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Preface

Preface

The Modelica modeling language has been designed to allow convenient and efficient modeling and simulation of
complex, multi-domain physical systems described by differential, algebraic and discrete equations, aiming at full
system simulation. Since January 2002, version 2.0 of the Modelica language definition is available together with
many free Modelica libraries, as well as commercial Modelica simulation environments. Convenient interfaces
exist for Matlab and Simulink (with Dymola) and to Mathematica (with MathModelica). The language, libraries
and tools are used by a growing number of people in industry and academia for advanced applications, such as
detailed fuel cell simulations, power systems, full vehicle dynamics models, hardware-in-the-loop simulations,
embedded control systems with nonlinear Modelica models.

In October 2000, the first Modelica workshop took place in Lund, Sweden. Due to the great success, with more
than 80 participants, this event is repeated in March 2002, to bring together people interested in Modelica, Mod-
elica language designers, Modelica tool vendors and Modelica library developers. This gives the conference
participants the opportunity to be informed about the latest developments, to influence the future development of
Modelica and its libraries and to get in touch with people solving similar modeling problems.

This volume contains papers that are presented at the Second International Modelica Conference at DLR in Oberp-
faffenhofen, Germany, March 18-19, 2002. A number of high quality papers were received. The program com-
mittee had a difficult task of planning the conference since not all submissions could be accommodated for the
limited time of two days. Thirty-five papers were selected for presentations, and four papers were selected for
poster presentations.

More information about the Modelica language, the Modelica association, this and future events can be found at
the web pagéttp://www.modelica.org. Especially, all papers from these proceedings are stored at this site after
the conference.

The Modelica’2002 conference was arranged by the Modelica Association in cooperation with the lastitut f
Robotik und Mechatronik, Deutsches Zentruim Euft- und Raumfahrt e.V., Oberpfaffenhofen, Germany.

Oberpfaffenhofen, March 5, 2002.

Martin Otter
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New Features in Modelica 2.0

New Features in Modelica 2.0

Martin Otter’ and Hans Olsson?
'DLR, Oberpfaffenhofen, Germany, Martin.Otter(@dlr.de
sznasim AB, Lund, Sweden, Hans.Olsson@dynasim.se

Abstract

The second major release of Modelica was finished
and formally approved at the last Modelica design
meeting, January 2002, Lund, Sweden. In this
paper, the new features of Modelica 2.0 are
described.

1. Introduction

The freely available, object-oriented modeling
language Modelica is developed continuously
since 1996. Modelica is designed to allow
effective, component-oriented modeling of
complex engineering systems described by
differential, algebraic and discrete equations, e.g.,
systems containing mechanical, electrical, elec-
tronic, hydraulic, thermal, control, electric power
or process-oriented subcomponents. A large num-
ber of free and commercial libraries of fundamen-
tal models are available as well as commercial
Modelica simulation environments. More in-
formation is provided at http://www.Modelica.org/.

In 1997, the first major version of Modelica was
released, followed by four minor revisions released
once a year. The second major release of Modelica
was completed and formally approved at the last
Modelica design meeting, January 2002, Lund,
Sweden. The most important design goal was to
enhance the development and use of application
libraries, incorporating the experience and feedback
of library developers, while keeping backward
compatibility. A number of language enhancements
have been added, significantly facilitating library
development and use. In this paper, the new features
of Modelica 2.0 are described. The following
members of the Modelica Association have
contributed to the development of Modelica 2:

P. Aronsson, Linkdping University, Sweden.

B. Bachmann , University of Bielefeld, Germany.
P. Beater, University of Paderborn, Germany

D. Briick, Dynasim, Lund, Sweden

P. Bunus, Linkdping University, Sweden

H. Elmqvist, Dynasim, Lund, Sweden

V. Engelson, Linkoping University, Sweden

P. Fritzson, Linkdping University, Sweden

R. Franke, ABB Corporate Research, Ladenburg

P. Grozman, Equa, Stockholm, Sweden

J. Gunnarsson, MathCore, Linkdping

M. Jirstrand, MathCore, Linkdping

S. E. Mattsson, Dynasim, Lund, Sweden

H. Olsson, Dynasim, Lund, Sweden

M. Otter, DLR, Oberpfaffenhofen, Germany

L. Saldamli, Linkdping University, Sweden

M. Tiller, Ford Motor Company, Dearborn, MI, U.S.A.
H. Tummescheit, Lund Institute of Technology, Sweden
H.-J. Wiesmann, ABB Corp. Res., Baden, Switzerland

2. Component Arrays

One part of the redesign of Modelica 2 was based
on the experience with the Modelica.Blocks library
in Modelica 1. The redesign supports generic
formulation of blocks applicable to both scalar and
vector connectors, connection of (automatically)
vectorized blocks, and simpler input/output
connectors. This allows significant simplifications
of the input/output block library of Modelica, e.g.,
since only scalar versions of blocks that naturally
vectorize have to be provided. Furthermore, new
library components can be incorporated more
easily. In addition, it is possible to use functions
and functional blocks allowing, e.g., the sin-
function to be inserted in a block diagram.

Since the first release, it was possible in Modelica
to define homogenous component arrays, i.e.,
arrays where the array elements are instances of
any desired class, for example:

Resistor R[10];

is an array of 10 resistors including both the
resistor parameters and the resistor equations. In
Modelica 2, features have been added for
component arrays to widen their applicability.

Component Array Modifications
Assume a component is defined as

model FixedFrame
parameter Real r([3] = {0,0,0};

parameter Real alpha = 0;
parameter Real beta = 0;
parameter Real gamma = O;

The Modelica Association 7-1
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end FixedFrame;

which describes a coordinate system with respect
to another one as fixed translation with vector r
and fixed rotation around angles o, 3, y along x-,
y-, and z-axis respectively. A part may have
several frames and also other properties and can be
defined as

model Part
parameter Integer n=0;
FixedFrame frames[n];

end Part;
There are different possibilities to define a part
which has several frames:

Part p(n=2, frames[1] (r={1,0,0},
alpha 1),
frames [2] .alpha -1);

Here, every element of the frame vector is
explicitly modified. Another alternative is

Part p(n=4,frames (beta={1,2,3,4},
r £i11(1,4,3)));

where the same parameter of all frames are
modified. For example, frames|:].beta is treated as
a vector of 4 elements and therefore a vector of 4
elements has to be provided as modification. On
the other hand, frames[:].r is treated as a (4,3)
matrix.

Part p(n=10, frames(each r={1,0,0});

defines 10 frames, using the same vector r for all
frames. In a similar way also nested component
arrays are handled:

Part p[l0] (each n=3,
each frames (each beta=1) ;

Here, 10 parts are declared, where every part has 3
identical frames with beta=1. In this application it
is not very useful to define so many identical
frames. However, in lumped models deduced from
the discretisation of partial differential equations,
often many elements of a component array have
the same value. Example:

parameter Integer n;
parameter Real L=1 "length";
parameter Real r=1 "resistance
per meter";
protected

parameter Real Re=r*L/n;
Registor R[n+1] (R =
vector ([Re/2;
£ill (Re,n-1);
Re/21)) ;

All elements of the resistance vector R are the
same, with the exception of the first and last one
which each take half of the value of an element
Resistance Re.

Block Vectorization
Connectors of signals of the Modelica.Blocks
library are in Modelica 1.4 defined as

connector InPort
parameter Integer n=1;
input Real signal [n];
end InPort;

That is, the connector consists of a vector of Reals
which are used as input signals. Such a connector
is utilized in an input/output block as:

block FirstOrder
parameter Real T=1
InPort inPort;
OutPort outPort;

"time const.";

end FirstOrder;

Accessing the input signal of such a block is
inconvenient:

FirstOrder b;

b.inPort.signal([l] // input signal

In Modelica 2 it is possible to define a connector as
an extension from the base types, i.e., the
following definition is possible:

connector InPortNew input Real;
Also annotations for the graphical layout of icon
and diagram layer of such a connector can be
defined. Therefore, this connector may be dragged
from a library window in a model window to
construct a new model graphically. In a model, this
connector is used as:

block FirstOrderNew
parameter Real T=1
InPortNew u;
OutPortNew vy;

"time const.";

end FirstOrderNew;

Modelica 2002, March 18-19, 2002

The Modelica Association



M. Otter, H. Olsson

New Features in Modelica 2.0

Accessing the input signal of this block is now
much simpler:

FirstOrderNew b;
b.u // input signal

In the 1.4 version of the Modelica.Blocks library,
most blocks are manually vectorized, e.g., to
define an instance which has 10 input and 10
output signals and 10 first order blocks for every
signal path. This complicates the class definitions
in Modelica.Blocks considerably, and in all cases,
except Sources.KinemanticPTP, a vectorized block
behaves as a vector of scalar blocks. With the
extensions described above, this is much simpler.
For example, a scalar Sine block may be defined
as:

block Sine
import Modelica.Math.*;
import.Modelica.Constants. *;
parameter Real Amplitude =1;
parameter Real frequency =1;
parameter Real phase=0;
InPortNew u;
OutPortNew y;
equation
y = Amplitude*
sin(2*pi*frequency*time+phase) ;
end FirstOrderNew;

This looks like a text-book example of a sine
source. Using 3 Sine sources is now performed by
component arrays:

Sine s[3] (each frequency=50,
phase {0,2,-2});

Note, that it is easy to define that all sine-sources
shall have the same frequency, but different phases
roughly corresponding to 3 electrical phases. A
state space model may be defined as:

block StateSpace
final parameter Integer nx =
size (A
final parameter Integer nu =
size(B,2);
final parameter Integer ny =
e(C
Real A[:
Real BInx, :1;
Real C[: ,nx];
parameter Real D [ny,nu];
InPortNew ul[nul];
OutPortNew y[nyl] ;

parameter ,nx],
parameter

parameter

Real x [nx]
equation
der (x) = A*x + B*u;
y = C*x + D*u;

end StateSpace;

Connecting the 3 sin-sources as input to an
instance of StateSpace which has three inputs can
be performed in the following way:

Sine s[3] (each frequency=50,

phase = {0,2,-2});
StateSpace b(B=[0,0,1; d,000);
equation
connect(s.y, b.u);

This is a connection of s[:].y with b.u[:]. This is
allowed due to a new connection rule, provided the
dimension sizes match, which is the case here.

3. Enumeration Types

Modelica 2 introduces enumerations to construct
new base types which consist of countable sets of
elements. Example:

enumeration (
Italic, UnderLine) ;

type TextStyle
Bold,

This declaration defines a new type TextStyle. An
instance of this type may have only the values
TextStyle.Bold, TextStyle.Italic or
TextStyle.UnderLine. Such a type can be used in
the following way:

TextStyle t1
TextStyle t2

TextStyle.Bold;
tl;

Currently, the only operations defined for
enumeration types are the equal ("=") and the
assignment (":=") operations. Furthermore, the
relational operators <, <=, >, >=, ==, <> can be
applied. The result depends on the order of the
element in the enumeration declaration. For
example TextStyle.Bold < TextStyle.Italic. It is
planned to provide more operations in future
Modelica releases, e.g., to access array indices by
enumerations or inquire the next or previous
enumeration element.

Enumerations are useful for defining properties
and options in an understandable and safe way.
Since enumerations are internally mapped to an
Integer type, processing them is safer and much
more efficient than if properties or options would
be defined as Strings. Compared to using Integer
constants it is clearer, requires less typing, and is

The Modelica Association
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safer since each enumeration is a separate type. In
Modelica 2, several enumeration types are
predefined, such as StateSelect (see next section)
and enumerations in graphical annotations.

4. State Selection Control

The continuous part of a Modelica model is
mapped to a DAE, a differential-algebraic equation
system, of the form

0 = f(dx/dt, x, y, t)

where x(t) are variables appearing differentiated
and y(t) are pure algebraic variables. Conceptually,
this DAE is transformed in to state space form

dxy/dt = fi(x;, t)
X, = B5(X,,t)
y = f5(X,,t)

where x,(t) are a subset of x which are independent
from each other and x,(t) are the other variables of
X. Variables x(t) are called states of the model. A
numerical  integration = method  essentially
discretizes X, over time, whereas all other variables
are calculated as the solution of an algebraic
system of equations at the actual time instant. The
selection of x; is not unique. Different choices may
lead to drastically different numerical behaviour. A
dynamic automatic selection of x; by a tool is
always possible, [4]. However, experience shows
that user insight may lead to better choices or
avoid the need for dynamic selection. On the other
hand automatic selection is an efficient and reliable
method, and wusers should not be forced to
manually perform a complete manual state
selection merely because dynamic state selection
might be inefficient for some models. For this
reason, in Modelica 2 it is possible to guide the
state selection via the new attribute stateSelect of
Real variables. The attribute has values from the
enumeration StateSelect defined as:

type StateSelect = enumeration (
never, avoid, default,
prefer, always);

For "nmever", a variable will never be selected as a
state, whereas for "always" the variable shall
always be used as a state. For "default", which is
the default for all Real variables, the states are
automatically selected among the variables which
appear differentiated. If "prefer" is used, the
variable need not to be differentiated and is

preferably used as state over those having the
default value. Finally, for "avoid", the variable is
only selected as a state, if it appears differentiated
and if no other selection of wvariables with
"default", "prefer", or "always" value is possible. A
state preference definition may be given in the
following way:

Real w(stateSelect =
StateSelect.prefer) ;

Examples for appropriate state selection (from [2]):

Accuracy:

In rotating machinery systems used for power
transmission (but not for positioning drive
systems) and in power systems, angular positions
of shafts are increasing with time, but relative
positions between shafts are rather constant, at
least in normal operation. Say that two rotating
inertias are connected by a spring such that the
relative distance between them are 0.1 rad and that
their angular speed is 1000 rad/s. If the positions
are calculated with a relative accuracy of 0.001,
after 10 seconds there is hardly any accuracy in
calculating the distance by taking the difference.
The difference behaves irregularly and gives an
irregular torque if simulations take too long. It is
very difficult for a tool to find this out without
actually doing simulation runs. Therefore, it is
useful to define StateSelect.prefer for all relative
variables in force elements (e.g., spring, damper,
clutch). This will be performed in the next version
of the Modelica.Mechanics.Rotational library.

Avoiding function inversion:

In thermodynamic problems property functions are
utilized. These functions usually assume two
variables to be inputs (for example pressure and
enthalpy) and calculate other properties (such as
temperature, density). Thus, if such variables are
selected as state variables it is "simply" calling
property functions to calculate other needed
variables. Otherwise, it is necessary to solve non-
linear equation systems to calculate the input
variables of the property functions. Therefore, a
good choice is to use StateSelect.prefer on all
input variables of property functions, or use
StateSelect.avoid on output variables from
property functions.

Less nonlinear equations:

For three-phase power systems several choices of
states are possible, especially selecting states from
the stator side or from the rotor side. The first

Modelica 2002, March 18-19, 2002
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choice leads to a non-linear DAE, whereas the
second one leads (under certain assumptions) to a
linear DAE. In a periodic steady state, the first
choice results in a periodic solution of the states
whereas in the second choice the states are
identical to zero. As a result, selecting states from
the rotor side (= Park transformation) leads to a
more efficient and more reliable numerical solution
and therefore these wvariables should have the
attribute value StateSelect.prefer.

Avoid dynamic state selection:

For 3-dimensional mechanical systems having
closed kinematic loops, an automatic static
selection of states is not possible. Instead, the
states have to be dynamically selected and changed
during simulation in order to keep the (time-
varying) Jacobian of the system non-singular. In
many cases a suitable set of state variables is
known, e.g., the relative position and velocity
variables of the joints driving the mechanism. If
these variables have attribute value
StateSelect.always the simulation is more efficient
which is especially important for real-time
simulations.

Sensors:

A sensor may measure the speed "v" of a
translational connector. Since the speed is not part
of the connector, but the position "s" is, an
equation of the form "der(s) = v" is present in the
sensor, i.e., "s" appears differentiated and can be
potentially used as a state. However, in most case
the selection of "s" as a state is not appropriate,
since introduction of a variable for just plotting
should not influence the state selection. Therefore,
an attribute value of StateSelect.avoid should be
preferably used for differentiated variables in

sensor objects (here: "s").

The general advice is that selection of states ought
to be done automatically. This is also possible and
unproblematic in most models. Only if there are
good reasons, as pointed out above at hand of
several examples, the modeler may give hints for
state selection. Note, that in a library the values
StateSelect.never or StateSelect.always should
not be used, because a library has usually not
enough information to rigidly force a state
selection.

5. Improved Initialization

Modelica 2.0 introduces a mathematically rigid
specification of the initialization of Modelica

models, i.e., of hybrid differential algebraic
equations. The new language constructs permit
flexible specification of initial conditions as well
as the correct solution of difficult, non-standard
initialization problems occurring in industrial
applications, for example:

e Stationary initialization around a constant
reference velocity of an aircraft.

e Stationary initialization around periodic
solutions, needed in power systems or in
detailed engine models.

e Stationary initialization of continuous systems
controlled by sampled data systems (the states
of the discrete controllers are computed in such
a way that the overall system is in a steady
state when simulation starts).

e Initialization of discontinuous or variable
structure systems, e.g., systems containing
friction or backlash.

Since this is a large topic by itself, only a short

overview is given here. Details are presented in the

companion paper [3].

Before any operation, in particular simulation, is
carried out with a Modelica model, initialization
takes place to assign conmsistent values for all
variables present in the model, including
derivatives, der(...), and pre-variables, pre(...).
The initialization uses all equations and algorithms
that are utilized during the simulation.

In the most simplest case, when only continuous
equations are present without algebraic
dependencies of states (= no higher DAE index), a
Modelica model is mapped to the following
differential-algebraic equation system (DAE):

0 = f(dx/dt, x, y, t)

where x(t) are variables appearing differentiated,
y(t) are algebraic variables and dim(f) = dim(x) +
dim(y). These equations have to be fulfilled at all
time instants, especially also at the initial time t,.
During simulation, an integrator calls the model
providing basically x as input. Therefore, the
model equations are solved under the assumption
that x is known. During initialization, x is,
however, unknown. As a result, there are only
dim(x) + dim(y) equations for 2*dim(x) + dim(y)
unknowns during initialization. In the most general
case this means that the modeler has to provide
additionally dim(x) equations g(..) at the initial
time resulting in the following system of equations

The Modelica Association
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0= f(*(to), X(to)a Y(to), to):|
g(x(ty), x(ty)s ¥(tp)s to)

which has to be solved for the unknowns dx/dt(ty),
xX(to), ¥(to). In general this means that the standard
algorithms, such as BLT transformation, should be
applied to this system, in order to compute the
solution reliably and efficiently. From a user's
point of view this procedure means that dim(x)
equations have to be additionally provided for the
initial time, e.g., x(tg) = Xo or dx/dt(t)) = 0. In
Modelica 2 these initial equations can either be
defined in the new initial equation / initial
algorithm sections or as start value with attribute
fixed = true. For example two initial equations
x1(to) = 1 and dx2/dt(ty) = 0 may be defined as:

Real x1(start=1, fixed=true) ;
Real x2 //default: fixed=false
initial equation

der (x2) = 0;
equation

der (x1) = -x1 + x2;

der (x2) = -x2;

If there are constraints between states, the number
of initial equations to be provided is less than
dim(x). It may be difficult for a user of a large
model to figure out how many initial equations
have to be added. Therefore, it is essential that a
Modelica environment has appropriate support. For
example, Dymola performs index reduction and
selects state variables for the simulation model [1],
[3], [4]- Thus, it establishes how many states there
are and how many initial conditions have to be
additionally provided. If there are too many initial
equations, Dymola outputs an error message
indicating a set of initial equations or fixed start
values from which initial equations must be
removed or start values inactivated by setting fixed
= false. If initial conditions are missing, Dymola
makes automatic default selection of initial
conditions. The approach is to select continuous
time states with inactive start values and make
their start values active by turning their fixed
attribute to true to get a structurally well posed
initialization problem. A message informing about
the result of such a selection can be obtained.

6. Function Applications

In Modelica 1.4, a function application can have
either positional or named input arguments. In
Modelica 2, a function application may have
optional positional input arguments followed by

zero, one or more named input arguments.
Arguments not explicitly present get the default
value supplied in the function declaration. This
feature is useful to make the same function fit for
beginners and expert users. For example, a
function RealToString may be defined as follows
to convert a Real number into a String
representation:

function RealToString
input Real number;
input Real precision
input Real minLength
output String string;
algorithm

o
)

end RealToString;

Argument "number" is the number to be converted,
"precision" is the number of significant digits in
the String representation and "minLength" is the
minimum length of the String in which the number
is stored right justified. Since positional, named
and default arguments are allowed, the following
function applications are equivalent:

RealToString(2.0) ;
RealToString (2.0, 6, 0);
RealToString (2.0, 6);
RealToString (2.0, precision=6) ;
RealToString (2.0, minLength=0) ;

Note, that the following call leads to an error

RealToString (2.0, 6, precision=4) ;

since argument 2 is defined twice. This function
may be used to conveniently build up a message
string, such as

Variable "mass" (= -10.4562) shall
be non-negative.

via the function call

assert (v>=0, "Variable \"mass\" (="
+ RealToString(v) + " shall be "
+ "non-negative.\n"

As before, only positional output arguments of a
function application are possible. However, output
arguments shall be omitted, if the corresponding
variables has attribute enable=false in the function
declaration. This makes it possible to avoid
dummy output arguments in the function
application which are not used in the calling
function. For example, a function to compute
eigenvalues and optionally right and left
eigenvectors may be defined in Modelica as:
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function eigen
parameter Integer n = size(A,1l);
input Real Al:,n];
input Boolean getREV = false;
input Boolean getLEV = false;
output Real eigenValues|[n,2];
output Real REV[n,n] (enable=getREV) ;
output Real LEV[n,n] (enable=getLEV) ;
algorithm
// compute eigenvalues
if getREV then
// compute right eigenvectors
end if;
if getLEV then
// compute left eigenvectors
end if;
end eigen;

This function may be called to calculate only the
eigenvalues of a matrix or to just determine

whether a matrix has only stable eigenvalues:
ev = eigen(A) ;
b = isStable(eigen(d)) ; //

to calculate eigenvalues and right eigenvectors:

(ev, REV) = eigen (A, getREV=true) ;

to calculate additionally also the left eigenvectors:

(ev, REV, LEV) = eigen(A, getREV=true,
getLEV=true) ;

7. Record Constructor

In Modelica 2, the missing constructor for the
record data type is introduced. It is defined as a
function with the same name and the same scope
as the corresponding record containing all
modifiable components of the record as input
arguments and a record instance as output
argument. Since a record constructor is just a
function, it can be used at all places, where a
function call is allowed. For example, with the
following record declaration

record Complex "Complex number"
Real re "real part";
Real im "imaginary part";

end Complex;

a Complex data type is defined and implicitly its
constructor function

function Complex
input Real re "real part";
input Real im "imaginary part";
output Complex out (re=re,im=im) ;
end Complex;

Additionally, functions are needed, operating on
this data type, such as:

function add "Add Comp. numbers"
input Complex u, v;
output Complex w(re=u.re + v.re,
im=u.im + v.im) ;
end add;

The record constructor allows, e.g., to avoid the
usage of unnecessary auxiliary variables:

Complex cl, c2;
equation
c2 = add(cl, Complex(sin(time),
cos (time)) ;

Note, that the second argument of the function
application uses the record constructor to construct
a temporary instance of type Complex.

Record constructors are very useful in situations
where previously replaceable records have been
needed (which are much less convenient to utilize).
For example, a data sheet library of motors shall be
constructed. The motor model consists essentially
of two parts, one part containing all the data
defining a particular motor as a record, e.g.,

record MotorData
parameter Real inertia;
parameter Real nominalTorque;
parameter Real maxTorque;
parameter Real maxSpeed;

end MotorData;

and the motor model utilizing the motor data

model Motor

MotorData data;

// connector definitions
equation

end Motor;
When using a motor, specific values of the motor

data could be given in the usual way:

model Robotl

Motor ml (data (inertia = 0.001,
nominalTorque = 10,
maxTorque = 20,
maxSpeed = 3600)) ;

Motor m2 (data(...));

end Robotl;
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When using the same motor type several times, it
is better to define the motor data just ones, i.e.,
build up a data sheet library by modifications of
the default values of the basic MotorData record:

package Motors

record M103 = MotorData (
inertia = 0.001,
nominalTorque = 10,
maxTorque = 20,
maxSpeed = 3600) ;

record M104 = MotorData (
inertia = 0.0015,
nominalTorque = 15,
maxTorque = 22,
maxSpeed = 3600) ;

end Motors;

Whenever one of the motors of package Motors is
needed, it can be accessed by using the
corresponding record constructor:

model Robot2
Motor ml (data
Motor m2 (data =

Motors.M103()) ;
Motors.M104 (
inertia=0.0012)) ;

end Robot2;

It is still possible to override parameters in such a
definition, see declaration of m2, by calling the
record constructor function with appropriate
positional or (preferably) named arguments.

8. Iterators

Modelica 2 introduces several enhancements to
support more powerful expressions, especially in
declarations, in order to avoid inconvenient local
function definitions:

Deduction of Ranges

In all iterators, e.g., in for-loop, the expression to
define the range of the iteration need not to be
given if the iterator variables appear as array
indices. In such cases the iteration range is

end for;
end for;

may be abbreviated as

for i in 1:size(7,1),

j in 1l:size(A,2) loop
Ali,j] = BI[i,31%2;
end for;

or even shorter by automatic deduction of ranges

for i,j loop
Ali,j] = BI[i,j1%2;
end for;

Reduction Operators
An expression

function (expression for iterators) ;

is a reduction-expression. Currently, only the
function names sum, product, min, and max can
be used. The result is constructed by evaluating
"expression" for each value of the iterator variable
and computing the sum, product, minimum, or
maximum of the computed elements. Examples:

sum(i for i in 1:10);

is the same as
10 .
‘1l=1+2+...+10=55
Zl:

A Modelica translator may transform this operation
into:

algorithm
result 0;
for i in 1:10 loop
result result + 1i;
end for;

The sum of elements could also be defined as

deduced from the dimension sizes of the sum(1:10) ;
corresponding arrays. Example:
using the built-in operator sum(). However, when
for i loop summing up complex expressions or non-scalar
A[i] = B[i]172; expressions the reduction-expression can be made
end for; more readable than finding the appropriate
vectorized expressions. As an example consider
A nested for loop summing the squares instead:
for i in 1:size(A,1l) loop sum(i*2 for i in 1:10);
for j in 1l:size(A,2) loop
Ali,j] = BIi,3172;
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The sum of squared elements could also be defined
as

sum (diagonal (1:10) *2) ;

but even though it is slightly shorter it is not as
readable.
Other examples are:

product(a[i,1l]l*s + ali,2] for 1i);

is the same as
n
IIhdUhS+an)=(ans+an)(aﬂs+an)*~

As usual, a vector of values may be given as an
iterator:

sum (1”2 for i in {1,3,7,6})

. -2
Gives zie{l s gl = 149449436295

max (1”2 for i in {3,7,6})
results in 49

Iterator Array Construction
In a similar way as a reduction operator, the
construction

{expression for iterators};

with »n iterators generates an array with n
dimensions. The array is constructed by evaluating
the expression for every iterator value and
collecting the results to a corresponding array.
Examples:

{i*2 for i im 1:5}
results in the vector
{1, 4, 9, 16, 25}

An (n,m) array having the same value v for all
elements may be constructed as

v for i in 1:n, j in 1:m
J

which is the same as "fill(v,n,m)". The special
matrix

S O O
S O N O
S W O O
~ © O O

may be created with

if i==j then i else O
J
for i in 1:n, j in 1:n}

9. External Utility Functions

Modelica 1.4 has already a convenient and simple
to use interface for external C and FORTRAN
procedures which allows to pass nearly all data
types of Modelica. The only exceptions have been
String types which could not be returned. In
Modelica 2, the following utility functions can be
called in external C functions:

void ModelicaMessage
(const char* string)
void ModelicaFormatMessage
(const char* string, ...)
void ModelicaError
(const char* string)
void ModelicaFormatError
(const char* string, ...)
char* ModelicaAllocateString
(size_t len)
char*
ModelicaAllocateStringWithErrorReturn
(size_t len)

ModelicaMessage and ModelicaFormatMessage
output a string to the message window of the
Modelica environment. The latter with the same
format control as the C-function printf. In both
cases linefeeds need to be explicitly defined in the
string by "\n". Similarly, ModelicaError and
ModelicaFormatError output an error to the error
window of the Modelica environment. Contrary to
the first two functions, these functions never return
to the calling function, but handle the error
similarly to an assert in the Modelica code.
Example for usage:

ModelicaFormatError (
"\"%s\" cannot be copied to \"%s\""
":\n%s", oldFile, newFile,
strerror (errno)) ;

Here, an error message is printed if a file cannot be
copied. The error message of the operating system
containing the source of the error is included at the
end of the message by a call to the C function
strerror(...).
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ModelicaAllocateString allocates memory for a
Modelica string which is used as return argument
of an external Modelica function. If an error
occurs, this function does not return. The Modelica
environment is responsible to free this memory
when  appropriate. In a  similar  way
ModelicaAllocateStringWithErrorReturn
allocates string memory, but returns in case of
error. This allows the external function to close
files and free other open resources in case of error.
Due to these two functions, Modelica Strings can
now also be returned from external Modelica
functions. For example, with the following external
Modelica interface

function blanks
input Integer n(min=0) ;
output String blankString;
external "C"
blankString = blanks(n) ;
end blanks;

a string containing n blanks shall be returned. An
implementation of this function in C could be
accomplished in the following way:

#include "ModelicaUtilities.h"

const char* blanks (int n) {
/* Create string with n blanks */
char *c = ModelicaAllocateString(n) ;
int i;
for (i=0; i<n; ++1i)
clil=" ';
cln]l="\0";
return c;

}i

Note, that it is not necessary to check in the C-
function that the input argument "n" is not
negative, because this is already defined in the
Modelica interface and therefore the Modelica
environment is responsible to check this property.
Furthermore, it needs not to be checked whether
memory  could  be allocated, because
ModelicaAllocateString will not return in such a
case but will raise an exception in the Modelica
run-time environment and will jump to a place
where execution can continue, e.g., after
terminating the simulation.

