "Cut-torque directed into flange to drive it
end DrivePos;

connector CutFrame "3D nechanical cut-frame for nultibody systens”

Real S[3,3] "Rotation matrix describing the cut-frar
"With respect to the inertial frame";

Position rO[3] "Vector fromthe origin of the inertial
"origin of the cut-frame, resolved in tt

Vel ocity v[ 3] "Absolute translational velocity of the

"resolved in the cut-frane ( v = S *der(
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Angul ar Vel oci ty W 3]

Accel eration al 3]
Angul ar Accel eration z[ 3]
fl ow Force f[3]
f1 ow Tor que t[3]

end Cut Fr ame;

"Absol ute angul ar velocity of the cut-fr
"resolved in the cut-frane ( w = vec(S*
"Absol ute transl ational accel eration of
"resolved in the cut-frame ( a = S *der(
"Absol ute angul ar accel eration of the ct
"resolved in the cut-frame ( z = S *der(
"Resultant cut-force acting at the origi
"cut-frame, resolved in the cut-frane";
"Resultant cut-torque with respect to tt
"cut-frame, resolved in the cut-frane";

// Partial nodels for mechani c conponents
partial nmodel TransVel2 "1D transl ati onal conponent with two cuts”
TransVel a "Cut a of conponent";
TransVel b "Cut b of conponent";
end TransVel 2;
partial nodel DriveVel2 "1D rotational conponent with two cuts"”
DriveVel a "Flange a of component”;
DriveVel b "Flange b of component”;
end DriveVel 2;
partial nodel TransPos2 "1D translational conmponent with two cuts”
"for positional drive trains."
TransPos a "Cut a of conponent";
TransPos b "Cut b of conponent";
end TransPos2;
partial nodel DrivePos2 "1D rotational conmponent with two cuts"”
"for positional drive trains."
DrivePos a "Flange a of conponent"”;
DrivePos b "Flange b of conponent™”;

end DrivePos2;

partial nodel
Cut Frane a "cut frame a";
CutFrane b "cut frame b";

end Cut Frame2;
end Mechani c;

package Ther nodynani c

/* Connector types for thernodynam cal
Defining nore is not difficult,
based on themis provided as well.
provi ded as well.

set!

used here are

Cut Frame2 "Mul ti-body system conponent with two cut fr¢

conmponents. This is a mninum
but only useful if a library
Short hands for basic types

interface"

into interface";

*/
// Short hands
type Heat Fl ux = Heat Fl owRat e;
type Tenp_K = Thernodynani cTenper at ure;
type Tenp_C = Cel siusTenperature;
// connectors
connector TQ "Heat exchange
Tenp_C T "Tenperature";
flow HeatFlux g "Transported heat
end TQ
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connector MI "Single di
fl ow MassFl ow m dot
Tenp_C T

end M;

connector PM "Bidirecti

Pressure p
fl ow MassFl ow m dot
end PM

rectional flow of tenpered fluid, no
"Massflow into port";

"Fluid tenperature”;

pressurce

onal flow of a fluid"
"Fluid total pressure”;
"Massflow into port";

connector PMI "Single directional flow of tenpered fluid"
Pressure p "Fluid total pressure”;
flow MassFlow mdot "Massflow into port";
Tenmp_C T "Fluid tenperature”;

end PMT;

connector PVMH "Single directional flow of tenpered fluid"
Pressure p "Fluid total pressure";
fl ow MassFl ow m dot "Massflow into port";

Speci ficEnthal py h
end PMH

connect or
Pressure p
fl ow MassFl ow m dot
Tenp_C T
flow Heat Flux ¢

end PMIQ

PMIQ

connect or PVHQ
Pressure

fl ow Massfl ow
Speci fi cEnt hal py
fl ow Heat Fl ux

end PVHQ

end Ther nodynani c;

m_
h
q

end I nterface;

end Model i ca;

"Bi di rectional

"Bi di rectional

dot

"Fl uid enthal py";

flow of tenpered fluid"

"Fluid total pressure";

"Massflow into port";

"Fluid tenperature”;

"Heat convected by fluid into port";

flow of tenpered fluid"

"Fluid total pressure”;

"Massflow into port";

"Fluid enthal py";

"Heat convected by fluid into port";
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