Note that the newly introduced enumeration types
can also be used as input and output arguments in
external functions. They are mapped to int in C
and INTEGER in FORTRAN. The first value in an
enumeration type is hereby mapped to 1, the
second to 2, etc.

10. External Objects

Formally, external functions in Modelica 1.4 need
to be functions in the mathematical sense, i.e., they
do not have a memory and therefore return exactly
the same result if the function is called with the
same input arguments. In Modelica 2.0,
additionally external objects are supported in C,
i.e., several functions may operate on a C data
structure which is passed between function calls
and represents an "object memory". Example:

A table data structure may be defined in such a
way, that the table data is read in a user defined
format from file. Furthermore, the table is
interpolated in a user defined manner in the
Modelica model utilizing the last used table
interval for efficiently finding the current interval,
i.e., an internal memory is needed. This requires
the following Modelica definition:

class MyTable
extends ExternalObject;

function constructor
input String fileName;
input String tableName;
output MyTable table;
external "C" table =
initMyTable (fileName, tableName) ;
end constructor;

function destructor
input MyTable table;
external "C" closeMyTable (table) ;
end destructor;
end MyTable;

That is, a Modelica class has to be defined as a
direct subclass of the new predefined class
"ExternalObject". This class shall contain exactly
two function definitions, called "constructor" and
"destructor" (and no other elements). The
constructor function is called once before the first
use of the object. For each completely constructed
object (here: instance of MyTable), the destructor
is called once, after the last use of the object, even
if an error occurs. These two functions are always
called implicitly and it is not allowed to call them
explicitly. The MyTable Modelica class can be
used in a Modelica model in the following way:

model test

MyTable tablel=MyTable (
"testTables.txt", "tablel");

MyTable table2=tablel; //copy of tablel
input Real ul, u2;
output Real y1, y2;

equation
yl = interpolateMyTable (tablel, ul);
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y2 = interpolateMyTable (table2, u2);
end test;

In the declaration of "MyTable" either the
MyTable constructor is called using the class-name
as a function name, or a copy of another object of
the same type is constructed (see table2). The
objects may then be used in other external
Modelica functions. Here, a special external
interpolation function is used:

function interpolateMyTable
input MyTable table;
input Real u;
output Real vy;
external "C" y =
interpolateMyTable (table, u);
end interpolateMyTable;

The three external functions defined above may be
implemented in C in the following way:

typedef struct
double* array;

int nrow;
int ncol;
int type; /* interpolation type */
int lastIndex; /* for search */
} MyTable;

void* initMyTable (char* fileName,

char* tableName) {
MyTable* table=malloc (sizeof (MyTable)) ;
if ( table == NULL ) ModelicaError (

"Not enough memory") ;

// read table from file and store
// all data in *table
return (void*) table;

bi

void closeMyTable (void* object) {
MyTable* table = (MyTable*) object;
if ( object == NULL ) return;
free(table->array) ;
free (table) ;

}

double interpolateMyTable (void* object,
double u) {
MyTable* table = (MyTable*) object;
double vy;
// Interpolate using "*table" data
return vy;

}i

The external object interface allows, for example,

convenient implementations of

e user-defined table data structures,

e access to property databases,

e sparse matrix handling with specially defined
data structures to store sparse matrices,

e hardware interfaces, since the constructor and
destructor are called exactly once, even in case

of error, so that the resources of the hardware
are initialized and freed correctly in all
situations (once the hardware is initialized, i.e.,
the Modelica object constructed, it is
guaranteed that the destructor is called exactly
once for this object when the object, i.e., the
hardware, is no longer needed or when an error
occurs).

11. Graphical Appearance

The graphical appearance of Modelica object
diagrams has been defined informally up to
Modelica version 1.4 in the respective tutorial. In
Modelica 2, the graphical appearance is formally
defined in the Modelica specification with several
improvements, especially based on the new
enumeration features. In this section the most
important properties are sketched. Note, that all
graphical information is defined with the
annotation(...) language element and annotations
are defined to have no effect on the result of a
simulation. Therefore, annotations can be ignored
when generating simulation code.

A graphical representation of a class consists of
two abstraction layers, icon layer and diagram
layer. The icon representation visualizes the
component by hiding hierarchical details. The
hierarchical decomposition is described in the
diagram layer showing icons of sub-components.

Icon and diagram layer are described by different
coordinate systems which means that the shape and
size of the two layers are independent from each
other. This is different to previous versions of
Modelica where only one coordinate system is
defined for both layers. As a result, in Modelica 2
it is easier to arrive at nice looking drawings,
because connectors may have different sizes in the
icon and diagram layer and because a resizing of
the diagram or the icon layer does not influence the
size of the corresponding other layer. All size
information, e.g., the size of icons and diagrams,
the thickness of a line or the size of a font, is
defined with the predefined type DrawingUnit:

type DrawingUnit =
Real (final unit="mm") ;

The interpretation of "unit" in "mm" is with respect
to printer output in natural size (not zoomed).
Therefore, a  rectangle  with  width=20
DrawingUnits, height = 10 DrawingUnits and line
thickness of 0.5 DrawingUnits will be output as a
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rectangle with 20 mm width, 10 mm height and 0.5
mm line thickness on a printer. The representation
on screen is not formally defined. It is typically a
direct mapping of "mm" to "pixels", e.g., 1 mm in
"natural size" is typically mapped to 4 pixels. On
high resolution screens, this mapping may be
different.

The properties of graphical objects are mostly
defined with enumerations, e.g.,

type LinePattern = enumeration (
None, Solid, Dash, Dot,
DashDot, DashDotDot) ;

Colors are defined as RGB values
type Color=Integer[3] (min=0,max=255)

There is a set of predefined graphical primitives -
Line, Polygon, Rectangle, Ellipse, Text, Bitmap -
which may have graphical properties such as
lineColor, fillColor, linePattern, fillPattern,
borderPattern, lineThickness. For Text primitives,
the font name and the font size can be defined. All
graphical primitives are placed by defining the
placement of the corresponding object coordinate
system together with additional attributes to scale,
rotate, flip the object.

Note: a Modelica tool is free to define and use
other graphical attributes, in addition to those
defined in the Modelica specification. The only
requirement is that any tool must be able to save
files with all attributes intact, including those that
are not used. To ensure this, annotations shall be
represented with constructs according to the
Modelica grammar.

12. Outlook

We have this far described the status of Modelica
2.0. Some minor extensions have not been
mentioned, such as the "smooth" operator and the
"elseif" clause of if-expressions. In the near future
we can also expect the Modelica 2.0 libraries, and
in particular the blocks library, redesigned as
described above. In addition a ModelicaFunctions
library with matrix operations (linear algebra) will
be made available and the new rules for variable
number of input and output arguments will make it
possible to provide one function easily usable both
by experts and novices.

The ModelicaFunctions can also be wused
interactively, as well as other functions and we

expect more use of Modelica scripts and
potentially a formal definition of such scripts, and
API-functions to access model properties from
scripts. Other free libraries are also under
development, e.g., for 1-dim. heat transfer and for
3-dim. vehicle dynamics.

From the language point of view some areas where
improvements are needed is already clear, e.g.,
enumerations (as described above), impulses
(eliminating the need for the reinit-operator [5]),
heterogeneous arrays and PDEs (automatic
discretization). More advanced use of the language
and construction of large libraries and models will
probably help in discovering areas where the
specification can be made clearer and where
further enhancement of the language is needed to
better support the growing number of users of
Modelica.
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Abstract

Modelica 2 provides new powerful language constructs
for specifying initial conditions. Before any operation
is carried out with a Modelica model, such as
simulation or linearization, initialization takes place to
assign consistent values for all variables, derivatives
and pre-variables present in the model. To obtain
consistent values, the initialization uses all equations
and algorithms that are utilised during the simulation.
Additional constraints necessary to determine the
initial values of all variables can be provided as start
values for any variables as well as additional constraint
equations in initial equation sections. A novel feature is
the possibility to have a sampled controller initialized
in steady state. This tutorial paper describes and
explains the new language constructs and illustrates
how they in combination with Modelica’s other
language elements allow very flexible and powerful
initialization conditions to be defined.

1. Introduction

A dynamic model describes how the states evolve with
time. The states are the memory of the model, for
example in mechanical systems positions and
velocities. When starting a simulation, the states need
to be initialized.

For an ordinary differential equation, ODE, in state
space form, dx/dt = f(x, t), the state variables, x, are
free to be given initial values. However, more
flexibility in specifying initial conditions than setting
state variables is needed. In many cases we would like
to start at steady state implying that the user specifies
dx/dt = 0 as initial condition to get the initial values of
x calculated automatically by solving f(x, t) = 0.
Besides the states, a model has also other variables and
in many cases it is natural to specify initial conditions
in terms of these variables.

In January 2002, Modelica 2 was released [3]. The new
language constructs permit flexible specification of
initial conditions as well as the correct solution of
difficult, non-standard initialization problems occurring
in industrial applications. Modelica 2 provides a
mathematically rigid specification of the initialization
of hybrid differential algebraic equations.

Dymola [1,2] supports the new language constructs of
Modelica 2. Earlier Dymola versions had pure numeric
support for initialization. Experiences from industrial
applications including closed kinematics loops and
thermodynamic problems showed that this was not
sufficient. The numerical solvers were often not able to
solve the large and non-linear problems. Now Dymola
also manipulates symbolically the initialization
problem and generates analytic Jacobians for nonlinear
subproblems. Experience indicates that this approach is
more robust and reliable. Moreover, the special
analysis of the initialization problem allows Dymola to
give diagnosis and user guidance when the
initialization problem turns out not to be well posed.

This paper describes the language constructs to specify
initial conditions and examples for the usage are given.

2. Basics

Before any operation is carried out with a Modelica
model, especially simulation, initialization takes place
to assign consistent values for all variables present in
the model. During this phase, also the derivatives,
der(...), and the pre-variables, pre(...), are interpreted
as unknown algebraic variables. The initialization uses
all equations and algorithms that are utilized during the
simulation.

Additional constraints necessary to determine the
initial values of all variables can be provided in two
ways:

1. Start values for variables
2. Initial equations and initial algorithms

For clarity, we will first focus on the initialization of
continuous time problems because there are some
differences in the interpretation of the start values of
continuous time variables and discrete variables. Also
there are special rules for the usage of when clauses
during initialization. All this makes it simpler to start
discussing pure continuous time problems and after
that discuss discrete and hybrid problems.

The Modelica Association

Modelica 2002, March 18-19, 2002



Initialization of Hybrid Differential-Algebraic Eq...

Mattsson S.E., Elmqvist H., Otter M., and Olsson H.

3. Continuous time problems

Initial equations and algorithms

Variables being subtypes of Real have an attribute start
allowing specification of a start value for the variable

Real v(start = 2.0);
parameter Real x0 = 0.5;
Real x(start = x0);

The value for start shall be a parameter expression.

There is also another Boolean attribute fixed to indicate
whether the value of start is a guess value (fixed =
false) to be used in possible iterations to solve
nonlinear algebraic loops or whether the variable is
required to have this value at start (fixed = true). For
constants and parameters, the attribute fixed is by
default true, otherwise fixed is by default false.

For a continuous time variable, the construct
Real x(start = x0, fixed = true);
implies the additional initialization equation

x = x0;

Thus, the problem

parameter Real a = -1, b = 1;

parameter Real x0 = 0.5;

Real x(start = x0, fixed = true);
equation

der (x) = a*x + b;

has the following solution at initialization

a = =-1;

b = 1;

x0 = 0.5;

X = x0; // = 0.5
der (x):= a*x + b; // = 0.5

Initial equations and algorithms

A model may have the new sections initial equation
and initial algorithm with additional equations and
assignments that are used solely in the initialization
phase. The equations and assignments in these initial
sections are viewed as pure algebraic constraints
between the initial values of variables and possibly
their derivatives. It is not allowed to use when clauses
in the initial sections.

Steady state

To specify that a variable x shall start in steady state,
we can write

initial equation
der (x) = 0;

A more advanced example is

parameter Real x0;
parameter Boolean steadyState;
parameter Boolean fixed;
Real x;
initial equation
if steadyState then

der (x) = 0;

else if fixed then
x = x0;

end if;

If the parameter steadyState is true, then x will be
initialized at steady state, because the model specifies
the initialization equation

initial equation
der (x) = 0;

If the parameter steadyState is false, but fixed is true
then there is an initialization equation

initial equation
x = x0;

If both steadyState and fixed are false, then there is no
initial equation.

The approach as outlined above, allows x0 to be any
expression. When x0 is a parameter expression, the
specification above can also be given shorter as

parameter Real x0;
parameter Boolean fixed;
parameter Boolean steadyState;
Real x(start = xO0,

fixed = fixed and

not steadyState) ;
initial equation
if steadyState then
der (x) = 0;

end if;

Mixed Conditions

Due to the flexibility in defining initialization
equations in Modelica 2, it is possible to formulate
more general initial conditions: For example, an
aircraft needs a certain minimum velocity in order that
it can fly. Since this velocity is a state, a useful
initialization scheme is to provide an initial velocity, i.
e., an initial value for a state, and to set all other state
derivatives to zero. This means, that a mixture of initial
states and initial state derivatives is defined.

Modelica 2002, March 18-19, 2002 10
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How many initial conditions?

How many initial conditions are needed for a
continuous time problem?

For an ordinary differential equation, ODE, in state
space form, dx/dt = f(x, t), exactly dim(x) additional
conditions are needed, in order to arrive at 2*dim(x)
equations for the 2*dim(x) unknowns x(t,) and
dx/dt(ty).

The situation is more complex for a system of
differential algebraic equations, DAE,

0=g(dx/dt, x, y, t)

where x(t) are variables appearing differentiated, y(t)
are algebraic variables and dim(g) = dim(x) + dim(y).
Here it can only be stated that ar most dim(x)
additional conditions h(..) are needed in order to arrive
at 2*dim(x)+dim(y) equations for the same number of
unknowns, dx/dt(ty), x(to), y(to):

0 _ |:g(k(l0)5 X(ZO)5 Y(Zo)s t0 ):|
h(x(79), x(Zp), ¥(%9)s to)

The reason is that the DAE problem may be a higher
index DAE problem, implying that the number of
continuous time states is less than dim(x).

It may be difficult for a user of a large model to figure
out how many initial conditions have to be added,
especially if the system has higher index. At translation
Dymola performs an index reduction and selects state
variables. Thus, Dymola establishes how many states
there are. If there are too many initial conditions,
Dymola outputs an error message indicating a set of
initial equations or fixed start values from which initial
equations must be removed or start values inactivated
by setting fixed = false.

If initial conditions are missing, Dymola makes
automatic default selection of initial conditions. The
approach is to select continuous time states with
inactive start values and make their start values active
by turning their fixed attribute to true to get a
structurally well posed initialization problem. A
message informing about the result of such a selection
can be obtained.

Interactive setting of start values

The initial value dialogue of the Dymola main window
has been redesigned. Previously, it included all
continuous time states. Now it includes the continuous
time variables having active start values i.e.,
fixed=true and the start value being a literal. Setting
parameters may of course influence an active start
value bound to a parameter expression.

When setting variables from scripts Dymola generates
a warning if setting the variable has no effect what so
ever, e.g. if it is a structural parameter.

Non-linear algebraic loops

A non-linear algebraic problem may have several
solutions. During simulation a numerical DAE solver
tends to give the smoothest solution. A DAE solver is
assumed to start at a consistent point and its task is to
calculate a new point along the trajectory. By taking a
sufficiently small step and assuming the existence of a
Jacobian that is non-singular there is a local well-
defined solution.

The initialization task is much harder and precautions
must be taken to assure that the correct solution is
obtained. The means to guide the solver include min
and max values as well as start values for the
unknowns.

As a simple example, consider a planar pendulum with
fixed length L.

y

’ X
-

phi L

mg
Figure 1: A planar pendulum.

The position of the pendulum can be given in polar
coordinates. Introduce an angle, phi, that is zero, when
the pendulum is hanging downward in its rest position.
The model can be given as

.81;

I
=P

parameter Real g

parameter Real m

parameter Real L =

Real phi, w;
equation

der (phi) = w;

m*der (w) - (m*g/L) *sin (phi) ;

’
’

Assume now that we want to specify the initial
condition in Cartesian coordinates defined as
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x = L*sin(phi);
y = -L*cos(phi);

If we define

Real y(start = 0; fixed = true);
the pendulum will start in a horizontal position.
However, there are two horizontal positions, namely

x = -L and x = L

To indicate preference for a positive value for x, we
can define

Real x(start = L);

It means that we provide a guess value for numerical
solvers to start from. They will hopefully find the
positive solution for x, because, it is closer to L than
the negative solution.

For the angle phi there are many values giving the
desired position, because adding or subtracting 27
gives the same Cartesian position. Also, here the start
value can be used to indicate the desired solution. How,
critical it is to get a special solution depends of course
on what phi will be used for in the model and the aim
of the simulation. If no start value is given zero is used.

4. Parameter values

Parameters are typically given values in a model
through definition equation or set interactively before a
simulation. Modelica 2 also allows parameter values to
be given implicitly in terms of the initial values of all
variables.

Recall the planar pendulum and assume that we would
like to specify the initial position as

Real x(start =

3; fixed = true);
Real y(start = 4

0.
0.4; fixed = true);

This means that we in fact also specify the length of the
pendulum to be 0.5. To specify that the parameter L
shall be calculated from the initial conditions, we
define it as

parameter Real L(fixed = false);

Recall that the attribute fixed is by default true for
constants and parameters, otherwise fixed is by default
false.

The semantics of parameters in Modelica is a variable
that is constant during simulation. The possibility to let
the parameter value to depend on the initial values of

time dependent (continuous-time or discrete) variables
does not violate this semantics.

This feature has many useful applications. It allows
powerful reparametrizations of models. As an example,
consider the model of an ideal resistor. It has one
parameter, R, being the resistance. Assume that we
would like to have use it as a resistive load with a
given power dissipation at a steady state operating
point. It is just to extend from the resistor model given
in the Modelica Standard Library and

1. Add a parameter PO to specify the power
dissipation.

2. Set fixed=false for parameter R.

3. Add an initial equation section with v*i = P(.

In power systems, it is common practice to specify
initial conditions in steady state and use different kind
of load models including resistive load and specify
their steady state operating conditions in terms of
active and reactive power dissipation.

In some cases parameters may be provided outside of a
Modelica model and the actual values may be read
from file or parameter values may be inquired from a
database system during initialization:

parameter Real A (fixed=false);
parameter Real w(fixed=false);
Real x;
initial equation
(A,w) = readSineData ("init.txt");
equation
der (x) = -A*sin (w*x);

S. Discrete and hybrid problems

The language constructs for specifying initial
conditions for discrete variables are as for the
continuous time variables: start values and initial
equations and algorithms.

Variables being subtypes of Real, Integer, Boolean and
String have an attribute start allowing specification of a

start value for the variable.

For discrete variables declarations

fixed = true);
fixed = true);

Boolean b(start = false,
Integer 1i(start = 1,

imply the additional initialization equations

= false;
1;

pre (b)
pre (i)

Modelica 2002, March 18-19, 2002 12
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This means that a discrete variable v itself does not get
an initial value (= v(ty+€)), but the pre-value of v (=
v(to- €)) does.

When clauses at initialization

For the initialization problem there are special semantic
rules for when clauses appearing in the model. During
simulation a when clause is only active when its
condition becomes true. During initialization the
equations of a when clause are only active during
initialization, if the initial() operator explicitly enables
it.

when {initial(),
v o= .
end when;

conditionl, ..} then

Otherwise a when clause is in the initialization
problem replaced by v = pre(v) for all its left hand side
variables, because this is also the used equation during
simulation, when the when-clause is not active.

Non-unique initialization

In certain situations an initialization problem may have
an infinite number of solutions, even if the number of
equations and unknown variables are the same during
initialization. Examples are controlled systems with
friction, or systems with backlash or dead-zones.
Assume for example backlash is present. Then, all
valid positions in this element are solutions of steady
state initialization, although this position should be
computed from initialization. It seems best to not rely
on some heuristics of the initializer to pick one of the
infinite number of solutions. Instead, the continuous
time equations may be modified during initialization in
order to arrive at a unique solution. Example:

y = if initial() then
// smooth characteristics
else
// standard characteristics

Well-posed initialization

At translation Dymola analyses the initialization
problem to check if it is well posed by splitting the
problem into four equation types with respect to the
basic scalar types Real, Integer, Boolean and String
and decides whether each of them are well-posed.

As described for the pure continuous-time problem,
Dymola outputs error diagnosis in case of over
specified problems. In case of under specified
problems Dymola makes automatic default selection of
initial conditions.

How many initial conditions?

Basically, this is very simple: Every discrete variable v
needs an initial condition, because v(to- €) is otherwise
not defined. Example:

parameter Real tl = 1;
discrete Real u(start=0, fixed=true);
Real x(start=0, fixed=true);

equation
when time > tl then
u =
end when;
der(x) = -x + u;

During initialization and before the when-clause
becomes active the first time, u has not yet been
assigned a value by the when-clause although it is used
in the continuous part of the model. Therefore, it would
be an error, if pre(u) would not have been defined via
the start value in the u declaration.

On the other hand, if u is used solely inside this when-
clause and pre(u) is not utilized in the model, an initial
value for u may be provided but does not influence the
simulation, because the first access of u computes u in
the when-clause and afterwards u is utilized in other
equations inside the when-clause, i. ., the initial value
is never used.

Since it may be tedious for a modeller to provide initial
values for all discrete variables, Modelica 2 only
requires to specify initial values of discrete variables
which influence the simulation result. Otherwise, a
default value may be used.

6. Example: Initialization of
discrete controllers

Below four variants to inialize a simple plant
controlled by a discrete PI controller are discussed.

Variant 1: Initial values are given explicitly

parameter Real k=10, T=1;

// PI controller parameters.
parameter Real Ts = 0.01 "Sample time";
input Real xref "reference input";

Real x (fixed=true, start=2);
discrete Real xd(fixed=true, start=0);
discrete Real u (fixed=true, start=0);

equation
// Plant model
der (x) = -x + u;

// Discrete PI controller

when sample (0, Ts) then
xd = pre(xd) + Ts/T* (xref - x);
u = k*(xd + xref - x);

end when;
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Modelica 2002, March 18-19, 2002




Initialization of Hybrid Differential-Algebraic Eq...

Mattsson S.E., Elmqvist H., Otter M., and Olsson H.

The model specifies all the initial values for the states
explicitly. The when clause is not enabled at
initialization but it is replaced by

xd 1= pre (xd)
u 1= pre(u)

The initialization problem is thus

X = x.start // =2
pre(xd) := xd.start // =0
pre (u) := u.start // =0
xd := pre(xd) // =0
u = pre (u) // =0
der (x) = -x + u // = =2

Variant 2: Initial values are given explicitly and the
controller equations are used during initialization. It is
as Variant 1, but the when clause is enabled

// Same declaration as variant 1
equation
der (x) = -x + u;

when {|linitial ()|, sample(0,Ts)} then

xd = pre(xd) + Ts/T* (xref - x);
u = k*(xd + xref - x);
end when;

It means that the when clause appears as

xd = pre(xd) + Ts/T* (xref - x);
u k*(xd + xref - x);

in the initialization problem, which becomes

X := x.start // = 2

pre (xd) := xd.start // = 0

pre(u) := u.start // =0

xd := pre(xd) + Ts/T* (xref - X);
u := k*(xd + xref - x);

der (x) := -x + u;

Variant 3: As Variant 2 but initial conditions defined
by initial equations

discrete Real xd;

discrete Real u;
// Remaining declarations as in variant 1
equation

der (x) = -x + u;

when {initial(), sample(0, TS)} then
xd = pre(xd) + Ts/T* (xref - x);
u = k*¥(xd + xref - x);

end when;

initial equation
pre (xd) = 0;
pre(u) = 0;

leads to the following equations during initialization

x := x.start // =2
pre(xd) := 0
0

pre(u) :=

xd := pre(xd) + Ts/T*(xref - x)
u := k*¥(xd + xref - x)
der (x) = -x + u;

Variant 4: Steady state initialization

Assume that the system is to start in steady state. For
continuous time state, X, it means that its derivative
shall be zero; der(x) =0; While for the discrete state,
xd, it means pre(xd) = xd; and the when clause shall be
active during initialization

Real X (start=2);

discrete Real xd;

discrete Real u;
// Remaining declarations as in Variant 1
equation

// Plant model

der (x) = -x + u;

// Discrete PID controller
when {initial(), sample(0, Ts)} then
xd = pre(xd) + Ts/T*(x - xref);
u = k*(xd + x - xref);
end when;

initial equation
der(x) = 0;
pre (xd) = xd;

The initialization problem becomes
der (x) := 0
// Linear system of equations in the

// unknowns: xd, pre(xd), u, x
pre(xd) = xd

xd = pre(xd) + Ts/T*(x - xref)
u = k*(xd + xref - Xx)
der (x) = -x + u;

Solving the system of equations leads to

der (x) =0

b4 1= xref

u 1= xref
xd := xref/k
pre(xd) := xd

7. Conclusions

This paper has described and illustrated how the new
language constructs of Modelica 2 in combination with
Modelica's other language elements allow very flexible
and powerful initialization conditions to be defined.

Dymola supports Modelica's new way of specifying
initial conditions. To support reliable and robust
initialization, Dymola manipulates symbolically the
initialization problem and generates analytic Jacobians
for nonlinear subproblems. Moreover, the special
analysis of the initialization problem allows Dymola to
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give diagnosis and user guidance when the
initialization problem turns out not to be well posed.
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Evaluating Engine Contributions to HEV Driveline
Vibrations

Michael Tiller, William E. Tobler and Ming Kuang
Ford Motor Company

Abstract

In order to comply with increasing consumer and
regulatory demand for improved fuel economy and
lower emissions, Ford Motor Company is developing a
Hybrid Electric Vehicle (HEV) version of the Escape
sport utility vehicle for production in 2003. Since
HEVs typically have several different operating modes
(e.g. electric launch, active neutral, regenerative
braking), an important concern is the fact that each of
these modes and the transitions between them lead to
minimal driver perceived vibrations. In order to
understand how the design and control of an HEV
influences what is "felt" by the driver, we need to build
models that accurately reproduce the dynamic response
of the powertrain. In this way, the response for a given
mechanical configuration and/or controller design can
be evaluated.

A model targeted at prediction of driver perceived
vibration was developed and validated against
experimental data. However, one unexpected result of
this work was to demonstrate that we could take the
dynamic model used to reproduce the behavior
described previously and, by using some advanced
Modelica features, derive a second model that predicts
the system efficiency of the transmission without having
to create an entirely new model for that purpose. The
system efficiency model was also validated against
experimental data and showed very good agreement.
The result is that rather than spending time creating and
maintaining two different models (one for dynamic
response and one for system efficiency) we were able to
build one on the foundation of the other. Furthermore,
we determined it was possible to generate a single
model that could describe both types (i.e. dynamic and
steady-state) of responses by merely changing the
values of a few model parameters.

Introduction

The idea of using computer-aided methods to evaluate
powertrain and vehicle NVH (i.e. noise, vibration and
harshness) is not new [1,2]. Furthermore, the use of
Modelica to model automotive systems is increasing
[3,4,5,6,7]. However, the contribution that the internal
combustion engine makes as a "forcing function" to a
powertrain system is not typically examined in detail
since the steady state operation of the engine is well
understood and sufficient for most applications. For
HEVs though, the engine starts and stops frequently,
both with the vehicle in motion and at rest, and this

makes a significant contribution to vibration perceived
by the driver.

In order to understand the effects of powertrain design
and control on driver perceived vibrations, a detailed
thermodynamic model of an Atkinson cycle internal
combustion engine was developed and integrated with a
detailed model of a hybrid electric transmission. The
computational model was then validated against
experimental data and showed very close agreement.
With this validated dynamic model of the powertrain,
we analyzed the effect that changes in the mechanical
design of the powertrain had on the natural frequencies
of the vehicle, examined the effect that engine control
parameters (e.g. spark timing and valve timing) had on
powertrain response and created realistic Simulink plant
models which could be used to test different control
strategies.

Physical Models

The focus of paper is on modeling the physical response
of the powertrain. Issues about control system design or
strategy are larger issues beyond the scope of this paper.
Nevertheless, a good physical model of the powertrain
can provide useful insights for both the hardware and
control system designers.

In particular, we are interested in predicting the
sensitivity of the powertrain response with respect to
component design parameters and actuator commands.
To preserve the effects of design parameters, it is
generally necessary to provide design-oriented models
built from first-principles based component models
rather than models derived from empirical relationships
or experimental data.

Our discussion of modeling efforts will start with some
general modeling issues and then present details of the
engine, transmission and vehicle models used in this
work.

Control Signals

Both the engine and transmission subsystems contain
components that require control signal inputs (e.g. spark
timing and motor torque). One interesting problem that
arises when actuator and sensor models are included is
the need to communicate these control signals into and
out of the physical model hierarchy. The difficulty is in
managing the propagation of these signals especially in
the context of replaceable components.
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For example, we may develop an HEV model that
includes an engine with certain control signals (e.g.
spark timing and injector timing). At some later point,
we may wish to create a variation of that model by
simply extending the original model and replacing the
engine with different engine model. The difficulty
comes when the new engine happens to have a different
set of control inputs (e.g. cam phasing). In order to
propagate these new signals, this could require the
model developer to add a whole new set of connectors
up and down the model hierarchy.

To avoid this situation, we use something in our
Modelica models that we call the SignalBus idiom.
In this approach, all the signals associated with each
subsystem are grouped onto a "master" bus (e.g.
eng control bus) at the top-level of the model.
The SignalBus idiom is useful because the
component models only need to be aware of the specific
signals they require and not all signals on the master
bus.

connector SignalBus
annotation (..) ;
end SignalBus;

model FuelInjector
outer ControlBus eng control bus;
// .
protected
connector ControlBus
extends SignalBus;
Ford.Types.Degree inj start;
Ford.Types.Degree inj stop;
end ControlBus;
end FuellInjector;

model FullvVehicle
inner EngineMaster eng control bus;
Engine eng "has fuel injectors";
protected
connector EngineMaster
extends SignalBus;
Ford.Types.Degree inj start;
Ford.Types.Degree inj stop;
Ford.Types.Degree spark adv;
end EngineMaster;
end FullVehicle;

Figure 1: Example of SignalBus Idiom

To implement the SignalBus idiom, we define an
empty connector with a specific graphical
annotation.  Although not strictly necessary, it makes
the bus connectors very easy to identify in diagrams.
Next, inside each component requiring control signals
(e.g. a fuel injector), we declare a specific bus type for
that component (preferably in a protected section
to clearly indicate that this definition is for internal use).
The bus definition should include only the signals
required by the component. This bus can then be

instantiated with the outer qualifier. The name of the
instance should be that of the master bus where the
signals ultimately reside. At the top-level, the master
bus type must contain (at least) the union of all
subsystem component buses and an inner instance
must be declared. An example of the definitions and
declarations required is shown in Figure 1.

The SignalBus idiom has the following advantages
over signals. First, it avoids the necessity to place
connectors at each level in the hierarchy. This is
important because every change in control signals can
potentially change the set of connectors and
connections, a situation that becomes difficult to
maintain. In addition, because the outer bus only has
to be a subtype of the matching inner bus, the
component models are only required to declare the
signals they are interested in. This avoids dealing with
complex combinatorial possibilities that result when all
signals are included in a single connector definition.
One disadvantage with SignalBus definitions is that
responsibility for assigning the control signals is not
clearly specified by the definition. Instead, this requires
some discipline and understanding of the idiom.

Trying to decide on the best logical grouping for the
signals could be an involved task. Fortunately, there are
developing internal corporate standards or identifying
and grouping control signals and the SignalBus
idiom fits nicely into these emerging standards.

Reaction Torques

One limitation of the current rotational mechanics
library in the Modelica Standard Library is the fact that
it neglects reaction torques on rotational components.
For example, consider the IdealGear model
definition shown in Figure 2. The problem with the
IdealGear model is that it contains the equation:

Rt,+7,=0
which, in general, results in the torques not summing to
zero for this component. Since the torques represent the

flow of angular momentum, angular momentum is not
conserved.

within Modelica.Mechanics.Rotational;
model IdealGear "without inertia"
parameter Real ratio "Gear ratio";
Interfaces.Flange a flange a;
Interfaces.Flange b flange b;
equation
flange a.phi=ratio*flange b.phi;
O=ratio*flange a.tau+flange b.tau;
end IdealGear;

Figure 2: Standard IdealGear Model

While for many applications the models in the Modelica
Standard Library are sufficient, it is necessary to include
an additional flange in applications where the entire
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geartrain assembly has the potential to rotate. For our
application, we are interested in the motion of the
transmission housing and engine block and as a result,
we must include a special flange on many of our
component models (e.g. electric motors, spur gears,
crank-slider mechanisms) to account for the reaction
torque which ultimately causes vibrations in the
powertrain casing. In most cases, it is necessary to
formulate the reaction torques by considering
conservation of momentum and conservation of energy.

Engine Modeling

One of the key features of the models developed for this
application is the ability to predict the torque generated
by the engine during startup and shutdown. In order to
predict this torque, it is necessary to model some of the
detailed thermodynamic processes of the engine (e.g.
breathing, compression, combustion). Fortunately, we
had already developed, prior to this application, a
library of thermodynamic components for the purpose
of studying engine behavior [6,8,9].

intake
exhaust

L

e

duwa;

crankshat

Figure 3: Combustion Chamber Processes

The engine model uses the same geometry and valve
timing as the intended production engine to ensure that
the predicted torque fluctuations have the same
characteristics as the actual engine. To accomplish this,
the engine model was developed such that it could
reproduce effects due to throttle position, spark timing,
cam phasing, valve lift profiles, engine geometry and
injection timing during both startup and shutdown. This
involves modeling the behavior of manifold filling and
emptying, variable valve timing mechanisms,
combustion and the application of cranking torque.
Several of these behaviors are represented in the
combustion chamber schematic shown in Figure 3.

Transmission Modeling

Using rotational components that account for the
necessary reaction torques, construction of transmission
models is straightforward. = Unlike our previous
transmission models which included hydraulic
subsystems [4], the only complex behavior in the hybrid
transmission is related to frictional elements and these
can all be captured using the components in the
Modelica Standard Library. In other words, no complex
models had to be developed in order to build a
reasonable model of the transmission.

To accurately predict the behavior of the hybrid
transmission, several effects must be considered. First,
a non-linear spring is connected to the input shaft of the
transmission to isolate the transmission from the high-
frequency torque fluctuations produced by the engine.
In addition, the differential on the output side of the
transmission includes a single backlash used to
represent the backlash distributed throughout the
transmission.

Vehicle Modeling

The vehicle response model is quite simple and neglects
effects due to tire and suspension compliance.
Currently, we treat the vehicle as a single mass
connected by a kinematic tire model. The only real
detail of the vehicle model is in the modeling of the
front halfshafts (our current model handles only the
front wheel drive configuration of the powertrain)
which are modeled as non-symmetric compliances
connecting the transmission to the wheels. In the future,
we plan on refining our model to include suspension,
tire and driveline details so that we are able to predict
driver seat accelerations due to powertrain vibrations. It
has been shown previously [4] that such large and
complex models can be expressed in Modelica and
simulated using Dymola.

Analyses

Dynamic Response

The dynamic response of the powertrain is due to the
various inertias (e.g. gears, shafts, flywheel) and
compliances (e.g. halfshafts and engine mounts)
distributed throughout the system. The compliances are
all modeled as linear with the exception of the isolation
element on the input shaft of the transmission which is
modeled as a piecewise linear spring. In addition to the
inertias and the compliances there are several non-linear
elements. While the transmission includes several
frictional elements, they are not involved during start
stop operation. Finally, as previously mentioned, all
backlash in the transmission is lumped at the differential
on the output shaft.

The dynamic response of the transmission can be
modeled in Dymola and as we shall see later in the
'Validation' section, the results show close agreement
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with experimental results. Because of the simplicity of
our current vehicle model, the results we focus on are
the halfshaft torque trajectories. However, interpreting
the time domain results by inspection of the trajectories
is not a very good way of establishing the "quality" of
the startup or shutdown operation. Instead, we use a
signal processing algorithm which reduces the time
domain trajectories down to a scalar value. Using this
information, we can then generate plots of the startup
and shutdown quality as a function of spark timing, cam
phasing, etc. While we are not in a position to discuss
the results of such analyses, they have proved quite
useful in identifying what factors contribute to
powertrain vibrations.

Steady-State Response

One of the unexpected results of this work was to
demonstrate that additional types of analyses could be
performed using the model initially developed for
studying dynamic powertrain response. Once we had
established our ability to predict dynamic response of
the powertrain, we were asked whether we could apply
our model to understanding some experimental
efficiency data taken on a powertrain dynamometer.
The experimental results had shown what appeared to
be anomalous data points during the testing and the
question was whether the model could explain these
anomalies.

To study the problem, we went back to our dynamic
response model and made all the geartrains in the
transmission replaceable. We then created a new
transmission model for studying steady-state efficiency
issues by extending our dynamic model and redeclaring
all the geartrains so that steady-state efficiency data for
each geartrain could be provided to the model. In other
words, we took our original dynamic model and
redeclared all the gears to include more detailed gear
models necessary for studying steady-state efficiency.

In addition to redeclaring some of the components,
several additional modifications were required.
However, none of these modifications required changes
to the original model but could instead be accomplished
via the modification semantics in Modelica and by the
addition of some new components. The first
modification was to add some slight parasitic losses for
some of the frictional elements. These losses could be
introduced through modifications to the parameters in
the original model. The other big change for the steady-
state response was to eliminate the compliances since
they only play a role in the dynamic response of the
powertrain.

Thankfully, eliminating the compliances did not require
crude methods like making the stiffness of the elements
extremely large. This would not have eliminated the
dynamics but would have just shifted the natural
frequencies until they were extremely high. Instead, we
employed a technique which is quite easy in Modelica.

We created the RigidBypass model shown in Figure
4. Placing an instance of this model in parallel with all
our compliances allowed us, just by changing the value
of the rigid parameter, to eliminate completely all
compliance in the model.

Another important difference between the dynamic and
steady-state response models is how they were used.
The dynamic response model was used in the context of
a vehicle simulation where the vehicle moves in
response to the output torque of the transmission. On
the other hand, the steady-state response model was
used to reproduce the results of experiments conducted
on a powertrain dynamometer where the speeds of
various elements were fixed. To analyze our model we
had to place the transmission on a virtual powertrain
dynamometer. Once again, the experimental and model
results showed good agreement.

model RigidBypass
import Modelica.Mechanics.Rotational;
parameter Boolean rigid;
Rotational.Interfaces.Flange a a;
Rotational.Interfaces.Flange b b;
equation
if rigid then

a.tau + b.tau = 0;
a.phi = b.phi;
else
a.tau = 0;
b.tau = 0;
end if;

end RigidBypass;

Figure 4: RigidBypass Model

Frequency response

Another type of analysis that we could do quite easily
with these models was to study the frequency response
of the powertrain. With this capability, we could then
study the effect that different design and control
changes had on the poles of the system.

Imag Axis

A

Figure 5: Design Dependence of Poles

To perform this analysis we used the "Linearize" and
scripting functionality in Dymola [10] to generate a
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linear time invariant system of equations for several
different sets of design parameters. To do this properly,
we needed to find a state where the backlash was taken
up and the engine isolation spring was in the appropriate
behavioral regime. We could then use the "ltiviewer"
functionality in MATLAB [11] to visualize the poles
and zeros and to study how the poles moved in response
to changes in hardware or controller design. Figure 5
shows one example of how the poles are visualized.

Validation

Dynamic Response

To validate the dynamic response of the powertrain, we
used experimental data collected from vehicle tests
conducted on our test track. The experiments involved
starting the engine and looking at the resulting engine
speed and halfshaft torque trajectories. The tests
themselves were conducted with a closed loop
controller. For our validation, we extracted the actuator
signals used in the test and applied them in an open loop
fashion to our model. The vehicle testing consisted of
27 different experiments involving 9 different controller
strategies.

Figure 6 shows a comparison between the engine speed
measured during the testing (dotted green line) and what
the model predicts (blue line) based on the same
actuator commands. The effects of the first few
compression strokes can be seen as distinct bumps in
the engine speed profiles.
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Figure 6: Validation of Dynamic Engine Response

Similarly, Figure 7 shows a comparison (during the
same experiments) of the halfshaft torque predicted by
the model compared to the halfshaft torque measured in
the experiment. The halfshaft torque results are
sensitive to the initial crankshaft position and the initial
gap in the backlash.

Halfshaft Torque Comparison
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Figure 7: Validation of Dynamic Driveline Response

Steady-State Response

The steady-state response of the transmission was also
validated by comparison to experimental data.
However, the steady-state response is based on
powertrain dynamometer data. Again, we saw good
agreement between our model and the experimental data
taken over a range of different operating conditions.
Figure 8 shows a comparison between the experimental
data (black bars) compared with the model predicted
efficiency (red stars). The important thing to note in
this data is how well the model predicts the
conspicuously low efficiency present in some of the
tests.

Modeled Efficiency vs. Measured Efficiency
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Figure 8: Validation of Steady-State Efficiency

Conclusions

There are several important points to be made about this
modeling project. The models described in this paper
were constructed from data about the individual
components that appear in the model. Whenever such
data was available, we used it. The only exception was
a slight modification to the crankshaft inertia to
demonstrate better agreement in engine speed
trajectories. For component data that is not easily
obtained or measured (e.g. damping ratios), we started
by using "rule of thumb" numbers (which showed
reasonable agreement) and then we made some small
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adjustments, within reasonable limits, to calibrate those
parameters so that we could achieve the agreement
shown in the validation figures.

Another important point to make is the flexibility and
reusability that is inherent in Modelica models. This is
evidenced by our ability to do component level and
powertrain level validation studies, the flexibility of
using the models in different contexts (i.e. with different
causalities) and the ability to reuse the dynamic models
to reproduce steady-state response characteristics. This
flexibility combined with the efficient code generation
and solution methods in Dymola ensured that the model
development and analysis process was able to provide
accurate answers in a timely manner.
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Abstract

The Simulation of hydraulic or electronic systems has
been state of the art for a long time. For both of these
domains there exist highly specialized simulation pro-
grams which can be regarded as a kind of industrial
standards. Often problems arise if different domains of
technology occur within one system and very detailed
models are needed.

As an example a universal testing machine is presented
which consists of hydraulic, mechanical, and electronic
component systems. Each component is modeled fully
detailed using the Modelica language [1]. Without
coupling of simulators the whole simulation model can
be investigated by one tool.

1 Introduction

The engineer of today is used to powerful simulation
tools. Within the last fourty years these tools mutated
from simple solvers of differential equations to compu-
ter-aided design software for technical systems. Tools
like HSPICE in electronics, ADAMS in mechanics, or
HOPSAN in Hydraulics are highly specified to meet
the needs of the discipline. These tools “know* the do-
main-intern pecularities. Often the models and the
simulation algorithms are closely related. Therefore,
these tools are very advatageous in simulation, model-
ling, and postprocessing.

Often problems arise if technical systems cover more
than one established discipline, e.g. in microsystems
engineering. The two fundamental ways out are cou-
pling of simulators, and compact modeling for one
simulator.

From the very beginning the Modelica language is de-
signed for covering several technical disciplines [2],
[3], [4]. Complex systems can be modeled with one
language to get one model. The further processing
within the Dymola simulator results in one methemati-
cal model, typically a differential algebraic equation,
which is solved by one simulation core. The challenge
of the Modelica approach is to show that its efficiency
is not much less than the efficiency of domain specific
tools. To offer evidence of this is surely a long process.
In this paper the multidomain example of a universal
testing machine is presented. It demonstrates that the
unified multidiscipline simulation tool Modelica/Dy-
mola meets the challenge quite well.

At first the physical device is presented with emphasiz-
ing the hydraulic and electronic parts. The Modelica
model is shortly described, and simulation results are
discussed. It is shown that numerical problems could
be solved, and the performance can be accepted.

2 The Universal Testing Machine

Fig. 1 shows the universal testing machine. It is a sim-
ple mechanical construction of a one-sided working
Plunger cylinder and a hydraulic unit on the left side in
the picture. The hydraulic unit consists of a small AC
motor, a variable displacement pump, and a pressure
limiting valve.
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Figure 1: Universal testing machine

This kind of machines is used for tensile tests of a rod
to detemine e.g. the tensile strength, which is a material
property. The resulting quasi-static stress-strain dia-
gram describes how the material reacts under a
continuously increasing load. Often the load is neces-
sary to be regarded not as static but as periodic. In these
cases the testing method has to be modified to get pul-
sating forces. A simple modification is like this: Within
the hydraulic circuit an electro-hydraulic proportional
valve of high quality is inluded as a by-pass to the cyl-
inder. This valve is controlled using a sine-wave
generator as reference input and a Pl-controller. The
machine is described in more detail in [5].

-----

Figure 2: Hydraulic circuit of the testing machine

The task of the simulation is the investigation of the
modifications before they are aplied. E.g. the character-
istic parameters of the valve and the electronic
controller have to be determined.

3  The Hydraulic and Mechanical

Parts

After preliminary work using the analogue computer in
the fifties the simulation of hydraulic systems became
important in the eighties. Graphical user interfaces
were added in the nineties [6]. Using Modelica and its
libraries it is easy to model hydraulic or mechanical
systems [7]. The user needs not absolutely know the
details of component modeling. If nevertheless details
are essential the source code of the models is available.

Using HyLib models the hydraulic circuit according to
fig. 2 could be modeled. Since the pump is driven via a
V belt transmission parts of the standard Modelica me-
chanics library are used to built the model according to
fig. 3. A further mechanical component is the model of
the specimen which is a linear spring.

sy pelyont V_bell=1e3 | I
n
|dEE|GEE.1'1
T Ted ri=1.57

Figure 3: Model of oil source

To enable dynamic testing an electro-hydraulic valve is
used as a by-pass to the cylinder. In more detail the hy-
draulic and mechanical parts are described in [8], [5].

4

Since 1975 SPICE [9] is available for the simulation of
electronic and especially for microelectronic circuits.
Later on, powerful circuit simulators with graphical
and textual input possibilities were designed on SPICE.
For electronic devices very comprehensive models are
available which sometimes are based on semiconduc-
tor technology parameters.

The Electronic Part

In the electrical analog Modelica library [10] the most
often used electrical components are collected which
are easy to understand and of a wide interest. Although
the SPICE semiconductor devices are still missing it is
possible to model rather complicated electrical circuits.
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The electronic part of the testing machine is a PID-con-
trolling device [11], which amplifies (proportional),
integrates, and differentiates the input signal. The cir-
cuit scheme can be seen in fig. 4.

Cd R2 Ci
e e
C=1 R=1 C=1
R1 Amplifier
e fo—
R=1 L m
Vin
# Vout
L L L
Gnd1 Gnd2 Gnd3

Figure 4: PID circuit

By chosing the resistances and capacitances according
to
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the controlling parameters P, I, and D can be adjusted.
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v dt

out

The operational amplifier was modeled on different ab-
stract levels. On the transistor level the well-known
LA741 [12] was used which is modeled using bipolar
transistors (14 NPN, 7 PNP) of the Modelica standard
library.

The numbers of the values of currents in the electronic
part are orders of magnitude smaller than the numbers
of values in the hydraulic part. Small capacitances in
the transistors cause very short transient responses.
Therefore the mathematical model becomes stiff,
which is a challenge for the simulation system.

The bipolar transistors are modelled in the most simple
way according to the Ebers-Moll-approach [13], [14].
The circuit structure (fig. 5) shows the components

Curk=1
Dbe Curl=1 Dpet
= ] g u
E i x i
== o {
C=no... C=no...
n B

Figure 5: Ebers-Moll transport model

which are nonlinear ones. Since the currents of the non-
linear sources depend on the diode currents the
transistors are modelled using a behavioural descrip-
tion instead of a structural one. Both the diodes and the
capacitors use exponential growing functions. Because
of numerical reasons these functions are linearized, if
their results grow extremely.

The characteristic of an NPN transistor is shown in
fig. 6. The collector current is growing exponentially if
the base-emitter-voltage exceeds a certain value. In de-
tail the characteristic depends on 16 parameters which
are explained in the Modelica Standard Library.

4 M-CNT B
74
5.
1
0
-1 . | . | |
0 0.4 0.8 1.2

Figure 6: NPN characteristic

5 The Modelica Model

The simulation model of the controlled universal test-
ing machine is shown in fig. 7. The mechanical and
electronic models are from the Modelica Standard Li-
brary [1], the hydraulic models from the HyLib [7].

Unfortunately, the LA741 operates in a very small volt-
age range. Otherwise it runs into saturation. To avoid
saturation effects, both the input signal and the output
signal of the controller are transformed using the Gain
model of the Modelica standard blocks library. The
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Gain model simply multiplies the signal by a constant
factor. The input signal is multiplied by 4.0e-7, the out-
put signal by 0.1.

The electronic library uses the pin definition:
connector Pin
SIunits.Voltage v;
flow SIunits.Current i ;
end Pin;

For the block library the port definition is (the OutPort
definition is quite similar):
connector InPort
parameter Integer n=1;
replaceable type SignalType=Real;
input SignalType signal [n];
end InPort;

When electronics is coupled with block library ele-
ments these connector definitions hit each other. Since
the voltage carries the information which is relevant for
the signal processing the voltage is mapped on the sig-
nal value. This is simply done using the elements
SignalVoltage, which converts an InPort signal value
into an electrical voltage, and the VoltageSensor, which
does it vice versa.

6 Results

With Dymola version 4.1a [15] the model of the univer-
sal testing machine was composed graphically,
analyzed, translated into executable code, and
simulated.

The simulations started at the quiescent state (all volt-

ages are zero, the hydraulic pressures are equal to the
environment pressure) at time zero and finished after

=et Stoptime =10 =, tolerance = 1e-7 1000 intervalls

4 belt=1e3 M.

-] -
: @ealﬁeaﬁﬂ A7

10 seconds in the steady state. Several simulations with
parameter variations were necessary. As a result the
nominal valve value and parameters of the controller
could be chosen. Both the maximum excitation fre-
quency and the maximum force reachable could be
calculated. Measurements which were done afterwards
at the real machine confirmed this choice of parame-
ters. In the following pictures the behaviour of some
variables is shown.
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Figure 8: Force acting on the specimen
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Figure 7: Object diagram of the complete simulation model
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Chamberd! . port_Ap

The eigenvalues of the linearized system differ excep-

JIET tionally: the smallest is about -4.7361e+11, the largest
about -1.9441e-5. Therefore, the system is extremely
1 EE7 - Stiff.
1E7 4 The CPU time needed depends on the tolerance of the
numerical solver. If the tolerance is 1.e-7 and 1000 out-
= put intervals are specified then on a Pentium III (533
MHz) it takes the translation and linking 23 s, and the
(= simulation 232 s. Most of the simulation time is used
for leaving the quiescent state. If the stop time is 20 s
-SEE . , , ; the CPU time needed is only 4 s higher.
0 4 g
Important for an effective simulation is the optimal
Figure 10: Pressure in the chamber choice of the tolerance of the numerical solver. In the
following table the statistic is compared at different tol-
5 267E-8 4o .B.i erances for a stop time of 10 seconds and 1000 output
intervals, regarding the number of successful steps, the
- number of F-evaluations, and the number of step
events:
5. 25E-5
Number of
Tolerance succ. steps F-evaluations state events
5.248E-8+
1.0e-5 - -
0 I ;1 I BI I 12 5.0e-6 5561 253025 104
1.0e-6 6160 215790 106
Figure 11: Base current into transistor q5
1.0e-7 9821 266447 516
At first the Dymola tool establishes the total differen- 2.0e-8 16774 390555 145
tial algebraic system. A symbolic calculation step o8 26368 938770 1509
reduces the number of variables/equations before the i

integation starts.

In the following considerations the model without elec-
tronics but with a PI-controller of the block library is
used for comparisons. It will be called block model,
whereas the detailed model described above will be
called detailed model.

The following table compares the number of variables/
equations before and after the symbolic reduction.

Number of variables/equations

before reduction

after reduction

detailed model

1031

487

block model

309

137

Characteristical are the very different ranges of the var-
iables. This is illustrated by the above shown pictures

fig. 8 to fig. 11.

If the tolerance is 1.e-5 the simulation time progress is
very small. This table shows that the performance
slows down if small tolerances are used. But it also
slows down if tolerances are too large. Therefore, an
optimal tolerance exists which is at about 1.e-6. In con-
trast with this behaviour at the block model the
computational work for the block model does not in-
crease if the tolerance becomes larger.

Consequently, the CPU times depend on the tolerance
chosen. If the optimal tolereance 1.e-6 is used the CPU
time of the total model is as high as the CPU time of the
block model at the same tolerance. With other toleranc-
es the CPU time of the total model is of course higher.

These results show that in multidomain examples also
the difficulties of each domain come together and react
together. This point of view will have to be investigated
more thoroughly.
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7 Conclusion

A rather complicated multidomain example could be
modeled and simulated in an easy way without simu-
lator coupling. Within reasonable computing times
several problems of design specifications could be
solved. More than thousands of variables can be han-
dled. Both extremly stiffness and very different ranges
of variables are possible.

To encourage more detailled and more easy modeling

the following improvements are suggested:

* Further physical components with multidomain
aspects should be offered in the Modelica standard
library

* For electronic devices the support of SPICE
netlists and SPICE models is necessary

To get more insight in the multidomain simulation with
regard to both modeling and numerical aspects much
more complex examples are desirable.
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Abstract

The free Modelica library THERMOFLUID (see [2]
and [11]) was developed for simulation of thermo-
hydraulic applications, both for single-species appli-
cations like the water-steam cycle in a thermal power
plant and for multi-species applications with gas mix-
tures. It has demonstrated its flexibility for model-
ing thermodynamic and process applications in a va-
riety of industrial and academic projects, see [10], [3]
and [7]. This article describes how support for chemi-
cal reactions and membrane diffusion has been added
to THERMOFLUID, thus expanding the area of pos-
sible applications to include reacting flows, chemi-
cal batch reactors, catalytic converters, etc. Another
crucial part of the modeling work has to be spent on
getting physical property data of sufficient accuracy
and with acceptable computational complexity for en-
gineering purposes into the model. This has been
adressed in the development of a commercial inter-
face to the industry-standard physical property pack-
age MultiFlash. The new Modelica library THER-
MOFLUID/MF provides the modeler with two tool-
boxes. Firstly, a low-level Modelica function interface
to MultiFlash. MultiFlash consists of a core of physi-
cal property calculation routines and a basic database
of the most comman chemical components and a num-
ber of add-on property databases. The interface gives
access to multi-component, multi-phase property cal-
culations including gas, several liquid and condensed
phases, wax formations and hydrates. Secondly, a
high-level Modelica model library which is fully in-
tegrated with the THERMOFLUID library and imple-
ments robust and efficient dynamical models for the
most common process engineering equipment. In ad-
dition, reliable crossing functions for detecting phase
boundaries in multi-phase, multi-component mixtures

#United Technologies Research Center
East Hartford, Connecticut, USA
EbornJP@utrc.utc.com

have been implemented for the first time in a high-
level modeling language. The crossing functions make
it possible to simulate processes correctly even at off-
design operating points and under start-up conditions.
A flash volume may in such cases be filled with only
liquid or only gas. Crossing functions for phase transi-
tions ensure high performance simulation even in these
cases.

1 Flexible handling of chemical reac-
tions

In standard chemical textbooks, reactions are treated

as source terms in component concentration balances:

E_l

out
—ci 1)
where r; are the component reaction rates, given by
a kinetic expression. In a more general way, we can
include the reaction terms in the component mass bal-
ance and total energy balance

dM; ,
dt’ = " —ml" +rZ;- MW, )
au y ) nc
= A Xz H! 3)

i=1

where rZ are reaction rates in moles/s, g is convective
heat flow, 7i2 mass flow and H/ is component enthalpy
of formation.

1.1 ThermoFluid balance equations

In THERMOFLUID, the general balance equa-
tions are implemented in the package Base-
Classes.Balances. The basic balance equations

should not be modified by the average user and thus
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Equilibrium Reaction
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Kinetic Reaction

&

Heat
Transfer.

Heat
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Figure 1: Schematic of the HeatAndMassObject with
heat interaction and reaction objects (no diffusion con-
nector present).

need to be general enough to handle all cases from an
isolated gas volume to a reactor with added mass- and
heat transfer laws. The model structure has to provide
the option to add any kind of heat- and mass transfer
interaction with the control volume later, as an add-on
component. The basic balance equation of a control
volume with two connectors is implemented as

dM x

du

a.mdot_x + b.mdot_x + rM;
a.g conv + b.g conv + Q_s;

This means that rM and Q_ s, corresponding to the
source terms in (3) should be unspecified in the gen-
eral base class, and then specified at a later stage when
the balance class is reused in the model of a specific
component. When there are no reactions or heat inter-
action with the volume there is no need for any source
terms. In this case the model should provide a default
value of zero production.

1.2 The HeatAndMassObject, a gateway to
the balances

The contradiction of leaving the option open to spec-
ify production terms but not having to add a default
value of zero can be handled with open flow connec-
tors. In Modelica, all quantities which are flows are
marked with the £low-prefix. Flow variables obey
the zero-sum rule (Kirchhoffs’ current law) and have
in unconnected connectors a zero default value. Since
these connectors should be internal to the volume,

they need to be attached to an object inside the vol-
ume model. This is the HeatAndMassObject,see
Figure 1, which acts as a gateway between the bal-
ance equations and possible heat- and mass transfer
objects. External connectors can also be connected to
the HeatAndMassObject.

Interfaces

The HeatAndMassObject interact with other ob-
jects through a number of different connectors. The
currently implemented connectors include the Heat -
Flow connector for pure heat interaction (conduc-
tion/radiation), the ChemFlow connector for chemi-
cal reactions, both kinetic and equilibrium, and a con-
nector for membrane diffusion.

connector HeatFlow

parameter Integer n;
Temperature [n] T;
flow Power [n] a;

end HeatFlow;

connector ChemFlow
parameter Integer n, nc;
parameter String MediumType;
Temperature [n] T;
Pressure [n] p;
Concentration[n,nc] conc;
flow MolarFlowRate[n,nc] rZ;
flow Power [n] a;

end ChemFlow

The diffusion connector is similar to the ChemFlow
connector but has mass flow rate instead of molar flow
rate since this is standard for diffusion.

The flow semantics of Modelica for the molar flow rZz
and the heat flow g make sure that all contributions
to the mass- and energy balances are correctly taken
into account, no matter whether there are zero, one
or many connections to the HeatAndMassObject, see
Figure 1. Inside the HeatAndMassObject the con-
tributions from the different connectors are summed
up and transferred to the balance equations in the vol-
ume.

1.3 Objects for encapsulating reactions

To be able to drag and drop reaction models into a vol-
ume model (a reactor), they are encapsulated in reac-
tion objects. As shown in the code example below, the
Basic reaction inherits interfaces and basic parame-
ters from the reaction BaseObject.
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package Reactions

partial model BaseObject
parameter Integer n, nc, nr;
MolarReactionRate [n,nr] reacRate;
Enthalpy [nc] compHf ;
parameter StoichiometricNumber [nr,nc]
stoich=zeros (nr,nc) ;
equation
for i in 1:n loop
r.rzZ[i, :]
transpose (stoich) *reacRate [1i,
end for;
end BaseObject;

11

model Basic "Simple Arrhenius reaction"
extends BaseObject;
parameter Rate [nr] AQ;
parameter Real [nr] b;
parameter MolarInternalEnergy[nr] Ea;
Concentration[n,nc]
equation
for i in 1:n loop
reacRate[1, :]
r.qlil -compHf*r.rZz[i, :];
end for;
end Basic;

conc;

L

end Reactions;

The reaction rates are calculated from standard Arrhe-
nius expressions using the concentrations and the pa-
rameters. To use the reaction component, like in the
kinetic reaction in Figure 1, the user simply needs to
specify the parameters. The stoichiometry matrix is
constructed as shown in Table 1 and the heat of forma-
tion parameters are added from the medium model.

To construct models of other types of reactions the re-
action BaseObject can be reused. The customized
reaction model needs to give expressions for the reac-
tion rates, either by adding equations or by calling a
rate function. In this way packages of reactions can be

{02 H, H,O O H OH Ar}

H+ 0, — OH+O 1 0 0 1 -1 1 0]
OH+ 0 —» H+ 0O, 1 0 0-11-10
O+H, - OH+H 0-10-11 10
H,O0 +H — H, + OH 0 1 =10 -110
H, +OH —» H,O0+H 0 -11 0 1 -10
H,0 +0 — 20H 0 0-1-10 20
2H+ Ar — H, + Ar 01 0 0 -200
204+ Ar = O, + Ar |1 0 0 -2 0 0 0]

Table 1: Reactions included in the H, O, reaction sys-
tem and the corresponding stoichiometric matrix.

Heat1

I\

Flow1 GasCV

Figure 2: Schematic of example system with H,—O;
reaction.

built and reactions can graphically be added to stan-
dard reactor models.

1.4 Example, combustion of hydrogen

As an example, we consider the combustion of hydro-
gen and oxygen into water. In a simple setting, see
Figure 2, the system consists of a reservoir supplying
the reactants, a reactor volume and a sink for the prod-
uct flow. A heat source is added to provide the heat
necessary to ignite the mixture.

The complete set of sub-reactions for this process in-
volves a large number (> 40) of very fast reactions,
see [12]. Here we only consider the 8 main reactions,
involving the components { O,, H,, H,0, O, H, OH,
Ar}. Argon is included as an inert gas. The included
reactions are listed in Table 1. The corresponding sto-
ichiometry matrix and reaction rate parameters have
been coded into a Basic reaction object inside the
GasCV reaction vessel.

The result plots show clearly that the reactions are ex-
tremely fast once they started. They saturate when
all H; is burned up and the flow through the volume
reaches steady state. The mass flows in Figure 3 show
a violent explosion when the mixture ignites. After the

25 T

— - outflow
— inflow H

W N |
I

Massflow [kg/s]

!
!
1
i
|
|

2 Time [s] 8 N

Figure 3: Mass flows into and out of the control vol-
ume during the ignition phase
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I
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mole fraction of H20

Time [s]

Figure 4: Molar fractions of the principal reactants and
products

initial ignition, a steady inflow of premixed gases leads
to a steady combustion with plenty of surplus oxygen.
The speed of the reactions makes the system very stiff.
The whole simulation shown in Figures 4-3 spans only
a few milliseconds.

2 The MultiFlash interface

MultiFlash is the generic name for a physical prop-
erty software from Infochem Ltd. It is a comprehen-
sive system that calculates the thermophysical proper-
ties of pure substances and mixtures and carries out
phase and chemical equilibrium calculations for fluid
and solid phases. MultiFlash consists of several soft-
ware modules: databases with the raw property data,
access software to the databases and different mod-
ules for pure component property calculation, mix-
ture models for thermodynamic properties and trans-
port properties, handling of binary interaction parame-
ters and phase and chemical equilibrium calculations.
A number of process simulators, e. g., gPROMS from
PSE, uses an interface to MultiFlash for the calculation
of physical properties. For use in a dynamic simulation
program typically only a small fraction of the Multi-
Flash functions are needed. The current interface is
kept as simple as possible, with all necessary interac-
tion with the property database encapsulated into one
medium property object. The interface has been tested
with both Dymola by Dynasim AB [4] and MathMod-
elica by MathCore AB [6].

2.1 The low-level interface

The low-level interface between Modelica models and
the MultiFlash modules, which are accessible via a

Win32 Dynamic Link Library (dll) under Windows,
consists of the standard Modelica foreign function in-
terface for the C-language. This means that all calls
to MultiFlash routines are provided exactly as docu-
mented in the MultiFlash programmers guide, includ-
ing identical variable names. There are two minor,
but necessary exceptions. Modelica does not allow to
overwrite inputs with outputs in the calling of func-
tions. This is common practice in Fortran numerical
routines and in MultiFlash this is exclusively used to
provide estimates of the solutions in the input vari-
ables. In the Modelica interface, the estimated solu-
tions are provided as additional input arguments to the
function and the original MultiFlash variables are kept
as outputs. The second exception is the handling of er-
ror message strings. The handling of errors and warn-
ings is done in the C wrapper functions. Diagnostic
messages are written to the simulation log. A flag with
the number of errors is returned in the Modelica func-
tion call for error trapping purposes.

2.2 Computational efficiency

Simulation time is an important issue and the inter-
face library uses all available methods to make func-
tion calls computationally efficient. A simple rule is
to get as many physical properties as possible from
one call to MultiFlash. All essential medium prop-
erties needed for the default dynamic model are avail-
able in one property record which is calculated with
one single function call to MultiFlash. The dynamic
state model and other ThermoFluid models need ev-
erything in this standard property record, so it is com-
putationally not efficient to slim down this function
call. Boolean flags to the MultiFlash routines are used
to ensure that only the medium properties of interest
are calculated. High level functions that return only
a single property have not been implemented in order
to close the door on unnecessarily slow models. How-
ever, all low-level MultiFlash functions are available
and thus single function calls to obtain properties can
be used if it is desired.

Providing good estimates of the solution makes a big
difference in the solution time for any nonlinear sys-
tem of equations, especially for phase equilibrium cal-
culations. It is obvious that for continuous, dynamic
simulation the result from the last time step usually
provides such an estimate. Internal caching of the last
solution in the same control volume is therefore im-
plemented in the THERMOFLUID/MF MultiFlash in-
terface.
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2.3 Using MultiFlash with ThermoFluid/MF

Setting up a model that uses MultiFlash properties is
currently done through the MultiFlash windows user
interface. The user selects the wanted components by
querying the available MultiFlash databases. For com-
plex systems, the MultiFlash stream facility is used to
define different component streams to be used in dif-
ferent parts of the system. The global stream which
has to be defined first contains the union of the com-
ponents in all streams. If necessary, the thermody-
namic models can be changed from the default sug-
gested by MultiFlash through the graphical user inter-
face. All standard equations-of-state (EOS) models,
e. g., Redlich-Kwong-Soave or Peng-Robinson, can be
used with a selection of mixing rules. Binary inter-
action parameters can be entered if needed. Trans-
port property models are selected independently of the
EOS models. The problem setup is saved in an mfl-
file which is then read and parsed during initialization.
The file name is the main parameter to the medium
models in the THERMOFLUID/MF library. Problem
setup files are read from the current directory or from
a repository, where all problem setup definitions can
be managed in a centralized way.

2.4 Dynamic state equations

The most efficient method of combining the dynamic
states and the physical property calculation is to
choose the dynamic states of the model such that they
are inputs to the physical property calculation routines.
That avoids the solution of non-linear equation sys-
tems during simulation. Otherwise, inputs to the prop-
erty functions have to be computed from outputs of
that functions through a non-linear equation system.
This happens when the outputs are dynamic states or
time-invariant parameters, like the volume in a closed
vessel. If the property functions are computationally
expensive relative to the rest of the model, the saving
in computation time by using a model which is ex-
plicit in the states is significant. When this can not be
achieved, as is the case with the MultiFlash routines, it
is still preferable to get non-linear equation systems of
the lowest possible dimension. Due to the MF call-
ing structure with pressure p, temperature 7 and N
(mole amounts) as inputs and total volume V' as out-
put a special state model has been defined. It is incor-
porated in the free THERMOFLUID library and can be
used interchangeably with the simple ideal gas models
in the free THERMOFLUID library and the commer-
cial MultiFlash property models. The state model uses

temperature 7 and mole amounts N as dynamic states,
while p can be regarded as an algebraic variable that
contains state information. For the standard case of a
constant volume control volume, the pressure is solved
for iteratively to ensure that the total volume is kept
constant, Vyieq = V(p). This is the only non-linear
equation system in the model for single phase calcu-
lations. The dynamic state model is derived from the
standard text-book form of an energy and mass bal-
ances. In block matrix notation, the inner energy and
mole amount balance can be recast into temperature
and moles as dynamic states as follows (boldface for
vectors and matrices, sizes follow from dimension of
N, the number of components in the mixture.):

Nt 0 0 Nl‘
du du du
U = dN |1V d_T|N,V W|N,T I,
Vi 0 1 Vi
(4)

The subscript ¢ is used for the time derivative, N stands
for mole amounts, U for total inner energy. The in-
verse of the jacobian is used to make this model ex-
plicit in the mole vector, the temperature and the vol-
ume as dynamic states:

I 0 0

T _du _dau |
= aNIT Vv T INy dv IN,T

d_T|N,V 0 0 1

®)

The structure of the jacobian inverse reveals that only
the equation for the inner energy is transformed into
one for the temperature. The mole balance equations
remain unchanged from (4).

The partial derivatives occuring in the transformed dy-
namic and initial equations can be calculated from
derivatives that are returned by MultiFlash by setting
the appropriate flags. However, the derivatives must be
transformed using thermodynamic determinants since
MultiFlash returns derivatives at constant pressure and
the THERMOFLUID balances are derived at constant
volume. As an example we pick the derivative of to-
tal enthalpy w.r. t. temperature (all derivatives are at
constant composition):

A

All derivatives on the right hand side of the equation
are returned by standard MultiFlash property calls.

_oH| oH
y o or|, v

oH
or

o
;o oT
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2.5 Initialization

In the Modelica 2.0 specification and Dymola version
4.2 the possibility to separate the equations for steady
state initialization from the dynamic states was intro-
duced. Due to that separation, a control volume can
now easily be initialized at steady state pressure, even
when the pressure is not a dynamic state. In complex
flow sheets, the calculation of an initial steady state is
usually numerically much more challenging than the
subsequent dynamic simulation. A helpful way around
that problem is to use a suitable “pseudo steady state”
instead which avoids harsh initial transients. One pos-
sibility to do so is to use steady state initialization only
for the states with relatively fast eigenvalues. Setting
the pressure gradient to zero, but supplying initial es-
timates for temperature and composition is one such
suitable choice of a “pseudo steady state”. The fast
modes of the system (pressure and, if a dynamic mo-
mentum balance is used, mass flows) are initialized in
steady state, while the much slower modes of tempera-
ture and composition are set by a non-steady state ini-
tial guess. The pressure gradient becomes:

dT

N di

- 4r
i=1 dNi

dN;

dp _ dp _
; dt

dt dT

)

This equation together with given initial composition
and temperature is much easier to solve than a full
steady state, especially for large networks, but the ini-
tial transients due to errors in the initial guesses are
orders of magnitude smaller than the ones obtained
from non steady state pressures. The new initialization
method has been implemented for all state models in
the THERMOFLUID and THERMOFLUID/MF libraries
and has improved the handling of model initializa-
tion considerably. Before implementation of the im-
proved initialization, computation time for small prob-
lems was dominated by the time to simulate past the
initial transients. With that obstacle removed, typi-
cal simulation times for small systems are an order of
magnitude faster than before.

This initialization is the default setup when the THER-
MOFLUID/MF high-level models are used. The initial
state is defined by given temperature and mass frac-
tions and an initial pressure estimate. The initializa-
tion then solves for the mole amount states.

2.6 Debugging

In order to improve feedback and error messages for
debugging, an identifier for each control volume is
allocated during the initialization of the model. The

identifier is passed to the wrapper functions calling the
MultiFlash property routines. Using the unique con-
trol volume identifier, it is possible to connect error-
and warning messages from the MultiFlash routines to
the location in the flow sheet where the error occured,
e.g., if a temperature rises above the range of validity
of the property function. All error and warning mes-
sages from MultiFlash are written to the Dymola sim-
ulation log. Information about the version, the config-
uration, the number and composition of streams etc. is
also included in the log.

2.7 ThermoFluid/MF high level models

Modeling of process engineering problems can not
be cast into fixed, unchangeable model library com-
ponents as for example multibody systems. Instead
flexibility is needed to have basic building blocks tak-
ing care of the standard parts of any dynamic model.
These basic models need to be easy to adapt to a spe-
cific problem. A large part of the physical property
calculations is identical for all modeling problems.
The THERMOFLUID/MF library provides such basic
models and building blocks for control volume models
based on MultiFlash properties. Extensions are sim-
ple to add by using elements of the THERMOFLUID
or THERMOFLUID/MF libraries. Some examples of
lumped and distributed models demonstrate how to
build components and larger systems from the build-
ing blocks in the library. A mixture which is typical for
fuel cell reformer systems is used to demonstrate how
the minmimal physical property model is used and also
how to add transport properties. Transport properties
are not included in the THERMOFLUID library except
for water, but MultiFlash includes several models for
viscosity, thermal conductivity and surface tension for
pure components and mixtures.

Volume

Weer(x Weer )W der(p)

po, TO

Reservoir IsentropicValve

‘Pump.

Figure 5: Example models from the library.
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The number of high level models in the THER-
MOFLUID/MF library is fairly small, because most
standard models can be used from the THERMOFLUID
library. The only base models that are different
are control volume models. For flash models new
flash control volumes are introduced. They determine
which phase is flowing in or out at a connector from
the position of the flow connector and the liquid level
in the volume. Tray models for destillation columns
will be added later.

370

365
360

Temperature

355
350

Time

0.08

0.07

Liquid Phase Fraction

6
Time

Figure 6: Change of temperature and liquid phase frac-
tion in a water-ehtanol mix during a pressure transient.

The simulation result from the depressurization of
a flash volume filled with a water-ethanol mixture
in thermodynamic equilibrium of the two phases is
shown in Figure 6. A ramp from 1 bar to 0.5 bars
is imposed on the volume which has a feed flow of
constant composition. The jump in the liquid phase
fraction at the start and end of the transient is due to
the changing in- and outflow phase fractions.

Using MultiFlash properties with the THER-
MOFLUID/MF library is very simple and requires
only few steps of setup:

e Define the components, phases and models to be
used in the MultiFlash user interface and save the
result in a model setup file.

e Define a THERMOFLUID-compatible property
model, following the examples in the THER-
MOFLUID/MF library.

e Use that property model in a suitble control vol-
ume model from the THERMOFLUID/MF library.

3 Crossing Functions for multi-
component multi-phase mixtures

In Modelica, crossing functions are usually automat-
ically generated from all equations that contain state-
ments which indicate that a function f(x) is discontin-
uous at a certain point xo. For example, in the follow-
ing equation:

phase = if h < hliq or h > hvap or p > pcrit then 1 else 2;

three crossing functions are introduced to monitor the
states of the boolean conditions. This is necessary be-
cause numerical integration routines assume continu-
ity of their right-hand side functions. This assumption
is violated in most if-clauses. This can not be auto-
mated for external functions that are discontinuous at
a point xo. Thus crossing functions have to be pro-
vided by the user in order to make the simulator de-
tect the discontinuity. These crossing functions have to
be consistent with the actual discontinuities, otherwise
they will not work. In the context of phase equilib-
rium calculations for multi-component fluid mixtures
this means that a unique function of composition, pres-
sure and temperature (N, p,T) must be returned from
the phase equilibrium calculations which has a sign
change at the point where a new phase is formed or one
phase ceases to exist. At a phase boundary thermo-
dynamic variables have discontinuous first derivatives
or are discontinuous by itself, like the heat capacity
at constant volume c,. For a mixture with n compo-
nents the crossing function is a function R("+1) —» R.
It calculates a measure for the distance to the phase
boundary surface which is in R”.

3.1 Deviation index

Collaboration with Infochem Ltd. [5] brought forth
an implementation of such a function to increase ef-
ficiency and reliability of phase equilibrium calcula-
tions in dynamic simulations. It is available in the
latest release of MultiFlash, version 3.1. This is the
first time that a multi-phase property package has been
equiped with this feature, which is indispensable for
being able to reliably simulate the formation or dis-
appearance of phases in a control volume with high
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quality integrators with event detection and error con-
trol. Infochem calls the new function the deviation
index. The calculation of the deviation index is nu-
merically much more efficient than other possibilities
to determine the number of phases at a given (N, p,T)
during dynamic simulation. Geometrically, the devia-
tion index can be interpreted as a normalized length of
the normal vector from the current point in the space
spanned by composition, pressure and temperature to
the n-dimensional tangent hyperplane to the phase sep-
aration surface. The tangent plane is also known as
Gibbs' tangent plane. It has been used for stability
analysis in phase equilibrium calculations before, see
[8], [9] and [1]. The new feature is to assign a value to
the distance from the hyperplane which allows a solver
using interpolation to exactly locate the point in time
when the simulation trajectory in the N, p,T- space
will pass through the hyperplane. At equilibrium, the
Gibbs energy of the system is at a minimum. This
condition may be expressed as the equality of fugac-
ities for each component in all phases or equivalently

([1]) as

In(K;j) +In(Fj) —In(Fy,) =0 i=1.n; j=1.n,

)
where n, is the number of components, n,, is the num-
ber of phases, K;; is the K-value for component i in
phase j, F;; is the fugacity coefficent for component i
in phase j and r; is the the reference phase for compo-
nent i. The K-values are defined as

Yij

K. =
Y yir[

©)

where y;; is the mole fraction of component i in phase
j- In the vicinity of the phase split surface, the left
hand side of (8) gives the value of the desired crossing
function, the deviation index.

Furthermore, the function needs to reliably calculate
the properties used in equation (8) of a phase which
is unstable at the current (N, p,T). Considering for
simplicity single component mixtures and the calcu-
lation of thermodynamic properties for a phase which
is unstable inside the 2-phase dome (i. e., superheated
liquid or subcooled vapour), it becomes clear that the
numerical computation is only possible to the limit of
the so called spinoidal lines. For simple cubic EOS
the spinoidal lines are defined by the connection lines
of the maxima and minima of the theorectical isother-
mes inside the two-phase dome. An implementation
thus has to guard against erroneous results far from
the phase boundary.

4 Conclusions

The inclusion of reaction calculations and the inter-
face to the physical property database MultiFlash into
the THERMOFLUID library opens new possibilities of
modeling process systems and combustion processes
which up to now have been blocked by the large ini-
tial investment in modeling work to set up the physical
property calculation.

The general reaction, diffusion and heat transfer object
provides a clean and unified way of encapsulating sub-
models for heat and mass transfer. Base classes never
need to be changed no matter how many connections
to the control volume exist. Standard reactions can be
stored in component libraries and used with any re-
actor model that has a compatible medium property
model. Membrane diffusion uses the same mechanism
to couple into the standard dynamical equations.

The THERMOFLUID/MF library provides two sets of
models: low level models which are one-to-one wrap-
pers to the MultiFlash physical property routines and
high level base models for multi-component liquid-gas
two phase models. Care has been taken to make the
time consuming VLE-calculations as efficient as pos-
sible and at the same time numerically robust.
Crossing functions for multi-phase, multi-component
mixtures have been implemented in collaboration with
Infochem Ltd. They allow a numerically robust detec-
tion of the formation of new phases in a multi phase
mixture.
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Abstract

MathModelica is an integrated interactive development
environment for advanced system modeling and simulation.
The environment integrates Modelica-based modeling and
simulation with graphic design, advanced scripting
facilities, integration of program code, test cases, graphics,
documentation, mathematical type setting, and symbolic
formula manipulation provided via Mathematica. The user
interface consists of a graphical Model Editor and
Notebooks. The Model Editor is a graphical user interface
in which models can be assembled using components from
a number of standard libraries representing different
physical domains or disciplines, such as electrical,
mechanics, block-diagram and multi-body  systems.
Notebooks are interactive documents that combine
technical computations with text, graphics, tables, code,
and other elements. The accessible MathModelica internal
form allows the user to extend the system with new
functionality, as well as performing queries on the model
representation and write scripts for automatic model
generation. Furthermore, extensibility of syntax and
semantics provides additional flexibility in adapting to
unforeseen user needs.

1 Background

Traditionally, simulation and accompanying activities

[Fritzson-92a] have been expressed using heterogeneous

media and tools, with a mixture of manual and comp uter-

supported activities:

e A simulation model is traditionally designed on paper
using traditional mathematical notation.

e Simulation programs are written in a low-level
programming language and stored on text files.

e Input and output data, if stored at all, are saved in
proprietary formats needed for particular applications
and numerical libraries.

e Documentation is written on paper or in separate files
that are not integrated with the program files.

e  The graphical results are printed on paper or saved
using proprietary formats.

When the result of the research and experiments, such as a
scientific paper, is written, the user normally gathers
together input data, algorithms, output data and its

visualizations as well as notes and descriptions. One of the
major problems in simulation development environments is
that gathering and maintaining correct versions of all these
components from various files and formats is difficult and
error-prone.

Our vision of a solution to this set of problems is to
provide integrated computer-supported modeling and
simulation environments that enable the user to work
effectively and flexibly with simulations. Users would then be
able to prepare and run simulations as well as investigate
simulation results. Several auxiliary activities accompany
simulation experiments: requirements are specified, models are
designed, documentation is associated with appropriate places
in the models, input and output data as well as possible
constraints on such data are documented and stored together
with the simulation model. The user should be able to
reproduce experimental results. Therefore input data and parts
of output data as well as the experimenter's notes should be
stored for future analysis.

1.1 Integrated Interactive Programming
Environments

An integrated interactive modeling and simulation
environment is a special case of programming environments
with applications in modeling and simulation. Thus, it should
fulfill the requirements both from general integrated
environments and from the application area of modeling and
simulation mentioned in the previous section.

The main idea of an integrated programming environment
in general is that a number of programming support functions
should be available within the same tool in a well-integrated
way. These means that the functions should operate on the
same data and program representations, exchange information
when necessary, resulting in an environment that is both
powerful and easy to use. An environment is interactive and
incremental if it gives quick feedback, e.g. without
recomputing everything from scratch, and maintains a dialogue
with the user, including preserving the state of previous
interactions with the user. Interactive environments are
typically both more productive and more fun to use.

There are many things that one wants a programming
environment to do for the programmer, particularly if it is
interactive. What functionality should be included?
Comprehensive software development environments are

* The complete version of the paper can be found at http://www.mathcore.com and http://www.ida.liu.se/~pelab/modelica/
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expected to provide support for the major development
phases, such as:

e requirements analysis,

e  design,

e implementation,

e  maintenance.

A programming environment can be somewhat more
restrictive and need not necessarily support early phases
such as requirements analysis, but it is an advantage if such
facilities are also included. The main point is to provide as
much computer support as possible for different aspects of
software development, to free the developer from mundane
tasks so that more time and effort can be spent on the
essential issues. The following is a partial list of integrated
programming environment facilities, some of which are
already mentioned in [Sandewall-78], that should be
provided for the programmer:

e Administration and configuration management of
program modules and classes, and different versions
of these.

e  Administration and maintenance of test examples and
their correct results.

e  Administration and maintenance of formal or informal
documentation of program parts, and automatic
generation of documentation from programs.

e Support for a given programming methodology, e.g.
top-down or bottomrup. For example, if a top-down
approach should be encouraged, it is natural for the
interactive environment to maintain successive
composition steps and mutual references between
those.

e Support for the interactive session. For example,
previous interactions should be saved in an
appropriate way so that the user can refer to previous
commands or results, go back and edit those, and
possibly re-execute.

e  Enhanced editing support, performed by an editor that
knows about the syntactic structure of the language. It
is an advantage if the system allows editing of the
program in different views. For example, editing of
the overall system structure can be done in the
graphical view, whereas editing of detailed properties
can be done in the textual view.

e  Cross-referencing and query facilities, to help the user
understand interdependences between parts of large
systems.

e Flexibility and extensibility, e.g. mechanisms to
extend the syntax and semantics of the programming
language representation and the functionality built into
the environment.

e Accessible internal representation of programs. This is
often a prerequisite to the extensibility requirement.
An accessible internal representation means that there
is a well-defined representation of programs that are
represented in data structures of the programming
language itself, so that user-written programs may
inspect the structure and generate new programs. This
property is also known as the principle of program-
data equivalence.

1.2 Vision of Integrated Interactive
Environment for Modeling and
Simulation.

Our vision for the MathModelica integrated interactive

environment is to fulfill essentially all the requirements for

general integrated interactive environments combined with the
specific needs for modeling and simulation environments, e.g.:

e Specification  of  requirements, expressed  as
documentation and/or mathematics;

e Design of the mathematical model;

e symbolic transformations of the mathematical model;

e A uniform general language for model design,

mathematics, and transformations;
e Automatic generation of efficient simulation code;
e  Execution of simulations;
e  Evaluation and documentation of numerical experiments;
e  Graphical presentation.

The design and vision of MathModelica is to a large extent
based on our earlier experience in research and development of
integrated incremental programming environments, e.g. the
DICE system [Fritzson-83] and the ObjectMath environment
[Fritzson-92b,Fritzson-95], and many years of intensive use of
advanced integrated interactive environments such as the
InterLisp system [Sandewall-78], [Teitelman-69,Teitelman-
74], and Mathematica [Wolfram-88,Wolfram-97]. The
InterLisp system was actually one of the first really powerful
integrated environments, and still beats most current
programming environments in terms of powerful facilities
available to the programmer. It was also the first environment
that used graphical window systems in an effective way
[Teitelman77], e.g. before the Smalltalk environment
[Goldberg 89] and the Macintosh window system appeared.

Mathematica is a more recently developed integrated
interactive programming environment with many similarities
to InterLisp, containing comprehensive programming and
documentation facilities, accessible intermediate representation
with programrdata equivalence, graphics, and support for
mathematics and computer algebra. Mathematica is more
developed than InterLisp in several areas, e.g. syntax,
documentation, and pattern-matching, but less developed in
programming support facilities.

1.3 Mathematica and Modelica

It turns out that the Mathematica is an integrated programming
environment that fulfils many of our requirements. However, it
lacks object-oriented modeling and structuring facilities as
well as generation of efficient simulation code needed for
effective modeling and simulation of large systems. These
modeling and simulation facilities are provided by the object-
oriented modeling language Modelica [MA-02a,MA-02b],
[Tiller-01], [EImqvist-99], [Fritzson-98].

Our solution to the problem of a comprehensive modeling
and simulation environment is to combine Mathematica and
Modelica into an integrated interactive environment called
MathModelica. This environment provides an internal
representation of Modelica that builds on and extends the
standard Mathematica representation, which makes it a well
integrated with the rest of the Mathematica system.

The realization of the general goal of a uniform general
language for model design, mathematics, and symbolic
transformations is based on an integration of the two languages
Mathematica and Modelica.  Mathematica  provides
representation of mathematics and facilities for programming
symbolic transformations, whereas Modelica provides
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language elements and structuring facilities for object-
oriented component based modeling, including a strong
type system for efficient code and engineering safety.
However, this language integration is not yet realized to its
full potential in the current release of MathModelica, even
though the current level of integration provides many
impressive capabilities.

The current MathModelica system builds on
experience from the design of the ObjectMath [Fritzson
92b,Fritzsonr95] modeling language and environment,
early prototypes [Fritzson-98b], [Jirstrand-99], as well as
on results from object-oriented modeling languages and
systems such as Dymola [Elmqvist-78,Elmqvist-96] and
Omola [Mattsson-93], [Andersson-94], which together
with ObjectMath and a few other object-oriented modeling
languages, have provided the basis for the design of
Modelica.

ObjectMath was originally designed as an object-
oriented extension of Mathematica augmented with
efficient code generation and a graphic class browser. The
ObjectMath effort was initiated 1989 and concluded in the
fall of 1996 when the Modelica Design Group was started,
later renamed to Modelica Association. At that time,
instead of developing a fifth version of ObjectMath, we
decided to join forces with the originators of a number of
other object-oriented mathematical modeling languages in
creating the Modelica language, with the ambition of
eventually making it an international standard. In many
ways the MathModelica product can be seen as a logical
successor to the ObjectMath research prototype.

2  The MathModelica Integrated
Interactive Environment.
The MathModelica system consists of three major

subsystems that are used during different phases of the
modeling and simulation process, as depicted in

Figure 1 below:

MathModelica
Modeling and Simulation|

Environment ~~~__ | 3D Graphics
"9 and CAD
Model Simulation Notebooks
Editor Center

Figure 1. The MathModelica system architecture.

These subsystems are the following:

e  The graphic Model Editor used for design of models
from library components.

e The interactive Notebook facility, for literate
programming, documentation, running simulations,
scripting, graphics, and symbolic mathematics with
Mathematica.

e The Simulation center, for specifying parameters,
running simulations and plotting curves.

Additionally, MathModelica is loosely coupled to two
optional subsystems for 3D graphics visualization and
automatic translation of CAD models to Modelica. [Bunus-
00], [Engelson-99]. [Engelson-00]. In order to provide the
best possible facilities available on the market for the user,
MathModelica integrates and extends several professional
software products that are included in the three subsystems.
For example, the model editor is a customization and
extension of the diagram and visualization tool Visio

[Visio] from Microsoft, the simulation center includes
simulation algorithms from Dynasim [Elmqvist-96], and the
Notebook facility includes the technical computing system
Mathematica [Wolfram-97] from Wolfram Research.

A key aspect of MathModelica is that the modeling and
simulation is done within an environment that also provides a
variety of technical computations. This can be utilized both in
a preprocessing stage in the development of models for
subsystems as well as for postprocessing of simulation results
such as signal processing and further analysis of simulated
data.

2.1 Graphic Model Editor.

The MathModelica Model Editor is a graphical user interface
for model diagram construction by "drag-and-drop" of model
classes from the Modelica Standard Library or from user
defined component libraries, visually represented as graphic
icons in the editor. A screen shot of the Model Editor is shown
in Figure 2. In the left part of the window three library
packages have been opened, visually represented as
overlapping windows containing graphic icons. The user can
drag models from these windows (called stencils in Visio
terminology) and drop them on the drawing area in the middle
of the tool.

The Model Editor is an extension of the Microsoft Visio
software for diagram design and schematics. This means that
the user has access not only to a well developed and user
friendly graph drawing application, but also to a vast array of
professional design features to make graphical representations
of developed models visually attractive. Since Modelica
classes often represent physical objects it is of great value to
have a sufficiently rich graphical description of these classes.

The Model Editor can be viewed as a user interface for
graphical programming in Modelica. Its basic functionality
consists of selection of components from libraries, connection
of components in model diagrams, and entering parameter
values for different components

For large and complex models it is important to be able to
intuitively navigate quickly through component hierarchies.
The Model Editor supports such navigation in several ways. A
model diagram can be browsed and zoomed. The Model Editor
is well integrated with Notebooks. A model diagram stored in a
notebook is a tree-structured graphical representation of the
Modelica code of the model, which can be converted into
textual form by a command.

2.2 Simulation Center.

The simulation center is a subsystem for running simulations,

setting initial values and model parameters, plot results, etc.

These facilities are accessible via a graphic user interface

accessible through the simulation window, e.g. see Figure 3

below. However, remember that it is also possible to run

simulations from the textual user interface available in the
notebooks. The simulation window consists of five aeas or
subwindows with different functionality:

e The uppermost part of the simulation window is a control
panel for starting and running simulations. It contains two
fields for setting start and stop time for simulation,
followed by Build, Run Simulation, Plot,
and Stop buttons.

e The left subwindow in the middle section shows a tree-
structure view of the model selected and compiled for
simulation, including all its submodels and variables.
Here, variables can be selected for plotting.
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e  The center subwindow & used for diagrams of plotted variables.
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Figure 2. The Graphic Model Editor showing an electrical motor with the Inertia parameter J modified.

e The right subwindow in the middle section contains
the legend for the plotted diagram, i.e. the names of

the plotted variables.
e  The subwindow at the bottom is

divided into three

sections: Parameters, Variables, and
Messages, of which only one at a time is visible.
The Parameters section, shown in Figure 3,
allows changing parameter values, whereas the
Variables section allows modifying intial (start)
values, and the Message section to view possible
messages from the simulation process.

If a model parameter or initial value has been changed, it
is possible to rerun the simulation without rebuilding the
executable code if no parameter influencing the equation
structure has been changed. Such parameters are

sometimes called structural parameters.

2.3 Interactive Notebooks with Literate
Programming.

In addition to purely graphical programming of models using
the Model Editor MathModelica also provides a text based
programming environment for building textual models using
Modelica. This is done using Notebooks, which is documents
that may contain technical computations, text, and graphics.
Hence, these documents are suitable to be used both as
simulation scripting tools, model documentation and storage,
model analysis and control system design, etc. In fact, this
article is written as such a notebook and in the live version the
examples can be run interactively. A sample notebooks is
shown in Figure 4.
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Figure 3. The Simulate window with plots of the signals Inertial.flange_a.tau and Inertial.w .
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Figure 4. Examples of MathModelica notebooks..

The MathModelica Notebook facility is actually an
interactive WYSIWYG (What-You-See-Is-What-You-Get)
realization of Literate Programming, a form of programming
where programs are integrated with documentation in the
same document, originally proposed in [Knuth84]. A
noninteractive  prototype implementations of Literate
Programming in combination with the document processing
system LaTex has been realized [Knuthr94]. However,
MathModelica is one of very few interactive WYSIWYG
systems so far realized for Literate Programming, and to our
knowledge the only one yet for Literate Programming in
Modeling.

Integrating Mathematica with MathModelica does not
only give access to the Notebook interface but also to
thousands of available functions and many application
packages, as well as the ability of communicating with other
programs and import and export of different data formats.
These capabilities make MathModelica more of a complete
workbench for the innovative engineer than just a modeling
and simulation tool. Once a model has been developed there
is often a need for further analysis such as linearization,
sensitivity analysis, transfer functions computations, control
system design, parametric studies, Monte Carlo simulations,
etc.

In fact, the combination of the ability of making user
defined libraries of reusable components in Modelica and the
Notebook concept of living technical documents provides an
integrated approach to model and documentation
management for the evolution of models of large systems
2.3.1 Tree Structured Hierarchical Document
Representation.

Traditional documents, e.g. books and reports, essentially
always have a hierarchical structure. They are divided into
sections, subsections, paragraphs, etc. Both the document
itself and its sections usually have headings as labels for
easier navigation. This kind of structure is also reflected in
MathModelica notebooks. Every notebook corresponds to
one document (one file) and contains a tree structure of cells.
A cell can have different kinds of contents, and can even

contain other cells. The notebook hierarchy of cells thus
reflects the hierarchy of sections and subsections in a
traditional document.
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Figure 5. The package Mypackage in a notebook

In the MathModelica system, Modelica packages including
documentation and test cases are primarily stored as
notebooks, e.g. as in Figure 4. Those cells that contain
Modelica model classes intended to be used from other
models, e.g. library components or certain application
models, should be marked as exports cells. This means that
when the notebook is saved, such cells are automatically
exported into a Modelica package file in the standard
Modelica textual representation (.mo file) that can be
processed by any Modelica compiler and imported into other
models. For example, when saving the notebook
MyPackage.nb of Figure 5, a file MyPackage.mo
would be created with the following contents:

package MyPackage
model class3

end class3;

model class2

model classl

package MySubPackage
model classl

end classl;
end MySubPackage;
end MyPackage;

2.3.2 Program Cells, Documentation Cells, and
Graphic Cells.

A notebook cell can include other cells and/or arbitrary text
or graphics. In particular a cell can include a code fragment
or a graph with computational results.

The contents of cells can for example be one of the
following forms:

e Model classes and parts of models, i.e. formal
descriptions that can be wused for verification,
compilation and execution of simulation models.

o Mathematical formulas in the traditional mathematical
two dimensional syntax.

e Text/documentation, e.g. used as
executable formal model specifications.

comments to
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e Dialogue forms for specification and modification of
input data.

e Result tables. The results can be automatically
represented in (live) tables, which can even be
automatically updated after recomputation.

e  QGraphical result representation, e.g. with 2D vector and
raster graphics as well as 3D vector and surface
graphics.

e 2D structure graphs, that for example are used for
various model structure visualizations such as
connection diagrams and data structure diagrams.

A number of examples of these different forms of cells are
available throughout this paper.

2.3.3 Mathematics with 2D-syntax, Greek
letters, and Equations

MathModelica uses the syntactic facilities of Mathematica to

allow writing formulas in the standard mathematical notation

well-known, e.g. from textbooks in mathematics and physics.

Certain parts of the Mathematica language syntax are

however a bit unusual compared to many common

programming languages. The reason for this design choice is
to make it possible to use traditional mathematical syntax.

The following three syntactic features are unusual:

e Implied multiplication is allowed, i.e. a space between
two expressions, e.g x and f(x), means
multiplication just as in mathematics. A multiplication
operator * can be used if desired, but is optional.

e Square brackets are used around the arguments at
function calls. Round parentheses are only used for
grouping of expressions. The exception is
Traditional Form, see below.

e Support for two-dimensional mathematical syntactic
notation such as integrals, division bars, square roots,
matrices, etc.

The reason for the unusual choice of square brackets around
function arguments is that the implied multiplication makes
the interpretation of round parenthesis ambiguous. For
example, £ (x+1) can be interpreted either as a function call
to £ with the argument x+1, or f multiplied by (x+1) .
The integral in the cell below contains examples of both
implied multiplication and two-dimensional integral syntax.
The cell style is called MathModelica input form (called
standard form in Mathematica) and is used for mathematics
and Modelica code in Mathematica syntax:

x f[x
J#d‘x
1+x2+x3

There is also a purely textual input form using a linear
sequence of characters. This is for example used for entering
Modelica models in the standard Modelica syntax, and is
currently the only cell format in MathModelica that can
interpret  standard Modelica syntax. However, all
mathematics can also be represented in this syntax. The
above example in this textual format appears as follows:

Integrate[ (x*£[x])/(1 + x*2 + x"3), x]

Finally, there is also a cell format called traditionalform
which is very close to traditional mathematical syntax,
avoiding the square brackets. The above-mentioned syntactic
ambiguities can be avoided if the formula is first entered
using one of the above input forms, and then converted to
traditional form.

j A A M x

B0 201

The MathModelica environment allows easy conversion
between these forms using keyboard or menu commands.
Below we show a small example of a Modelica model class
SimpleDAE represented in the Mathematica style syntax of
Modelica that allows greek characters and two dimensional
syntax. The apostrophe (') is used for the derivatives just as

in traditional mathematics, corresponding to the Modelica
der () operator.

Model[SimpleDAE,
Real f31;
Real x;5;
Equation[
B sin[x,"
: + ;] +B1xy+fB1=1;
1+ (B1")2 1+ (B")?
, x2'
sin[By'] - ————— -2B1x2+B1==0;
1+ (B1')2

]]

We simulate the model for ten seconds by
Simulate command:

giving a
Simulate [SimpleDAE, {t,0,10}];

We use the command PlotSimulation for plotting the
solutions for the two state variables, which of course both are
functions of time, here denoted by t in Mathematica syntax:

PlotSimulation[{B;[t], x,[t]}, {t, 0, 10}];

-6t

—x t
0.6
0.5
0.4
0.3
0.2
0.1

2 4 6 8 10t
2.4 Environment and Language

Extensibility

Programming environments need to be flexible to adapt to
changing user needs. Without flexibility, a programming tool
will become too hard to use for practical needs, and stopped
to be used. Adaptability and flexibility is especially
important for integrated environments, since they need to
interact with a number of external tools and data formats,
contain many different functions, and usually need to add
new ones.
There are two major ways to extend a programming
environment
e Extension of functionality, e.g. through user-defined
commands, user-extensible menus, and a scripting
languages for programmability.
e Extension of language and notation, e.g. by facilities to
add new syntactic constructs and new notation, or
extend the meaning of existing ones.
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Mathematica has been designed from the start to be an
inherently extensible environment, which is what is used in
MathModelica. Almost anything can be redefined, extended,
or added.

2.41

An interactive scripting language is a common way of
providing extensibility of flexibility in functionality. The
MathModelica environment primarily uses the Mathematica
language and its interpreter as a scripting language, as can be
seen from a number of examples in this paper. Another
possibility would be to use the Modelica language itself as a
scripting language, e.g. by providing an interpreter for the
algorithmic and expression parts of the language. This can
easily be realized in MathModelica since the intermediate
form has been designed to be compatible with Mathematica,
and we already have Modelica input cells: just use Modelica
input cells also for commands, which are sent to the
Mathematica interpreter instead of the simulator.

Scripting for Extension of Functionality

2.4.2 Extensible Syntax and Semantics

As was already apparent in the section on mathematical
syntax, MathModelica provides a Mathematica-like input
syntax for Modelica in addition to the usual Modelica syntax.
One reason is to give support for mathematical notation, as
explained previously. Another reason is to provide user
extensible syntax.

This is easy since syntactic constructs in Mathematica
apart from the operators use a simple prefix syntax: a
keyword followed by square brackets surrounding the
contents of the construct, i.e. the same syntax as for function
calls. If there is a need to add a new construct no changes are
needed in the parser, and no reserved words need to be
added. Just define a Mathematica function to do the desired
symbolic or numeric processing.

The other major class of syntactic constructs are
operators. There are special facilities in Mathematica to add
new operators by defining their priority, operator syntax, and
internal representation. It is also possibke to extend the
meaning of existing operators like +, *, -, etc.

2.4.3 Mathematica vs Modelica syntax.

In order to to show the difference between the standard
Modelica textual syntax and the extensible Mathematica-like
syntax, we first show a simple model in a Modelica-style
input cell:

model secondordersystem
Real x(start=0);
Real xdot (start=0) ;
parameter Real a=1;
equation
xdot=der (x) ;
der (xdot) +a*der (x) +x=1;
end secondordersystem;

The same model in the Mathematica-like Modelica
syntax appears below. Note the use of the simple prefix
syntax: a keyword followed by square brackets surrounding
the contents of the construct. All reserved words, predefined
functions, and types in MathModelica start with an upper-
case letter just as in Mathematica. Equation equality is
represented by the == operators since = is the assignment
operator in Mathematica. The derivative operator is the
mathematical apostrophe (') notation rather than der(). The

semicolon (;) is a sequencing operator to group more than
one declaration, statement, or expression together.

Model [secondordersystem,
Real x[{Start == 0}];
Real xdot[{Start == 0}];
Parameter Real a == 1;

Equation|
xdot ==
xdot'

]

]

x';

+ a*x' + X ==

3  Application Examples

This section gives a number of application examples of the
use of the Mathmodelica environment. The intent is to
demonstrate the power of integration and interactivity - the
interplay between the object-oriented modeling and
simulation capabilities of Modelica integrated with the
powerful scripting facilities of Mathematica within
MathModelica. This includes the representation of
simulation results as 1D and 2D interpolating functions of
time being combined with arithmetic operations and
functions in expressions, advanced plotting facilities, and
computational capabilities such as design optimization,
fourier analysis, and solution of time-dependent PDEs. For
the PDEs see the long version of the paper.

3.1 Advanced Plotting and Interpolating
Functions

This section illustrates the flexible usage of simulation
results represented as interpolating functions, both for further
computations that may include simulation results in
expressions, and for both simple and advanced plotting. The
simple bouncing ball model below from [MA-02a] is used in
the simulation and plotting examples.

3.1.1 Interpolating Function Representation of
Simulation Results

The following simulation of the above BouncingBall
model is done for a short time period using very few points:

resl=Simulate [BouncingBall, {t,0,0.5},
NumberOfIntervals->10]

<SimulationData: BouncingBall: 2002-2-26
10:48:10 {o., 0.5} 15 data points : 1
events 7 variables>

{c, g, height, radius, velocity, height'
velocity'}

The results returned by Simulate are represented by an
access descriptor or handle. Some of the contents of such
descriptor is shown as the result of the above call to
Simulate. At this stage the simulation data is stored on
disk and referenced by res1 which acts as a handle to the
simulation data. When one of the variables from the last
simulation is referenced, e.g. height, radius, etc., the
data for that variable is loaded into the system in an load-by-
need manner, and represented as an
InterPolatingFunction.
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3.1.2 PlotSimulation

First we simulate the bouncing ball for eight seconds and
store the results in the variable resl for subsequent use in
the plotting examples.

resl=Simulate [BouncingBall, {t,0,8}];

The command PlotSimulation is used for simple
standard plots. If nothing else is specified, i.e. by the optional
SimulationResult parameter, the command refers to
the results from the last simulation.

Plotting several arbitrary functions can be done using a list of
function expressions instead of a single expression:

PlotSimulation[{height[t] + V3,
Abs [velocity[t]]}, {t, 0, 8}];

—+/3 +height[t]

— Abs([velocityt]]

Figure 6. Plotting arbitrary functions in the same diagram.

3.1.3 ParametricPlotSimulation

Parametric plots can be done using

ParametricPlotSimulation.

ParametricPlotSimulation|[
{height[t], velocity[t]},
{t, 0, 8}];

Figure 7. A parametric plot.

3.1.4 ParametricPlotSimulation3D

In this example we are going to use the Rossler attractor to
show the ParametricPlotSimula-tion3D command.
The Rossler attractor is named after Otto Rossler from his
work in chemical kinetics. The system is described by three
coupled nonlinear differential equations:

dx _y

dt Y

dy

— =x+a

dt Y

dz

— =B +(x-?)z
” ( )

Here &,B and ? are constants. The attractor never forms
limit circles nor does it ever reach a steady state. The model
is shown in Mathematica syntax, enabling the use of greek
characters:

Model[Rossler, "Rossler attractor",
=0.2;

=0.2;

Parameter Real y == 8;

Parameter Real a

Parameter Real f3

Real x[{Start ==1}];
Real y[{Start ==3}];
Real z[{Start ==0}];
Equation][

X' =-y-2;
y'=x+avy;

z' =f+Xz-Y2z

1

1
The model is simulated using different initial values.
Changing these can considerably influence the appearance of
the attractor.
Simulate [Rossler, {t, 0, 40},

InitialvValues » {x =2, y=2.5, z=0},

NumberOfIntervals -» 1000];

The Rossler attractor is  easy
ParametricPlotSimulation3D:

to plot using

ParametricPlotSimulation3D [
{x[t], y[t], z[t]},
{t, 0, 40},

AxesLabel -» {X, Y, Z}];

v 10-10

40

30

20

10

Figure 8. 3-D parametric plot of curve with many data points
from the Rossler attractor simulation.

3.2 Design Optimization

This is an example of how the powerful scripting language of
MathModelica can be utilized to solve non-trivial
optimization problems that contain dynamic simulations.
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First we will define a Modelica model of a linear actuator
with spring damped stopping and then a first order system.
Using MathModelica scripting we will then find a damping
for the translational spring-damper such that the step
response is as "close" as possible to the step response from a
first order system.

Consider the following model of a linear actuator with a
spring damped connection to an anchoring point:

Q—S——{Z——,

IdealGearR2T1 SlidingMass1 SpringDamper1 Fixed1

:I Inertia1

SpringDamper2

:| Inertia2

il

Torque1

Step1

Figure 9. A LinearActuator model containing a spring
damped connection to an achoring point.

Assume that we have some freedom in choosing the damping
in the translational spring-damper. A number of simulation
runs show what kind of behavior we have for different values
of the dampingparameter d. The Mathematica Table []
function is used in Simulate [] to collect the results into
an array res. This array then contains the results from
simulations of LinearActuator with a damping of 2 to
14 with a step size of 2, i.e. seven simulations are performed.
res = Table [Simulate [LinearActuator,
{t, 0, 4},
ParameterValues -
{SpringDamperl.d =s}],
{s, 2, 15, 2}1;
PlotSimulation[SlidingMassl.s[t],
{t, 0, 4},
SimulationResult - res,
Legend - False];

1 2 3 4

Figure 10. Plots of step responses from seven simulations of
the linear actuator with different camping coefficients.

Now assume that we would like to choose the damping d so
that the resulting system behaves as closely as possible to a
certain first order system response.,

We smulate for different values of d and interpolate the
result

fore = Interpolation[res2];

Plot[f[al, {a, 2, 10}];

0.0003
).00025p
0.0002}

).00015

A 8

10

Figure 11. Plot of the error function for finding a minimum
deviation from the desired step response.

The minimizing value of a can be computed using
FindMinimum:

FindMinimum[f.[s], {s, 4}]

{0.0000832564 , {s— 5.28642 }}

3.3 Fourier Analysis of Simulation Data

Consider a weak axis excited by a torque pulse train. The
axis is modeled by three segments joined by two torsion
springs. The following diagram is imported from the
MathModelica Model Editor where the model was defined.

tau
Torquet

Pulsel Inertiat Spring1 Inertia2 Spring2 Inertia3

Figure 12. A WeakAxis model excited by a torque pulse
train.

We simulate the model during 200 seconds:
Simulate[WeakaAxis , {t, 0, 200}]:;

The plot of the angular velocity of the rightmost axis

segment appears as follows:

PlotSimulation|[ {Inertia3.w[t],
Torquel.t[t]}, {t, 0, 200}];

— (Inertia3w) [t]
— (Torquel.t) [t]

Lol

I

Figure 13. Plot of the angular velocity of the rightmost axis
segment of the WeakAxis model.

Now, let us sample the interpolated function Inertia3.w
using a sample frequency of 4Hz, and put the result into an
array using the Mathematica Table array constructor:
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datal = Table [Inertia3.w[t],
{t, 0, 200, .25}];
Compute the absolute values of the discrete Fourier
transform of datal with the mean removed:
fdatal = Abs[Fourier[datal-
MeanValue [datal]]];
Plot the 80 first points of the data.
ListPlot[fdatal[ [Range[80]]],
PlotStyle » {Red, PointSize[0.015]}];

3

10
8
6
4 .
.
2 . .
o .‘. ®
o “eoage, o %o
20 40 60 80

Figure 14. Plot of the data points of the Fourier transformed
angular velocity.

It can be shown that the frequencies of the eigenmodes of the
system is given by the imaginary parts of the eigenvalues of
the following matrix (c1 and c, are the spring constants)

0 1 0 o 0 O
-c; O -cy 0o 0 ©0

i Eigenvalues [ 0 0 0 100 /.
27 -C1 0 -C1-Cy 0 -Cy 0
0o 0 0 0o 0 1
0o o0 -cy 0 -c, O

{c1» 0.7, c21}] // Chop

{0.256077 14, -0.256077 1,
0.143343 1, -0.143343 1, 0, 0}

These values, 0.256077, 0.143344, fit very well with the
peaks in the above diagram.

4  Using the Symbolic Internal
Representation

In order to satisfy the requirement of a well integrated
environment and language, the new MathModelica internal
representation was designed with a Mathematica compatible
version of the syntax. Note that the Mathematica version of
the syntax has the same internal abstract syntax tree
representation and the same semantics as Modelica, but
different concrete syntax. Which syntax to use, the standard
Modelica textual syntax, or the Mathematica-style syntax for
Modelica is however largely a matter of taste.

The fact that the Modelica abstract syntax tree
representation is compatible with the Mathematica standard
representation means that a number of symbolic operations
such as simplifying model equations, performing Laplace
transformations, and performing queries on code as well as
automatically constructing new code is available to the user.
The capability of automatically generating new code is
especially useful in the area of model diagnosis, where there
is often a need for generating a number of erroneous models
for diagnosis based on corresponding fault scenarios.

4.1 Mathematica Compatible Internal Form

An inherent property of Mathematica is that models or code
is normally not written as free formatted text. Instead,
Mathematica expressions (also called terms) are used,
internally represented as abstract syntax trees. These can be
conveniently written in a tree-like prefix form, or entered
using standard mathematical notation. Every term is a
number, an identifier, or a form such as:

head[terml ,...,term, ]

For example, an expression: a+b is represented as
Plus[a,b] in prefix form, also called FullForm
syntax. A while loop is represented as the term
While[test,body] .

In order to satisfy the requirement of a well integrated
environment, we designed the new MathModelica internal
representation with a Mathematica compatible version of the
syntax. Note that MathModelica has the same abstract syntax
trees and the same semantics as Modelica, but different
concrete syntax. This means that essentially the same
language constructs are written differently, as illustrated
below.

The Mathematica language syntax uses some special
operators, see below, and arbitrary arithmetic expressions
composed from terms.

termy;...;term, //sequencing operator

{terml 5. term, } /farray/list constructor

termy termy //Implied multiplication by space

instead of *

termy = term, // Equation equality

Internally the  MathModelica  system uses the
MathModelicaFullForm format. This format is the
abstract syntax of the MathModelica language where all the
elements of the language have been defined to be easy to
extract and compare for the functions operating on the
MathModelica language representation, as well as achieving
a high degree of compatibility with both Modelica and
Mathematica.
The following is a simple constant declaration:

model Arr
constant Real

unitarr[2,2] = {{1,0},{0,1}}
"2D Identity";
end Arr;
This  definition is  stored internally in  the

MathModelicaFullForm format which can be retrieved
by calling the function GetDefinition which returns the
internal abstract syntax tree representation of the model:

ff2 = GetDefinition [Arr,
Format » MathModelicaFullForm]

The tree is wrapped into the node Hold[] to prevent
symbolic evaluation of the model representation while we
are manipulating it. All nodes are shown in prefix form
excepts the array/list nodes shown as {...} instead of the
prefix form List [...] for arrays.
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Hold[SetType[Arr,

TYPE[Model [Declaration
[TYPE[Real, {2, 2}, {Constant}, {}].,
VariableComponent [unitarr,
ValueBinding[{{1, 0}, {0, 1}}],
{}, {}, Null]
1:
"2D Identity"
1. (3, {3, 0}

1, {}, Null, Null

]
1

A declaration of a variable such as unitarr is represented
by the Declaration node in the abstract syntax. This
node has two arguments: the type and the variable instance.
The type is represented by the TYPE node which stores the
name, array dimension, type attributes (Constant) and
type modifications (which is empty in this case). The
instance argument contains a VariableComponent
including the name of the variable, the initialization
(ValueBinding), at the end the comment string that is
associated with the variable.

There are several goals behind the design of the
MathModelicaFullForm format, which are fulfilled in
the current system:

e Abstract syntax. The format systematically sorts out the
different constructs in the language making the
navigation of types and code easier.

e Preserving the syntactic structure of both Modelica and
Mathematica code. This means that the mapping from
Modelica to MathModelica-FullForm format
should be injective, e.g. the source code can be recreated
from the intermediate form, and that transformations
from Modelica via MathModelicaFullForm into
Mathematica style Modelica form should be reversible.

e Explicit semantic structure. The format has reserved
fixed attribute positions for certain kinds of semantic
information, to simplify semantic analysis and queries.
There is also a canonical subset of the format which is
even simpler for semantic analysis, but does not always
recreate exactly the same source code since the same
declaration often can be stated in several ways.

e Symbol table and type representation format. The
MathModelicaFullForm format should be possible
to use in the symbol table, e.g. to represent types. Types
are represented by anonymous type expressions such as
the TYPE node in the above example. Anonymous
means that the type representation is separate from the
entity having the type.

e [nternal standard.
The MathModelicaFullForm format should be
used by all the components in the MathModelica
system.

4.2 Extracting and Simplifying Model
Equations

This section will illustrate a few user-accessible symbolic
operations on equations, such as obtaining the system of
equations and the set of variables from a Modelica model,
and symbolically simplifying this system of equations with
the intention of performing symbolic Laplace transformation.

4.2.1 Definition and Simulation of Model1l

The example class Model1l has been drawn in the graphic
model editor and imported into the notebook below:

Resistor1  Inductor1

ConstantVoltage
Inertia2

Spring1

EMF1 Inertia1

Ground1 Fi
gure 15. Connection diagram of Modell.
We simulate the model, smooth the result, and make a plot.
res0 = Simulate[Modell, {t, 0, 25},
ParameterValues -» {Resistorl.R==0.9}];

resl = SmoothInterpolation[res0];

The plot is parametric where we plot the Resistorl
current against its derivative for both the original result and
the smoothed version:

ParametricPlotSimulation|
{(Resistorl.i) [t],
(Resistorl.i) '[t]}, {t, 0, 25},
SimulationResult - {res0, resl}];

Figure 16. Parametric plots of the Resistor] current against
its derivative, both original and smoothed.

4.2.2 Some Symbolic Computations

Now, flatten Modell and extract the model equations and
the model variables as lists, and compute the lengths of these
lists:

eqgn = GetFlatEquations[Modell];
Length[egn]

48
Length[GetFlatVariables[Modell]]
49

There is one equation less than the number of variables.
Therefore, add an equation for zero torque on the right flange
to the equation system:

eqgn = Append[eqgn,
Inertia2.flangellb.tau=0];

We would like to simplify the equations by eliminating the
connector variables before further symbolic processing. First
obtain the connector variables from the flattened model:

The Modelica Association 51

Modelica 2002, March 18-19, 2002



MathModelica — An Extensible Modeling and Simulation Environment ...

Fritzson P., Gunnarsson J., Jirstrand M.

connvars = GetFlatConnectionVariables
[Modell]

{Resistorl.p.v, Resistorl.p.1i,
Resistorln.v, Resistorl.n. i,

Inertia2.flangell a.tau}

Use the Eliminate function for symbolic elimination of
some variables from the system of equations.

egn2 = Eliminate[egn, connvars]

der[Inertial .phi] == Inertial .w&

der[Inertial .w] == Inertial.a &&

Inertia2.flangellb.tau==0&

derV [EMF1.w] == Inertia2 .phi -
Springlphill rel

4.3 Symbolic Laplace Transformation.

We would now like to perform a Laplace transformation of
the symbolic equation system obtained in the previous
section. This can be done by the application of two

transformation rules: der(™ [a _] - ﬁ’ der[b_]—) sb.
s

Note that der'™" is the inverse of taking a derivative, i.e. an
integration operation. Note also that the second rule contains
an implied multiplication.

a
eq3 =eqn2 /. {der‘Y[a ] > —, der[b_] » sb}
S

s (Inertial .phi) == Inertial.w&
s (Inertial .w) == Inertial.a &&
EMFl.w

== Inertia2.phi - Springl.phill rel

Introduce short names for the model parameter to obtain a
more concise symbolic notation:
shortnames =
{Resistorl .R » R, InductorlL - L,
EMFlk -» k, Inertial.Jd » J;1,
Springl.c » ¢, Springl .phill rel0 > 0,
Inertia2Jd -» Jy};
Derive the relation between Inertia2.w and the input
voltage
eq4 =
Eliminate [eq3,
Complement [
GetFlatNonConnectionVariables [Modell],
{Inertia2.w}]] /. shortnames

(k c1 (ConstantVoltagel.V) ==
k? c; (Inertia2.w) +
Rs? J1J2 (Inertia2.w) +

Ls%*J;J, (Inertia2.w)) && s# 0

The transfer function H is obtained by symbolically solving
for Inertia?2 .w in the equation system eg4, and using the
obtained solution on a form Inertia2.w -> expr to
eliminate Inertia2 . w, thus obtaining H:

Inertia2.w
H[s ] =First| /.
ConstantVoltagel.V

Solve[eqg4, Inertia2.w] ]

(kec1)/ (k2c1+Rsc1J1+Ls2c1J1+
k252J2+Rsc1J2+Lszc1J2+
Rs3J,0,+Ls*d; J,)

4.4 Queries and Automatic Generation of
Models

This example of advanced scripting shows how the easily
accessible internal representation in the form of abstract
syntax trees can be used for automatic generation of models.
The CircuitTemplateFn is a function returning a
symbolic representation of a model. This function has two
formal pattern parameters where the second one specifies an
internal structure. The first parameter is name , which
matches symbolic names. The underscore in name_ is not
part of the parameter identifier itself, it is just a short form of
the syntax name: , which means that name will match
any item.

The second pattern parameter is the list
{typel ,type2 ,type3 }, internally containing the
three pattern parameters typel , type2 , type3 .
This second parameter will therefore only match lists of
length 3, thereby binding the pattern variables typel,
type2, and type3 to the three type names presumably
occurring in the list at pattern matching. For example,
matching {typel ,type2 ,type3 } against the list
{Capacitor, Conductor, Resistor} will bind
the wvariable typel to Capacitor, type2 to
Conductor, and type3 toResistor.

CircuitTemplateFn[name ,
{typel_, type2 , type3_}] := (
Model [name,

typel a;

type2 b;

type3 c;

Modelica.Electrical.Analog.Basic.Ground g;

Equation|[
Connect[g.p, a.p]l;
Connect[a.n, b.p];
Connect[b.p, c.p];
Connect[b.n, g.p];
Connect[c.n, g.p]

1

D

The aim of this exercise is to automatically generate models
based on this template for all combinations of the types that
extend the type OnePort in the library package
Modelica.Electrical.Analog.Basic.

First we need to extract all the types that extends the
type OnePort in the library package
Modelica.Electrical.Analog.Basic. This is done
by performing a query operation on the internal form using
the Select function which has two arguments: the list to be
searched, and a predicate function returning true or false.
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Only the elements for which the predicate is true are
returned. In this case the query is performed on the list of
model names in the package
Modelica.Electrical.Analog.Basic. This list is
returned by the function ListModelNames.

First we call GetDefinition below to load the
Modelica.Eletrical.Analog.Basic package into
the internal symbol table:

GetDefinition [Modelica.Electrical.Analog.Basic];

Then we perform the actual query:

types=Select|[
ListModelNames [
Modelica.Electrical.Analog.Basic
]I
Function|[
modelName,
Not [
FreeQl[
GetDefinition|
modelName,
Format ->MathModelicaFullForm
]I
HoldPattern|
Extends [

TYPE [Modelica.Electrical.
Analog.Interfaces.
onePort, {},{}, {}

1111111

{Modelica.Electrical.Analog.Basic.Inductor,

Modelica.Electrical.Analog.Basic.Capacitor,

Modelica.Electrical.Analog.Basic.Conductor,

Modelica.Electrical .Analog.Basic.Resistor}
All 64 three-type combinations, e.g.
{Inductor, Inductor, Inductor},
{Inductor, Inductor, Capacitor}, etc., their

prefixes not shown for brevity, of these 4 types are computed
by taking a generalized outer product of the three types lists,
which is flattened.
typecombinations =
Flatten[Outer
[List, types, types, types],
2];

Length [typecombinations]
64

We generate a list of 64 synthetic model names by
concatenating the string "foo" with numbers, using the
Mathematica string concatenation operation "<>":

names = Table [ToExpression [

"foo" <> ToString[i]], {i, 64}]
{ fool, foo2, foo3, foo4, foo5, foo6,
foo7, foo8, foo9, foo0l0, fooll, fool2,
foo55, foo56, foo57, foo58, foo59, foo60,
foo6l, foo62, foo63, foob4}
Here all 64 test models are created by the call to

MapThread which applies CircuitTemplateFn to
each combination.

MapThread [CircuitTemplateFn,
{names, typecombinations}];

We retrieve the definition one of the automatically generated
models, foo53, and wunparse it from its internal
representation to the Modelica textual form:

GetDefinition[foo53, Format -» ModelicaForm]
model foob53
Modelica.Electrical.Analog.
Basic.Resistor a;
Modelica.Electrical.Analog.
Basic.Capacitor b;
Modelica.Electrical.Analog.
Basic.Inductor c;
Modelica.Electrical.Analog.
Basic.Ground g;

equation
connect (g.p,a.p);
connect (a.n,b.p) ;
connect (b.p,c.p);
connect (b.n,g.p) ;
connect (c.n,g.p) ;
end foo53;
5 Conclusion
This paper has presented a number of important issues
concerning integrated interactive programming

environments, especially with respect to the MathModelica
environment for object-oriented modeling and simulation.
We have especially emphasized environment properties such
as integration and extensibility.

One of the current strong trends in software systems is
the gradual unification of documents and software.
Everything will eventually be integrated into a uniform,
perhaps XML-based, representation. The integration of
documents, model code, graphics, etc. in the MathModelica
environment is one strong example of this trend.

Another important aspect is extensibility. Experience
has shown that tools with built-in extensibility mechanisms
can cope with unforeseen user needs to a great extent, and
therefore often have a substantially longer effective usage
lifetime.

The MathModelica system is currently one of the best
existing examples of advanced integrated extensible
environments. However, as most systems, it is not perfect.
There are still a number of possible future improvements in

the system including enhanced programmability and
extensibility.
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Abstract

Dymola is an integrated environment for developing
models in the Modelica language. The growing use of
Dymola has over time increased the demands on the
development environment. Requests for extension and
redesign originate from two sources: the need to
simplify the use of Dymola to better support new and
inexperienced users, and the need to better support
“power users” which model extremely large and
complex systems.

Key areas in the development of Dymola are: a
simplified and more coherent graphical user interface,
browsing facilities for navigating large and complex
systems, new experiment facilities for managing
complex simulation tasks, distributed (parallel)
simulation, and integrated version control to help
manage model libraries and complete models.

The paper describes the extensively redesigned
Dymola 5, with an emphasis on new features compared
to Dymola 4.

Introduction

Dymola is an integrated environment for developing
models in the Modelica language [Modelica
Association, 2002; Tiller, 2001], and a simulation
environment for performing experiments. It is used
since several years within major companies for
complex simulations. For example, Dymola has been
used to simulate detailed models of complete vehicles
including engine, transmission and chassis [Tiller et al.,
2000].

Dymola uses hierarchical object-oriented modeling to
describe, in increasing detail, the systems, subsystems
and components of a model. Reuse of modeling
knowledge is a key issue, and is supported by use of
libraries containing model classes and by the use of
inheritance. Physical couplings are modeled by
defining physical connectors and graphically
connecting submodels.

Model libraries are available for electronics, rotational,
translational and 3D mechanics, thermodynamics,
hydraulics and control systems. The libraries range
from basic components to more specialized domains

such as the power train library. Predefined libraries can
be expanded with user-written model libraries.

The growing use of Dymola has over time increased
the demands on the development environment.
Requests for extension and redesign originate from two
sources:

e The need to simplify the use of Dymola to better
support new users and inexperienced users. This is of
particular importance when Dymola is used for
teaching.

¢ The need to better support “power users” which
model extremely large and complex systems. In this
case, the user needs significant support from the
environment to handle very large amounts of
information, to document complex systems, and to
verify results. The development of large component
libraries is a collaborative effort involving several
people, which requires adequate tool support. Also,
different software packages are used which underlines
the need for information exchange.

Key areas in the development of Dymola are:

e Simplified graphical user interface. In addition to
better structuring, the use of modern GUI elements
(help facilities, dockable windows etc.) makes it easier
to use the program.

¢ Browsing facilities for navigating large and complex
systems. This includes class browsers for navigating
component libraries and a new model browser for
navigating complex models.

e New experiment facilities for managing complex
simulation tasks. They handle multiple parameter sets,
models of different complexity, and tools for validating
models.

e Distributed simulation on several computers,
allowing parallel simulation for tasks such as
optimization.

e Integrated version control to help manage model
libraries and complete models. The user needs support
for version control to store/retrieve models and
associated data, to compare versions of a model, plus
mechanisms for documenting the evolution of models.
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Figure 1. The Dymola architecture.

Dymola architecture

Dymola is an integrated environment for modeling and
simulation. Figure 1 describes the architecture and
connectivity of Dymola 5.

At the modeling level, models are composed from
library components (from the Modelica standard
library, other free libraries, commercial and proprietary
libraries), as well as models developed by the user.
Models are either composed of other, more primitive,
components, or described by equations at the lowest
level. The equation-based nature of Modelica is
essential for enabling truly reusable libraries.
Measurement data and model parameters cover
additional model aspects.

Detailed model knowledge can be imported from CAD
packages. Examples of such information are mass and
inertia of 3D mechanical bodies, and the topology of a
multibody system (bodies and joints). Graphical
properties may be described in DXF and STL format.
The icons of model components are defined either by
drawing shapes in Dymola, or by importing graphics
from other tools in common vector or bitmap formats.

At the simulation level, Dymola transforms a
declarative, equation-based, model description into
efficient simulation code. Advanced symbolic
manipulation (computer algebra) is used to handle very

large sets of equations. Efficient simulation, including
realtime simulation of hydraulic systems, can only be

achieved after extensive symbolic transformations of

the equations [Elmgqvist et al., 2002].

Dymola provides a complete simulation environment,
but can also export code for simulation in Simulink. In
addition to the usual offline simulation, Dymola can
generate code for specialized Hardware-in-the-Loop
(HIL) systems, such as, dSPACE, xPC and others.

Recent developments in Dymola 5 allow distributed
(parallel) simulation on several computers in a
network, for example to perform parameter studies.
There are facilities for optimization, also carried out
with parallel simulation runs. Such experiments are
controlled with a Modelica-based scripting language,
which combines the expressive power of Modelica
with access to external C libraries, e.g., LAPACK.

The built-in plotting and animation features of Dymola
provide the basis for visualization and analysis of
simulation data. Experiments are documented with logs
of all operations in HTML format, including
animations in VRML (Virtual Reality Modeling
Language) and images. Models and libraries are
extensively documented in HTML automatically
generated by Dymola from the models themselves.
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Figure 2. The model editor.

also graphics and links to other resources may be

Graphical user interface included.

The graphical user interface has been extensively Editing of models at the fundamental level has been

redesigned. In Dymola 5 emphasis has been put both improved by syntax highlighting of the Modelica code,

on simplifying the task of building models for the see Figure 3. Another convenience is that models can

novice user and on providing tools for building and be 'dragge('i frorp the package browser into the te?ﬁ

managing large and complex models developed by a editor, which gives access to fundamental types in the

collaborating team of engineers. Modelica library with no typing. Editing in the textual
view is instantaneously represented in the graphical

Graphical editor view.

Figure 2 shows a screen dump of the Dymola modeling Sl Inertia - Modelica.Mechanics. Rotational Inertia

File Edit View Selup Simulafion Window Help

environment. The top left tree browser shows the
(Package) hierarchy of a library called SimpleCar
[Tiller, 2001]. When I4_Engine is chosen different
representations (icon and composition diagram) of the
model 14_Engine are shown. The lower left tree
browser, “Component and Extends hierarchy”, shows e Eiange asen + Shange b.sen
the hierarchical decomposition, for example, that the -

engine model contains crankshaft-inertia and the four
cylinders: cylinderl, ... cylinder4. A visual Figure 3. Model editor with syntax highlighting.
representation of that is shown in the Diagram in the
middle. An Icon representation of the engine is shown
at the top right. A The Documentation window is
shown at the lower right. Such a documentation
window contains HTML formatted information, i.e.

Modelica Mechanics. Rotational Inertia v

The Icon representation can be created with a built-in
graphical editor. It allows insertion of lines, rectangles,
ellipses, polygons and text strings. Figure 4 shows the
tool bar for the graphical editor.
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Figure 4. Drawing tools.

It is also possible to insert scalable bitmaps created in
other tools like MS Paint and scalable vector graphics
from the clipboard. Advanced graphics can thus be
created in, for example, MS PowerPoint or MS Visio
and inserted into Dymola as Icons or backgrounds for
the composition diagrams.

The toolbar also contains controls for setting graphical
attributes, e.g., foreground and background color, line
style and fill pattern.

As indicated above, Dymola 5 supports Modelica’s
notion of different layers of information:

e [con layer

e Diagram layer

e Documentation layer

e Modelica text layer

e Model dependencies layer (generated by Dymola)

It should be noted that Dymola 5 allows several layers
to be shown simultaneously.

|[«»=m=@HES

Figure 5. Navigation tools.

Figure 5 shows the buttons of the navigation tool in
Dymola. The first two buttons are used to navigate in
the component hierarchy, similar to navigation with a
web browser. The back arrow displays the previously
visited component; the forward arrow negates the
backward move. The other buttons are used to display
layers in the graphical editor

Simplifications

In response to user comments, a major design goal was
to simplify the graphical user interface. The first step
has been to reduce the number windows: both model
editing and simulation is controlled from a single
window, and plot/animation windows are not opened
until a simulation has been performed (or opened
explicitly by the user). The design has been influenced
by common paradigms, for example, the web-browser
approach to navigation.

The design of Dymola 5 more closely follows
published guidelines [Microsoft, 1999], and has in
general adopted more modern idioms compared to
Dymola 4. Common operations are invoked by buttons
in addition to menu commands. Dockable windows
which either can be part of the main editor window,
float on the desktop or be minimized, are used for
browsers and similar tools.

The extended use of commonly used GUI elements
(toolbars, dockable windows, “what’s this” help
information) makes Dymola consistent with other
applications.

Browsing

The “Package hierarchy” browser shows the library
structure and it is possible to drag a component model
from the tree into a Diagram in order to add a
component to a model, see Figure 6. The browser can
either be docked to the editor window as shown in
Figure 2, or be dragged onto the desktop.

1
Package hierarchy ;I
= SimpleCar
[+l Chassis
= Engine
= Companents
...... Cam
------ Chamber/olume
------ Combustion
------ Controffalume
------ Crank5lider
------ Dyrarnonmeker

=l 14_Engine -
4| | b

Figure 6. The package browser.

The components of a library can also be viewed as
icons in a separate library window, see Figure 7, from
which components can be dragged.

SimpleCar.Engine. Components - 10] x|
v . Al
o o | | o
Thrattle Walve MasslessPiston OffzetShaft

ai»na'-—‘&

CrankSlider SparkControl TimingBelt

Duna, .. e [
& § o [

Dpmamorneter  IndividualCylinder Cam Fleserair ﬂ

Combustion

Figure 7. Library window.

The hierarchical structure of a model is shown in the
“Component and Extends hierarchy” browser. The top-
level components of an engine model are shown in
Figure 8.

Maneuvering in this hierarchical structure can be done
by clicking in the tree which then changes the view to
the selected model. It is also possible to point at an
icon and “zoom-in” on the content, i.e. next abstraction
layer.

When a model is chosen in the package browser, it
becomes the root model of the graphical editor. The
root model is used in check, translate and simulate
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Figure 8. The component browser.

commands. Navigation into its component hierarchy
allows inspection of model details, but does not change
the root model or permit editing. This view is
consistent with the common metaphor used in web
browsers.

Dymola 5 has search facilities, for example to search
for models that mention particular keywords in the
documentation. It may also be useful to find models
with a component or a parameter with a known name.

For advanced users, the biggest problem has been to
organize the large amount of information in complex
models and extensive component libraries. The biggest
improvement in Dymola 5 is the use of hierarchical
browsers for navigating packages and models. The
package browser is also the natural focal point for
copying/renaming of models and restructuring of
packages.

Advanced Modelica concepts, such as, replaceable
classes, is given an intuitive user interface via the
component browser. If a class is declared as
replaceable, the actual class can be dragged from the
package browser onto the replaceable class in the
component browser. Other features that benefit from
the new user interface are choices (a selection of
replaceable classes) and arrays of components.

Visualization in 3D

The graphical editor represents a abstraction of the
model, the object diagram. When building 3D
mechanical systems, the user greatly benefits from the
instantaneous 3D visualization available in Dymola 5.
Parameters settings for e.g. the length of a bar can be
visually checked in the animation window.

Experimentation

By “experimentation” we mean all the steps necessary
to use a model in order to achieve useful results. That
includes setting up model parameters and initial
conditions, running simulations, analysis of simulation
data, and report generation.

Parameter values specific to the studied model have to
be entered in a form associated with a component, see
Figure 9. Parameters and initial conditions can be set at
three different abstraction levels:

e The default values specified in the model of a
component, when a reasonable default exists.

e Parameter values that are specified in the modifier list

of a specific component. For example, the crankshaft
shift is different for each cylinder in an engine.

e Model parameters which are specific for a given top-
level model. Such parameters are specified at the top-
level of the model, and then propagated through a
hierarchical modifier.

Dymola allows the user to set parameters and initial
conditions at each of these levels, either through the
model editor or while running simulations.

Default value Value Description

Parameters

I mode!
++ burn_duration
CylinderType replaceable model CylinderType = ...
e BYD 205 205
v 0.0z8 0.028
] 40 40
=} Mo 0 Intake Walve Closing [deg]
e 0.032 0.032 Intake Yalve Diameter [m]
=0 |1 50 k= v alve Opening [deq]

spark_advance Spark advance [deg]

EBium Duration [deg]

E xhaust ' alve Closing [deg]
Erhaust W alve Diameter [m)]

Set parameters | Cancel change

Erhaust ' alve Opening [dea]

Figure 9. Parameters for specification of details of
the engine

For visualization, Dymola offers plotting and 3D
animation. Figure 10 shows a window with multiple

Dymola - Plot Window [_ (O]
File Diagram Setup Help
lzee  2ER IR
sports_car.chassis.kmhb
1004
04
T T T T T T
0 2 4 B
4000 sports_car.Dynarnonmeter?_1.rpm
30004
2000+
1000 4
0 T T T T T T
0 2 4 B
sports_car.shift_strategy. cur_gear
44
] T T T T T T
0 2 4 B
%

Figure 10. Plot of car speed, engine RPM and
selected gear versus time.
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plots of car speed, engine RPM and selected gear
versus time during such an experiment. The car
accelerated to 100 km/h in 6.66 seconds. Plots can be
exported as PNG files for inclusion in session log or as
vector graphics.

Animation is provided by specialized visualization
properties which are present in the mechanical libraries
by default. These properties are calculated during
simulation and then used to show 3D views in Dymola,
as shown in Figure 11. It is also possible to export such
animations in VRML format [VRML, 1997], which
can be examined with special viewers or with plugins
for web browsers.

Dymola - Animation Window [_ O] x]

File Animation Setup

IEFEEHEIENIEEE T

r

_LLLLLI’;
e

|5 3
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gru‘r' =
T | R

S

Figure 11. Animation of an automatic gearbox.

Dymola 5 has powerful features for postprocessing of
simulation results. It is possible to compare simulation
results with experimental data. Data can be imported
and exported to other programs like Matlab and
Microsoft Excel. There is a scripting language based on
Modelica for automating design studies and analysis.
Interfaces to subroutine packages such as LAPACK (or
other libraries written in C or FORTRAN) enables
advanced numerical calculations. The scripting
language is also used for running parameter studies in a
distributed environment (see below) and for

performing optimization.

logingon K]
e |
f# Perform calculations

sqrt(5~2 + 12°2)
= 13.0

ff Include plot in experiment log

plot ({ "sports_car.Dynamometer? 1.rpm"}}

4000 sports_car. DynamometerZ_1.ipm

2000+

0 25 [ -
| | »

Distributed simulation

During the design phase, hundreds or thousands of
simulations have to be performed with different
parameter sets. Optimization is used to determine
parameters in the model by fitting simulation results to
experimental data and to optimize the parameters of a
design. It is a task that significantly benefits from
parallel simulation. Dymola 5 can use many computers
and automatically schedule simulations in parallel to
shorten the design cycle.

Figure 13 shows the Dymola monitoring window for
parallel simulations. It shows the status of each
simulation run: the parameters used and optional
criteria result. The Dymola scheduler assigns tasks to
computers as they become available. When a
simulation finishes, the next task is run on the freed
computer. Transfers of the simulation code, input data
(parameters and initial conditions) and results are fully
automated.

Figure 12. Dymola session window

Automatic logging of design sessions including
graphics is provided as HTML code for archiving and
sharing over the Internet, see Figure 12. A complete
experiment report can be written by editing the session
log.
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Figure 13. Dymola monitoring window for parallel
simulations.

During normal simulation on a single computer, a
simulation is performed through cooperation between
the Dymola program and a separate simulation process.
In a distributed environment, a third party, known as
the simulation proxy, handles data transfers between
Dymola and the simulation task; the use of a proxy
allows exactly the same simulation code to run locally
and on another computer. As a special case, the
“distributed” scheme can utilize multiple CPUs on one
computer.

e

Proxy Proxy
4 Dymola [
v v DDE
Simulator Simulator

Figure 14. Architecture of distributed simulation.

A proxy is started on each machine willing to act as
“compute server”, see Figure 14. On receiving a
connection via TCP/IP from a Dymola program, its
first task is to help copy the simulation code and input
files to a unique area on the server. It then relays
parameter settings and commands from Dymola, and
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handles data transfers from the simulation to Dymola
for online animation and plotting. The Dymola
program maintains a list of computers that may be
asked to run simulations; the user can control this list
by simple commands.

This scheme for distributed simulation is designed for
cooperative sharing of resources and quite simple;
security measures are limited. First, a computer can
only be used as server after the proxy has been started.
Second, the proxy runs as an unprivileged process,
having only the capabilities of the user starting it. Load
is limited because each proxy blocks requests while a
simulation is running, but it is possible to start
additional proxies to handle multiple simulations (e.g.,
if the computer has multiple CPUs). Ways to utilize
existing system security features need to be further
investigated.

Collaborative development

In developing model components for a complex system
such as a vehicle, many different kinds of competence
are needed. Experts in engines, transmissions and
chassis etc. are needed. Because several people are
involved in the process, it becomes essential to break
up or decompose the overall problem into modular
units during development.

The equation-based modeling supported by the
Modelica language is fundamental in enabling true
reuse of modeling knowledge and the practical use of
model libraries. Dymola is able to transform equations
of subcomponents as required by the structure of the
system. Without the equation-based foundation, several
variants of a single model are needed to handle
different computational causality. Even worse would
have been that the user of a library is given the
responsibility to analyze the computational causality of
the system in order to pick the right variant.

Inheritance is also important for supporting reuse.
Model libraries may include partial models that
describe common properties of a set of component
types. Such a partial model is conveniently used as a
base class to develop models for the individual types of
the set by just adding a specific part that distinguish it
from the others in the set. This approach makes it
simpler to add new component models as well as
simplifies maintenance since the common properties of
the component types are described only once.

Furthermore, as more people are involved in the
process, the development is geographically and
chronologically distributed because it is natural to have
centers with specific core-competencies. This implies
that the modular units developed must be seamlessly
integrated to solve the overall problem, and the
partitioning should be able to reflect the organizational
structure of the model development teams.

In order to increase quality and reduce development
time, tools should be made available to

e Provide a structure for organizing, storing and
retrieving information (models, documentation,
experiment data).

e Support the exchange of information and simplify
reuse of models throughout the organization.

¢ Ensure that correct information is available to each
user (versions of libraries, corresponding experiments).

A version control system provides means to track
changes to a set of files. A “commit” operation
associates a developer and documentation with each
change to the common storage of files. The Modelica
text of two versions can be compared, and it is possible
to back up to any previous version.

The underlying version control system must be able to
support multiple concurrent developers working on the
same set of models. Extensive locking of files is
undesirable in a collaborative environment, and more
recent tools also support concurrent development of
closely related parts (with appropriate safety nets). A
single physical person may have multiple roles in the
development or use of the library.

Tracability is essential for maintaining quality over
time. Tool enforcement to document modifications
before they become publicly available gives the
opportunity to review changes and improves quality.
The development history and documentation of
changes may also be needed for tracing model
incompatibilities, for example.

Model testing should be integrated with model
development, which implies that the version control
system must be able to handle test scripts, support
utilities and binary test data. Regression testing, where
models are simulated and compared with known good
simulation results, is very powerful in detecting
involuntary changes to model libraries. A failed
regression test may cause either a change of a model,
or the revision of the test itself.

Multiple libraries are often used together. In this case,
version compatibility across libraries becomes
essential. It must be possible to “tag” releases of
multiple libraries to indicate compatibility at the
project level.

Dymola will support storing, retrieving, etc. of models
in version control systems such as CVS (Concurrent
Version System) [CVS]. We have deliberately chosen
to build on existing version control systems, which
offers greater flexibility and better integration than a
proprietary system. Because of the textual
representation of models in the Modelica language,
existing text-based tools can be used, for example, to
compare versions. To browse changes in large systems,
support in the graphical environment of Dymola is
needed.

The use of public libraries has increased in industry
over several years. More recent is “open source
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development”, which can be described as the loosely
organized development (typically of software) by
several geographically separated parties. Public
websites, such as SourceForge, support Open Source
development with web-based tools and CVS. The
Modelica Standard Library is maintained as a project at
SourceForge.

Library protection

There are many closed simulation packages on the
market where you are not able to see what model is
used. Modeling is an art in the sense of describing the
relevant aspects of the object under observation. It is
thus very important to be able to see what assumptions
and approximation that the author of a model made.
Dymola is open to view all and possibly modify the
details by showing of the Modelica code. However, if a
company want to protect proprietary information when
shipping models, Dymola will support encryption of
model details.

A protected library typically consists of parts that are
open, and other parts that need protection. Protected
parts may require different degree of information
hiding, for example

e Preventing unauthorized modification of models (but
viewing is unrestricted).

e Parameters and documentation are visible, but model
structure and equations are protected.

e The model is regarded as a “black box”. Only model
connectors and the icon are available to the user.

The other aspect of library protection is to ensure
authorized use. In this case, any use of the library is
controlled by options in a license file. A special license
is also needed to make protected libraries in order to
prevent unauthorized distribution.
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Abstract

The possibilities of multi-domain hierarchical
modeling in Dymola often lead to models with both
fast and slow parts and the simulation problems
become stiff. The usual use of the explicit Euler
method for hardware-in-the-loop simulations is not
appropriate, because it requires very small step sizes
and thus too large computational efforts. The implicit
Euler method allows larger step sizes to be used.
However, a non-linear system of equations needs to be
solved at each step. Reducing the size of the non-linear
problem is advantageous. The method of inline
integration was introduced to support this. The
discretization formulas of the integration method are
combined with the model equations and structural
analysis and computer algebra methods are applied on
the augmented system of equations. This paper
describes and illustrates some very important
improvements in Dymola's support of the inline
integration method. The symbolic analysis and
manipulation have been improved and it reduces, in
many cases the, size of the non-linear system
drastically. Analytic Jacobians for the nonlinear system
also increase efficiency and robustness. Support of
inline integration of higher order leads to better
accuracy for larger steps.

Introduction

Real-time simulation of physical models is a growing
field of applications for simulation software. One goal
is to be able to simulate more and more complex
models in real-time with fast sampling rates. Many of
those models are multi-engineering models, which
means, that they contain components from more than
one engineering domain. Mechanic, electric, hydraulic
or thermodynamic components are often coupled
together in one model. This leads to a large span of
time-constants in the model. The usual use of the
explicit Euler method is not appropriate because the
fastest time-constant determines the computational
effort (step size) for the simulation. In order to
maintain stability of the integration method the step
size must be less than the smallest time constant.
Typically, the fastest modes are not excited to a degree
that it is necessay to resolve them for the intended
purpose. In such cases the problem is referred as stiff.
The implicit Euler method solves the numerical
stability problem and allows larger step sizes to be
used. It is the accuracy required that restricts how large

step sizes that can be used. Using the implicit Euler
method, on the other hand, implies that a nonlinear
system of equations needs to be solved at every step.
The size of this system is at least as large as the size of
the state vector, n. Solving large nonlinear systems of
equations in real-time somewhat problematic because
the number of operations is O(n’) and the number of
iterations might vary for different steps. Reducing the
size of the nonlinear problem is advantageous. Due to
the hybrid nature of the system the Jacobian of the
nonlinear system can change drastically between steps.
This makes it difficult to apply methods relying on
Jacobian updating.

The method of inline integration [3] was introduced to
handle such cases. The discretization formulas of the
integration method are combined with the model
equations and structural analysis and computer algebra
methods are applied on the augmented system of
equations. For a robotics model with 66 states, the size
of the nonlinear system of equations could be reduced
to only 6. This method has had little practical use,
because certain pragmas about the structure of the
model equations had to be put into the model by the
user.

Another method, "mixed-mode integration", of
reducing the size of the system of nonlinear equations
is to use explicit discretization on slow states and
implicit on fast states. The problem is then to find the
partitioning of the state vector into slow and fast states.
A method based on linearization and eigenvalue
analysis was presented in [6]. Since the partitioning is
based on linearization, special care is needed for highly
non-linear and partly discrete model such as friction. In
addition it requires a pre-processing step that includes
off-line simulation and "suitable" inputs. It is thus not
straightforward to use this method.

This paper describes and illustrates some important
improvements in Dymola's [1,2] support of the inline
integration method.

1. The symbolic analysis and manipulation have been
improved and it reduces, in many cases the, size of
the non-linear system drastically.

2. The generation of analytical Jacobians has been
improved.

3. Inline integration of higher order methods are
supported.
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The large possible reduction of the size of the implicit
non-linear system of equations is due to the fact that
certain subsystems might be linear even after
ammendment of the corresponding discretization
formulas. Dymola is now able to automatically detect
such structures during the structural analysis of the
equations. Furthermore, in certain cases the
corresponding linear subproblem is sparse. This is, for
example, the case for discretized PDE's. For a one
dimensional PDE, a band structure is obtained. The
usual technique of tearing then implies a reduction of
the size of the problem. For a PDE model with 10
elements, the size of the nonlinear problem, i.e. the
number of iteration variables, can often be reduced to
one when a first order spatial discretization is used.

The implicit inline Euler technique solves the
numerical stability problem. However, the step size
need to be chosen small enough to get desired
accuracy. Dymola support of inline integration has
been extended with higher order methods to meet the
accuracy requirements. The use of higher order
methods is necessary for e.g. hydraulics systems where
one can have oscillations in the kHz-range and want to
use step-sizes for external sampling in the same range.

Exploiting sparse structures

Consider a system of differential algebraic equations
(DAE)

F(t,xﬂ.f,y}:o

where 7 is time, x and y are vectors of unknown
variables. The elements of x are called dynamic
variables since their time derivatives, x, appear in the
equations and the elements of y are called algebraic
variables since none of its derivatives appear in the
equations.

When making inline discretization, the model
equations are combined with the discretization
formulas of the integration method. For implicit Euler
we get the nonlinear problem

F(ti,xi,xi,yi))=0
Xi=(xi-xi-1)/h

to solve for x,, and y,, at each step. Also for an ODE on
explicit state space form,

x = f(t,x)

the inlined integration method using implicit Euler
gives a non-linear problem. The size of the problem is
the size of the state vector.

The non-linear systems obtained when combining the
discretization formulas of implicit integration methods
with model equations are sparse, because typically a
model has hundreds or thousands of unknowns, while
each equation refer to very few, say ten, variables.
There is much structure to exploit.

Let us represent the structure of a system by a structure
Jacobian, J, where each row represents a scalar
equation and each column represents an unknown
variable of the system. If variable j does not appear in
equation i then J; = 0. Otherwise it is one. The
representation can be extended to indicate how it
appears, for example, whether it appears linear or not.

X7 X2 ... Xy z

0/1

Figure 1: A desired structure for the Jacobian.

Consider a structure Jacobian of the form as shown in
Figure 1. The elements of the right and lower borders
(the grey part) can have any values. It is the structure
of the upper left part (the white part) that is important.
It shall be block lower triangular (BLT) and each
diagonal block shall be non-singular.

If the z variables are assumed known, the problem of
solving for the x variables is decomposed into a
sequence of smaller problems that be solved in turn
giving x;, Xz, ..., X,

It means that when using a numerical solver to solve
the total problem, the numerical solver needs only
iterate over the z variables which is a smaller problem.
A numerical solver needs residuals to be calculated,
when it provides a value for the z. The residual is
calculated in the following way

1. Solve in turn the sequence of problems for the x;
values using the given z value and the x; (j <i)
values already calculated.

2. Use the z value and the calculated x; values to
calculate the residuals of the remaining equations
at the bottom.

To obtain efficient simulation, the aim is to obtain a
small number of z variables while keeping the
sequence of problems to solve x; simple. It is
favourable if the calculations of the x variables are just
a sequence of assignment involving no numerical
solvers. Small linear systems of equations are also
acceptable. It is very important that the subproblems to
solve for the x; variables are nonsingular. If the original
problem is non-singular, then the manipulation must
not introduce singularities or divisions by zero.
Unfortunately, it is not only a question avoiding
divisions by zero, but also divisions by too small
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numbers. When solving linear equations this is
commonly solved by pivoting in order to avoid large
condition numbers of the factorized matrices.

When solving the outer nonlinear problem, it is
favourable to use Newton methods. Fixed point
iteration cannot be used for stiff problems. Newton
methods need the Jacobian of the problem. Let n,
denote the number of elements of z. The Jacobian can
be calculated numerically, by performing additional 7,
residual calculations, which may be costly. By
generating code for analytic calculation of the Jacobian
the effort to calculate all non-zero elements of the
Jacobian typically is of the same magnitude as one
residual calculation, which is a considerably less effort.
This reduction is due to common subexpression
elimination.

Higher order methods

In order to get sufficient accuracy for large steps it was
necessary to extend the basic method to higher order
methods. Higher order methods indicate that they have
order greater than one, and the ones considered have
orders 2 to 4.

The higher order methods implemented for the new
method are L-stable singly diagonally implicit Runge-
Kutta methods [4]. The L-stability implies that they are
stable for all stable linear systems and do not exhibit
oscillations for very stiff systems. The class of
methods, singly diagonally implicit Runge-Kutta
methods, require the solution to the same equation
systems as implicit Euler.

Other high order methods

More general implicit Runge-Kutta methods can often
be made more efficient in off-line simulations.
However, this requires more costly factorizations that
can be shared between many steps and is thus not
suitable for realtime simulations. Multi-steps methods
and other methods that propagate more information
from one step to the next are not suited for real-time
simulations of hybrid systems.

Example: One dimensional PDE

Discretized partial differential equations (PDE) have
special sparse structures because each unknown
appears only in a few equations. For a one dimensional
PDE, a band structure is obtained.

Consider the following PDE, modeling one-
dimensional heat diffusion.

ou_ou
ot ox?

with boundary conditions

T X
u(x,t =0) =20sin(——) +300
( ) (2 L)
. T
u(x =0,1) = 2051n(Et)+300

Ou

—x=L1=0

e ( )

where L is the length of the object. By discretizing in
space

u(x + Ax,t) = 2u(x,t) + u(x — Ax,t)
A

&u
y(x,f) =

where Ax = L/nwith n being the number of discrete
elements, the PDE can be transformed into a set of
ODEs. The matrix notation allows convenient
description of the discretized model.

model PDE
parameter Real L = 1;
parameter Integer n =
Real Dx = L/n;
constant Real Pi=3.14159265;
Real uln+1];

50;

equation
uf[l] = 20*sin(Pi/12*time) + 300;
der (ul(2:n]) = (u[3:n + 1] -
2*ul[2:n] + u[l:n - 1])/(Dx*Dx) ;
uln + 1] = uln - 1];
initial equation
ul[2:n] = 20*sin(Pi/2* (1:n-1)*Dx) +

300*ones (n-1) ;
end PDE;

The discretized ODE is conveniently written by use of
shifted sub-ranges of the vector u. The boundary
condition at t=0 is given as an initialization equation.
The sine function is evaluated elementwise on the
sequence. The boundary condition at x=0 is handled by
making u[1] an algebraic variable with given time
dependency. The boundary condition at x=1 is handled
by adding one element to u, namely u[n+1], and the
equation u[n+1] = u[n-1].
By discretizing in time using implicit Euler
der(u(i]) = (ulil-old(uli]))/h
where h is the step size and the expression old(u[i])
denotes the value of u[i] at the previous step, the ODE

der (ul2:n]) =
2*ul2:n]

(ul[3:n + 1] -
+ ull:n - 11)/(Dx*Dx)

is transformed into

ul[3:n + 1] = (2+a)*ul(2:n] - ul[l:n - 1]

- a*old(uf[2:n])

The Modelica Association 61

Modelica 2002, March 18-19, 2002



New Methods for HIL Simulation of Stiff Models.

Elmgqvist H., Mattsson S.E., Olsson H.

where a is the constant
a = Dx*Dx/h
The first component of the discretized ODE is

ul[3] = (2+a)*ul2] - ull] - a*old(ul2])
The variable u[1] is known because it simply
calculated from the boundary condition given as a pure
time dependent expression. Thus the equation has two
unknowns, u[2] and u[3], since all old expressions are
known quantities when taking a new step. If u[2] is

known, it is simple to calculate u[3].

Let us assume u[1:3] to be known and consider the
second component of the discretized ODE

ul4] = (2+a)*ul3] - ul2] - a*old(ul[3])
which is simple to use to calculate u[4]. Proceeding in
the same way for all components of the discretized
ODE, we find equations for calculating u[3:n+1] in a

simple way when u[2] is assumed to be known.

The remaining equation is

uln + 1] = uln - 11;

which now is used to give the residual u[n+1]-u[n-1]
for calculating u[2] iteratively. In other words the
numerical solver need only iterate over one variable.

Since this problem is linear, Dymola continues the
symbolic manipulation and uses the explicit
expressions for u[3:n+1] to back-substitute the residual
equation to get an equation for u[2] and solves this
equation symbolically. Dymola has transformed the
model to a simple sequence of assignments and there is
no need for a numerical solver.

This model for heat diffusion is not stiff, but it
illustrates very well how the sparse structures of
discretized PDEs can be exploited. Moreover, such a
model can be part of a model that is stiff. Dymola is
then able to find and treat these equations as described.

Models of hydraulics systems are stiff. Models to
describe pressure wave oscillations in the kHz range in
long lines have the same banded structure as discussed
above and Dymola is able to find and to reduce the size
of the non-linear system of equations automatically.

Example: Multi-body systems

Consider modeling of multi-body systems. The
equation of motion can be written as

M(q)q = F(q.9)
where ¢ is a vector of generalized coordinates
representing the system's position (distances or angles),
M is the non-singular mass matrix, and F represents
applied forces. Let n denote the number of elements of
q or in other words the degree of freedom for the

mechanical systems. The states are g and g. Thus the
number of states is 2n.

When simulating this using an explicit ODE solver, it
is a major task to invert the mass matrix to solve for the
accelerations. When using implicit inlining, inverting
the mass matrix can be avoided and the size of the non-
linear system to be solved can be reduced from 37 to n.
The approach is to iterate over the accelerations ¢ and

use the the discretization formulas to calculate g and
q.,and use M(q)4—F(q,q) as the residual. This

approach was presented in [1]. However, this method
has had little practical use, because certain pragmas
about the structure of the model equations had to be put
into the model by the user.

The new structural analysis methods of Dymola
automatically rediscovers well-known O(n) method by
Luh, Walker, and Paul for calculating the joint forces
and torques from the motion of the joints (¢, §gand ).

Dymola is able to find this approach automatically
without no hints or exploiting facts that it is a multi-
body model. Dymola makes it by only analyzing the
structure of the equations and manipulate them
properly. The component models of the library
ModelicAdditions.MultBody result typically in a
hundred unknowns for each degree of freedom. Thus, it
is far from trivial to transform an inlined model to this
efficient form for numeric solution. Moreover, Dymola
is able to find the core problem in more complex
settings such as for a robot with drivelines and
controllers. This is illustrated in the following
application.

Application: Robotics model

Consider the model r3.robot in the Modelica [5] library
ModelicaAdditions.MultiBody.Examples.Robots as
shown in Figures 2 and 3.

The model describes an industrial robot with six
degrees of freedom. The model is composed of basic
mechanical components such as joints and bars as
shown in part 3 of Figure 2. At every joint, a drive train
as shown in part 4 of Figure 2 is present. Each drive
train contains a motor, a gearbox and an actuator as
well as a control system. The elasticity of the gears of
the first three joints is modelled by one spring for each
gearbox. The elasticity of the last three joints is
neglected. In part 5 of Figure 2, the model of the motor
and the actuator of one joint is shown. This component
is defined, most naturally, as an electrical circuit.
Finally, in Figure 3, the control system with tacho
filters for one drive train is defined in block diagram
format. To simplify the discussion, we omit potential
locking in the joints due to bearing friction.

The model consists of 12 states for the mechanical part
of the robot, two states for every gearbox with modeled
elasticity, two states for every motor/actuator

component, three states for every tacho filter, and three
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states for every controller. The overall model has thus
12+3-2+6-(2+3+3) = 66 states. The simulation problem
has additional 12 states for generating the reference
path.

The model has 5963 unknowns. After Dymola's
elimination of constant and alias variables at
translation, 932 nontrivial and time-varying variables
remain. For explicit methods there is one linear
equation system to solve. It is of size six. It
corresponds to the inversion of the mass matrix.
Dymola has solved all other equation systems
symbolically.

When using inlined explicit Euler, a step size of 0.05
ms has to be selected to achieve stable behavior. The
paper [6] reports that the fastest eigenvalues of the
linearization of the system are about 7000 in
magnitude.

For the inlined implicit Euler, Dymola translates the
simulation problem to a non-linear system of size 6
with no additional local equation systems. The
equation systems from discretizing the drive trains and
their controllers are linear and Dymola is able to solve
them symbolically.

Table 1: Performance of the methods for the robot
problem that is simulated for 1 s using a Pentium IV
1.6 GHz processor.

Inl. Inl. Inl. Inl.
Expl. Impl. Impl. Impl
Euler Euler RK3 RK3

Step size [ms] 0.05 1 5 10
Pos. error [mm] 0.1 3 0.1 0.4
Vel. error [mm/s] | 5 20 5 20
CPU time [s] 197 0.16 0.11 0.06

The resulting execution times and maximum position
and velocity errors compared to a reference solution
calculated using DASSL are shown in Table 1. When
judging the errors it may be of interest to know that the
robot is of meter size and the maximum speeds are 2-4
m/s.

For easy interpretation of the execution times the
problem was simulated for one second. It means that if
the CPU time is less than one second, the simulation
runs faster than real-time.

When using explicit Euler the simulation runs slower
than real-time. The solution has good accuracy, but the
computational burden is high. It is very interesting to
see that the inlined third order implicit Runge-Kutta
method gives a solution with the same accuracy only
needing 6% of the effort for the explicit Euler method.

The implicit methods run all faster than real-time. As
reported above Dymola is able to reduce the size of the
non-linear system to six. Before the new improvements
Dymola reduced the size of the non-linear system to 39
giving a CPU of 1.1 s for the simulation. Using the new
approach the implicit Euler method needs only 0.16 s
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for the simulation. The simulation is speeded up more
than six times and it runs faster than real-time.

The table shows that high order methods pay off. The
third order Runge-Kutta method gives with less effort a
better result than implicit Euler does.

If we let the robot model allow potential locking in the
joints due to bearing friction when using the inlined
third order implicit Runge-Kutta method with a step
size of 5 ms, the CPU time needed is 0.16 s. Thus, this
model runs also much faster then real-time.

Conclusions

This paper has described and illustrated Dymola's new
approach to inlined implicit integration. The new
features include more advanced analysis and
manipulation of the inlined problem giving in many
cases a drastic reduction of the non-linear problem that
has to been solved numerically. Generation of analytic
Jacobians also increases performance. Support of inline
integration of higher order methods leads to better
accuracy for larger steps. Thus allowing faster
simulation.

Reported experiences of applying the new approach to
simulation of an industrial robot have shown very
promising results. The method has also been applied
successfully to simulating hydraulic systems with long
pipes exhibiting pressure wave oscillations.
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The HILS (Hardware In the Loop Simulation) is a popular technique to debug
control logic of vehicles. Previously, only simplified models could be used to
achieve real time performance in the simulations. On the other hand, quite detailed
models of engine, drivetrain, hydraulics and brake system were developed with
Dymola in recent years. Therefore we would like to use these models also in HILS.
However, real time is difficult to obtain for stiff model components, such as the
hydraulics, because integrators with fixed step size must be used. With explicit
methods very small step sizes are needed to ensure stability. With implicit methods
large nonlinear systems of equations have to be solved. Both approaches seem to
be not feasible. To improve this situation, the new inline and mixed mode
integration technique introduced by Dymola is evaluated for an engine model and

results are reported.

1. Introduction

Concerns  over  fuel  consumption  and
environmental problems have brought about a
demand for higher performance in automobiles.
To achieve this, the development of highly
advanced systems using control technologies that
incorporate the use of numerous actuators and
sensors has been progressing. The composition and
control of such systems is becoming increasingly
more complicated. However, at the same time,
reducing the length of their development period is
also necessary. Applying simulation is essential
HILS
(Hardware In the Loop Simulation) is widely

for achieving this task. Particularly,

utilized in the debugging of ECUs (Electronic
Control Units). In HILS, the ECU carries out its
operation in real time, and as a result, the model is
also required to carry out its operation in real
time. Simple models with experimental data
tables and transfer functions have been used for
HILS so far. However, the demand is rising for
Dymola models, that have been developed during
the design of control logic, to be used in HILS

without changes.

Physical models have typically a large span of
time constants making them stiff for real time
calculation. When using the explicit Euler
method, the step size must be less than the fastest
time constant in order to maintain numerical
stability. However, in real-time simulation using

HILS, the step size cannot be set shorter than the
length of time necessary for calculating the new
values of the model variables. The implicit Euler
method allows a larger step size to be used.
However, it implies that a nonlinear system of
equations needs to be solved at each step.
Reducing the size of the non-linear problem is
advantageous. Dymola [1] exploits the method of
inline integration [3,4] to support this. The
discretization formulas of the integration methods
are combined with the model equations. To
reduce the size of the resulting non-linear
problem, Dymola analyses the structure of the
problem and manipulates it symbolically. The
symbolic manipulation has recently been
improved [4]. The improvements include also
inline integration of higher order methods to

obtain better accuracy for larger steps.

Another method, "mixed-mode integration", of
reducing the size of the system of non-linear
equations is to use explicit discretization on slow
states and implicit on fast states. The problem is
then to find which states that are slow and which
that are fast. A method based on linearization and
eigenvalue analysis was presented in [6].
Unfortunately, it is not straightforward to use this

method.

This paper reports results from applying inline
integration and mixed mode integration to two

real applications.
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2. Application: Engine model

Exhaust
Manifold

Figure 1: Engine model

Figure 1 shows the structure of the engine model
which was used for evaluation. The engine has a
Variable Geometry Turbo (VGT) and an Exhaust
Gas Recirculation (EGR) system. The EGR
(NOx) by
recirculating exhaust gases back to the intake

system reduces nitrogen oxide
manifold. The VGT system increases the exhaust
pressure by restricting the flow of burned gas
using vanes installed at the entrance. To achieve
low emission levels, it is important to control the
VGT and EGR correctly. A complication is that
both the VGT and the EGR influence the intake
manifold pressure and fresh air/EGR gas flow

into the engine.

The model is a mean value engine model. The
variation of torque or cylinder pressure during a
cycle is not calculated. The model builds on
conservation of energy and mass and Newton's
equations of motion. The amount of air mass flow
and EGR gas flow, and the pressure and
temperature of every part of the engine are
calculated. The model has 796 unknowns. After
Dymola's elimination of constant and alias
variables at translation, 183 nontrivial and time-
varying variables remain. The model has 26
continuous time states. The mass flows of the air
or EGR gas are calculated by the Equation (1).

D
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Figure 2: The flow characteristics

The equation shows that the flow changes are
large when there is a small difference between the
upper pressure and the lower pressure. It implies
that the time constants of the dynamics change.
As a result, the use of explicit Euler method with
fixed step size, requires a small step size for the
simulation.

2.1 Evaluation of inlined explicit Euler

We compared the calculation time of two 10
seconds simulations, one in which the explicit
Euler inline integration method was applied and
one in which a non-inlined explicit Euler method
was used. Table 1 shows the results. We can see a
39% performance improvement when using the
inlined explicit Euler in Dymola.

The results are labelled "Simulink" when
simulating the S-function generated by Dymola in
Simulink. The “sim”, “tic” and “toc” commands
were used for timing. It should be noted that using
the simulate button in Simulink 3.0 (Matlab 5.3)
made the simulation of these models about 50%
slower. This situation has been improved in
Simulink 4.0 (Matlab 6.0).

It should be noted that there was not any

significant improvement in speed when

simulating in Simulink. The reason has not yet
been determined.
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Table 1:
simulating the engine model for 10 seconds using
an Intel Pentium II 350 MHz processor.

Performance for explicit Euler when

Integration Step CPU
Method [ms] Time [s]
Explicit 01 A1

< .

= Euler

3

[a) Inlined 01 25
Expl Euler

. Explicit 01 46

= Euler

E

= Inlined 01 44
Expl Euler

2.2 Evaluation of mixed mode integration

Next we evaluated mixed mode integration. The
partition with 4 fast state variables discussed in
[6] was used. Table 2 shows the results of a
comparison of calculation time when mixed mode
integration was used with the Engine model and
when a non-inlined explicit Euler method was
used. The mixed mode integration method
showed very high performance. The improvement
of the performance is about 85%. And without
mixed mode integration, the model simulation
needed 0.1 ms of step size to ensure calculation
stability. On the other hand, with mixed mode
integration the calculation was still stable with a

step size of 1.0 ms.

The explict Euler method cannot be used for HIL
simulation, because a step size of 0.1 ms is
needed, which is too short for HILS calculation.
The mixed mode integration method allows HIL
simulation as the results from running on
dSPACE 1005 (PowerPC 750, 480 MHz)
indicate. However, there are problems of using
the mixed mode approach in general
1. Ttis difficult to find the suitable partitioning.
The operation is difficult to generalize because
the partitioning depends on the characteristic of
each model, and thus requires trial and error
analysis on each occasion.
2. Once partitioning has been made, stability is not

guaranteed when the input is changed.

Table 2:
integration when simulating the engine model for
10 seconds using an Intel Pentium II 350 MHz
processor.

Performance for mixed mode

Integration Step CPU
Method [ms] Time [s]
Explicit 01 A1

- .
= Euler
g
[a) Mixed 1 6.1
Mode
. Explicit 01 46
= Euler
E
B=! Mixed
7.1
s Mode 1
m Mixed 1 Not Realtime
@) Mode
é Mixed
2 Mode 1.3 Realtime

2.3 Evaluation of inlined implicit Euler

In order to provide more easy to use method than
the mixed mode integration method, the implicit
line method reported in [6] has been considerably
improved [4]. The performance results of using
this method are shown in Table 3.

Table 3: Performance for inlined implicit Euler

integration when simulating the engine model for
10 seconds using an Intel Pentium II 350 MHz
processor.

Integration Step CPU
Method [ms] Time [s]
Explicit 01 A1

< .

= Euler

g

A|  Inlined 0.1 14.3
Impl Euler

. Explicit 01 46

= Euler

E

= Inlined 01 15
Impl Euler
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It can be noted that the simulation time was about
15 seconds on the Pentium II processor, i.e. 1.5
ms/step. Since dSPACE DS1005 according to
Table 2 needs more CPU time per step it would
need at least 2 ms to calculate one step. However,

using offline simulation in Dymola, it was

determined that convergence was not obtained

. period...
when the step size 2 ms was used.

Long...
I

Faster HILS environments based on Pentium
processors are available, for example xPC from
MathWorks. Dynasim made test using an Intel
Pentium 4, 1.6 GHz processor. Table 4 shows the
performance results for simulating in Dymola on

xPC. The model could then be run in real-time. . .
Figure 3: Hydraulic actuator system.

Table 4: Performance for inlined implicit Euler

. . . . B As the next application, consider simulation of an
integration when simulating the engine model for .

. . actuator which is usually used to control the
10 seconds using an Intel Pentium 4, 1.6 GHz

pressure in automobiles. Figure 3 shows the

processor. structure of the model developed by using
components from the HyLib hydraulics library

Integration Step Comp [2]. There are a number of valves and pipes
Method [ms] Time [s] between a high-pressure source and low-pressure

Explicit o " p%rts such as 'the brake at a wheel. The dynamics

< Euler within the pipes cannot be neglected, because
g . they are several meters long. The valves adjust the
a Imglgjlir 1 4.6 pressure of the lower part by very fast actuation.
This introduces very fast pressure changes and the

Explicit 01 136 pressure wave propagate with the speed of sound

E Enler which is approximately 1300 m/s. The result may
.v% Inlined : » bfe osc'illations in' the r'an'ge 400-500 Hz generating
Impl Euler vibration and noise within the automobile system.

O Inlined . See Figure 4. It is important to analyze this
& Impl Euler 1 Realtime/4.5s phenomenon in order to develop ways of reducing

the vibration and noise.

3. Application: Hydraulic system

2 Plot [1+] =10| x|

Eile Diseram Setup Help

The hydraulic system is one of the most important [MPa] WOz vaimeE oA g

systems in an automobile. It plays a crucial role in 526

the power train and the drive train. As the

4E6+

hydraulic system exhibits very complicated !
characteristics, it is very useful to simulate it. =
Additionally, the ability to simulate such systems 6
in real time is very important. So far real-time -

simulation of hydraulic systems has not been

E — [sec]

possible. Hydraulic systems are typical examples

0.2 03 0.4 0s 0e o7

of very stiff systems. It is necessary to use Figure 4: Pulsation in the long hydraulic line

implicit solvers.
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The two pipes of the model are each 3 meters
long. Each pipe is modeled by 15 segments,
where each segment is 0.2 m long and has 5
continuous time states. The model has in total 164
states.

It is not possible to use explicit Euler for real-time
simulation, because the model requires the step
size to be less than 0.001 ms to ensure the
stability of the simulation.

A the third order implicit inline Runge-Kutta
integration method, RK3, with a step size of 0.5
ms was used to obtain both stability and desired
accuracy. The symbolic manipulation of Dymola
reduces the size of the nonlinear system to be
solved by a nonlinear solver from 164 to 10.

Table 5 shows the performance results for the

Pentium II processor when simulating 1 second.

Table 5: Performance for inlined implicit RK3

when simulating the hydraulic actuator model for

1 s using an Intel Pentium II 350 MHz processor.

Integration Step CPU
Method [ms] Time [s]
Explicit
< 0.001 283
= Euler
o
g,
=) Inlined 05 31
Impl RK3
Explicit 0.001 253
= Euler
E
B=! Inlined
) . 3
Impl RK3 0.5

It should be noted that the inlined implicit RK3
gave a speed up of a factor of 91. However, the
simulation is 3.1 times too slow to run in real-
time. Therefore Dynasim made corresponding
test shown in Table 6 for Pentium 4, 1.6 GHz.

Real-time performance was then achieved.

When attempting to test on xPC, the diagnostic
“Failed to download” was received. More
investigations have to be made to determine the

cause.

Table 6: Performance for inlined implicit RK3

when simulating the hydraulic actuator model for

1 s using an Intel Pentium 4, 1.6 GHz processor.

Integration Step CPU
Method [ms] Time [s]
Explicit
< 0.001 59.1
= Euler
o
g
- Inlined 0.5 0.71
Impl RK3
Explicit 0.001 50.9
= Euler
E
B=! Inlined
) . 0.6
Impl RK3 0.5

These results show that the improved implicit
inline integration method is very effective in this
case. Conventionally it was difficult to handle
hydraulic models using fixed step explicit Euler
and process the model within a practical
calculation time. Using the improved implicit
inline integration method it is possible to handle
hydraulic models and process them at high speeds

even in fixed step situations.

This characteristic is desirable for real time
simulation. Implicit inline integration produced a
remarkable improvement for this simple hydraulic
model. Furthermore, it has also shown
considerable effectiveness even for models that
are more complicated. The representative

characteristics of this method are as follows.

e This method enables the generation of a code
which is suitable for real-time simulation,
even in the case of models that have the
property of oscillation, such as the hydraulics
system.

e  This method makes the handling of models
with larger step size possible.
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4. Conclusions

We evaluated inline integration and mixed mode
integration which were developed to improve
calculation performance. Improved implicit
inline integration, which has recently been
developed, was also evaluated. It was confirmed
that these methods effectively increased the
ability to handle models in real time. In particular
the improved implicit inline 3 order integration
method could handle the model very efficiently

even if it was a hydraulic model.

On the other hand, it was generally the case that
setting step size for fixed step size integrators
remained a problem. Even inline integration
needs trial and error testing to find a suitable step
size. In addition, an increasing number of
modeling beginners are using these kinds of tools.
These users are not always experts in modeling or
control. It would therefore be desirable if they
could more easily obtain improved performance
using the techniques we evaluated. We hope that
such method will be established and be applied to
the physical models, which were made for
controller designing in order to enable HILS.

The improved implicit higher order integration
method has given a break-through in simulation
speed for stiff models and for discreticized partial
differential equations originating for example in

long hydraulic pipes.
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Abstract

In this article, hardware-in-the-loop (HIL) simula-
tion of a passenger car automatic gearbox is dis-
cussed. The simulation includes detailed models of
the mechanics and hydraulics and less detailed mod-
els of the other parts of the car’s drive train like its
engine, torque converter, differential gearbox, chas-
sis and driving resistances. After a short description
of the components to be modeled, special issues of
simulating variable-structure mechanical systems
(coupled frictional elements), simulating hydraulics
and simulating in real time with the gearbox control
electronics hardware in the loop are discussed. A
simulation based, detailed assessment of the dynam-
ics of the gearbox hydraulics show that it might be
modeled (under certain assumptions) with fixed
causality without major loss of accuracy. Therefore
nonlinear systems of equations in the hydraulic parts
of the model can be avoided. This enables the usage
of a model based on hydraulic component submod-
els, rather than on overall global dynamics to be
used for real time simulations with standard HIL-
simulation hardware. The article ends with a short
discussion of HIL-simulation results and an outlook
on future work.

1. Introduction

The motivation to realize tests in a HIL-environment
is manifold, but two main reasons are:

Shorter development time. The time available for
the development of new components and cars is
becoming shorter and shorter. Thus, a lot of time has
to be saved during the development phase. HIL-

Munich, Germany

Soest, Germany

simulation and testing is a possibility to achieve this,
as

e There is no need to wait for prototype produc-
tion, if the data of these are available for model-
ing,

e No driver and test circuit is needed,

e Test conditions can be reproduced precisely,

e Tests can even be automated.

Rising complexity due to interacting electronic
control systems. Cars have always been aggrega-
tions of several subsystems like engine, gearbox,
brakes and so forth, and thus showed a certain com-
plexity. But in former times those systems worked
rather independently and could therefore be devel-
oped and tested separately. Nowadays the subsys-
tems of passenger cars are strongly interdependent:

e Different control systems act on the same dy-
namics (e.g. both motor management (DME)
and gearbox controller (EGS) influence the lon-
gitudinal dynamics (fig. 1).

e Different control systems share sensor informa-
tion that is exchanged via CAN bus for control
purposes, but also for self-diagnosis.

e Functions are spread over several controllers.

As a consequence systems can no longer be tested
separately and the number of different error cases
that have to be tested increases drastically. The test
environment has to include all essential parts or
functionalities of all interacting systems. Optimal
testing should be automated in order to handle the
number of error cases. Both requirements lead to
automated HIL simulation and testing.

This article describes the test environment that was
installed at BMW in order to test the control system
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Hardware
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Figure 1: System overall view

Detailed
Models

(EGS) of the automatic gearbox. For the above men-
tioned reasons, it was not sufficient to model only
the gearbox itself that is controlled by the EGS, but
also the remainder of the powertrain and parts of its
controllers and communication structures. Figure 1
gives an overview of the components, physical inter-
actions and information flow:

e The EGS represents the hardware in the loop
and is the item under test. All other parts are
simulated.

e Gearbox mechanics, hydraulics and actuators
have been modeled in detail. This was necessary,
as one of the goals of this setup was the possibil-
ity to simulate the effects of failure of one of the
actuators or the hydraulic valves.

e The less detailed models contain only those
functionalities that are necessary for the simula-
tion, e.g. the model of the DME does not control
a full model of the engine, but is necessary to
transmit the required signals via CAN bus to the
EGS.

2. Modeling driveline and gearbox
mechanics

An automatic gearbox can be simulated only if the
input and output torques or speeds are known.
Therefore, at least the engine and the longitudinal
dynamics of the vehicle also have to be modeled.
Figure 2 shows a corresponding model: Engine
(controlled by a control unit and a driver model),
torque converter, gearbox, final drive, brake wheels,
vehicle inertia and driving resistances. The engine is
modeled by a torque map, the torque converter by
static characteristics, and all other components, apart
from the gearbox, by the well known physical rela-
tions.

Figure 3 shows an outlined sketch of the 5 speed
gearbox ZF S5HP24 [1] which was investigated.
Apart from the hydrodynamic torque converter it
consists of three planetary wheel sets and seven
switching elements: Three clutches (A, B, C), three
brakes (D, E, F), and a freewheel (FF). The gearshift
pattern (fig. 4 ) indicates which switching elements
have to be active to engage a certain gear.

If appropriate component models are given, the
object-orientation of Modelica allows to derive the
complete simulation model (fig. 5) easily from the
gearbox scheme of figure 3. For the component
models the standard Modelica library “Mechan-
ics.Rotational” [2] and the Modelica powertrain
library [3] have been used. For more details of mod-
eling automatic gearbox mechanics see [4].

Clutches, brakes and freewheels in a simulation
model result in a variable structure system, this is
because two shafts can stick or slip relative to each
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Figure 4: Gearshift pattern
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other. The number of states is changing during a
transition from stick to slip and vice versa. Neglect-
ing some “fast” dynamics in order to reduce simula-
tion time results in a typical idealized friction
characteristic shown in figure 6. The friction torque
is a discontinuous and in part non-unique function of
the relative speed of the clutch disks. Therefore
additional equations have to be set up for a complete
system description.

TFriction
TStick TCoulomb
>
Aw

Figure 6: Idealized friction characteristic

In the Modelica libraries used, friction is modeled in
a parameterized form (in contrast to [4]) with a
curve parameter included plus a state machine de-
scribing the transitions between the unique and non-
unique parts of the idealized friction characteristic.
Because the relative speed in the clutch is an output
of the integration algorithm and computed with a
limited precision only, finding the transition between
the unique and non-unique parts of the friction char-
acteristic is not trivial. This holds especially for
systems with several interacting clutches, like the
system treated here.

Modeling a clutch by a parameterized friction de-
scription in connection with a state machine results
in a mixed system of discrete and continuous equa-
tions, which cannot be solved by standard methods
like Gaussian elimination. There are a few methods
to solve such mixed systems [5], all of them need
iteration at an event instance (transition from stuck
to sliding mode and vice versa). Using Dymola [6]
for processing of the Modelica models, these itera-
tions proved to converge quite quickly. Therefore the
real-time condition was met in the HIL setup with
only a few exceptions.

3. Modeling gearbox hydraulics

The hydraulic system of an automatic gearbox con-
sists of different elements with the following func-
tions:

e Electro-hydraulic elements provide a hydraulic
pressure as a function of the electrical current
flowing through the element.

e Switching valves open or close canals.

e Proportional valves amplify pressures and / or
transform hydraulic impedances.

e Cylinders generate a normal force on a clutch
pack if a hydraulic pressure is applied on them.

Figure. 7 gives an overview over the elements and
their interactions. In the following section a short
outline of modeling techniques for hydraulic sys-
tems is given.

Figure 7: Interaction of hydraulic subsystems

The early simulation languages were block-oriented
[7] and emulated analog computers. They were very
well suited for the simulation of control systems
where the output signal of a control block doesn’t
influence the input. Hydraulic systems, however,
work differently: The state at the input port of a
component is dependent on the state of the output
port. A hydraulic line illustrates this: If the line is
closed at the end the pressure at the entrance will
rise according to the input flow rate. If the line is
open at the end the pressure at the input will fall
almost to atmospheric pressure. These dependencies
can be modeled with block-oriented software but
lead to awkward models because of the necessary
feedback loops. It is very difficult to build modular
models with this approach.

Modelica enables acausal modeling, i.e. it is possi-
ble to describe the behaviour of a component with-
out defining which variables are input and which are
output variables. As a consequence it is possible to
use the same library model for a hydraulic pump
(input is the mechanical power, output the flow rate)
and a hydraulic motor (input is the hydraulic power,
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output the torque at the shaft). This object oriented
modeling approach thus resembles the design strate-
gies of component manufacturers: They use (to a
great extent) the same parts for pumps and motors.

8]

Hydraulic systems can be described by differential-
algebraic equations (DAE). The differential equa-
tions are usually non-linear first-order equations that
model the pressure build up in lumped volumes.
Only special cases require partial-differential equa-
tions (PDE) to describe the behaviour of long lines.
Usually these PDEs are discretized to arrive at a
system of first order ODEs.
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Figure 8: Modeling approach using lumped volumes.
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Figure 9: Library models; the lumped volumes at the
ports are included but not shown in the icons.
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Figure 10: Diagram layer of library valve model
with included volumes at the ports shows more
details.

For standard applications it has proven very helpful
to place a lumped volume at each port of a compo-
nent to model the behaviour of the compressible oil
(fig. 8). This leads to a simple structure of the result-
ing DAE-system. However to be able to solve this
DAE with standard solvers it is necessary to reduce
the index. In former times this was done by hand
from the modeling engineer by adding the amount of
oil of all components connected at a particular node,
nowadays it can be done automatically by the tool.

To avoid the manual placement of volumes and the
resulting cluttering of the diagram layer library
models are available that have already included the
lumped volumes at the ports but don’t show them in
the icons. The resulting diagram layer is almost
identical to a standard hydraulic circuit diagram (fig.
9 + 10). It can therefore be read also by engineers
with training in hydraulics but no deeper experience
in modeling and simulation [9].

When modeling hydraulic systems it makes sense to
follow the path of the oil: The source is the pump,
the sink is the tank, the cylinders, motors and valves
are in between. Using an appropriate library even
complex circuits can be modeled in a short period of
time if the required parameters of the components
are known [10].

The advantages of the outlined concept are obvious.
Hydraulic components can be modeled in a truly
modular way. They can be arranged in an arbitrary
structure — parallel or in series. The resulting nonlin-
ear DAE system can be solved for the derivatives of
the state variables thus avoiding the numerical solu-
tion of systems of nonlinear equations. There are
however also some drawbacks. The lumped volumes
between components can become very small, they
may contain less than a thimble full of oil. As a
consequence the pressure builds up very rapidly. In
mathematical terms this means a stiff system that has
eigenvalues near the origin and almost at minus
infinity. Using advanced integration algorithms with
automatic step size control these DAEs can be
solved successfully but the required computing time
will usually be greater than the simulated time. Con-
siderations of the numerical stability will restrict the
permissible step size for fixed step-size algorithms
that are used for HIL simulations.

One way to reduce the required computing time is
the observation that not all pressure states (lumped
volumes) are significant for the overall behaviour of
the model. In that case it is possible to eliminate a
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state. As an example figure 11 shows two orifices in
series.

If the pressure dynamics of the lumped volume
between the two orifices is not significant one can
neglect it and assume that the flow rate through both
orifices is identical. It is then possible to calculate
the flow rate through both orifices as a function of
the pressure differential across both orifices. This
approach is identical to the assumption of a zero
volume.

b
g
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Orificet Orifice2
4 4
| = L £1
/\ /\

Figure 11: Two orifices in series.

In general, using these techniques, one has to find a
compromise between placing a lumped volume at
each connector and not using them at all. The first
approach avoids nonlinear systems of equations, but
generates a stiff system. The second approach does
not generate a stiff system, but the resulting system
of nonlinear algebraic equations has to be solved
numerically. Thus, both approaches will lead to long
simulation times (compared to simulated time), the
optimum is a combination of both.

Unfortunately, using this method simulation times
are still far from real-time using a standard HIL
simulation processor (we used a Motorola PowerPC
750 processor running at 480MHz). Thus, another
simplification has to be made. Detailed analysis of
the hydraulic system shows that it is possible to use
a causal approach for some elements: For the major-
ity of the valves, the generated pressure of one valve
can be considered to be independent of the valve that
is driven by that pressure, as the volume flow of oil
is usually small. Thus, a model can be derived from
an acausal model where the majority of the elements
is modeled in a causal way, which speeds up simula-
tion times to an extent that real-time simulation
becomes possible.

4. Gearbox electronics & HIL

After having combined all necessary simulation
models (all subsystems shown in fig. 1 apart from
the gearbox controller EGS), they have to be imple-
mented on an appropriate real-time processor to-
gether with all interfaces needed. For the Modelica
implementation of the gearbox mechanics model, we
used Dymola and exported the processed model as a
Simulink S-function [11]. The fixed causality
hydraulics model and the software interfaces to the
hardware have been implemented in Simulink too.
Since the gearbox controller provides no trigger
signal the simulated plant model has to be sampled
much faster than the controller. The EGS under test
operates at 100 Hz, requiring a sampling rate of 1
kHz for the simulation model. For the real-time
simulation hardware we used boards by dSPACE
[12].

Setting up a HIL simulation often non-standard
interfaces are needed due to I/O reversal: Sensors
and actuators are simulated, but they interface in part
directly to the power-electronics part of the control
unit which needs the respective electric loads for
proper operation. In contrast, standard real-time I/O
interfaces provide TTL-level signals only.

The EGS senses the speed of the gearbox input- and
output shafts and oil temperature. Based on these
signals (interfaced directly) and other signals like
vehicle speed, throttle position, and estimated engine
torque (interfaced indirectly via CAN bus), the ac-
tual gearshift is performed according to a shift map
and a set of parameters adjusting the slope of the
hydraulic forces acting on the respective clutch
packs to the actual driveline and vehicle state. Dur-
ing a gearshift the EGS may require via CAN bus
the engine controller to reduce engine torque for a
smooth transition.

On the output side the EGS interfaces directly to
electro-hydraulic components of the gearbox. The
respective original parts are included in the HIL
setup to provide proper electrical loads. That parts
are combined in a load box which may be exchanged
for simulation of another automatic gearbox type.
Without proper electric loads at the power-electron-
ics interfaces the EGS would operate in emergency
mode only (4" gear, no gear shift) due to imple-
mented watchdog functions. For the same reason
health monitoring signals of other controllers have to
be provided via CAN bus, too.
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Figure 12: HIL simulation control main panel

For the operator interface to the simulation we used
the board vendors software ControlDesk [12]. Figure
12 shows the main panel with standard passenger car
instrumentation, gearshift control, simulation con-
trol, and simulation output of the actual state and the
pressure history of all six clutches of the gearbox.

With the HIL setup described the effects of partial or
total failure of one or more mechanic, electric, or
hydraulic components of the gearbox can be studied
in detail. For interfacing to the EGS software, e.g.
for changing parameters, disabling certain parameter
adaptation functionalities, etc. an additional device
is needed. We used INCA [13] for that task.

5. Simulation Results

The following simulation results show the hydraulic
pressure (in [N/mm?]) for two cylinders as a result of

RONT [ [ WNOM[[0GAEAN (DEAE
L oo RS

two gear shifts. Until t = 1s, the neutral gear is en-
gaged. Then, the first gear is engaged, and the gear-
box switches to the second gear at t = 3s. Figure 13
shows the simulation results for the acausal model,
simulated with Dymola. Figure 14 shows the same,
but the results are based on a causal model with the
same parameters.

The results for both models are fairly similar, prov-
ing the assumption to be correct for most of the time.
This is not the case for the pressure in cylinder A
around t=3.5 s (red circle). In the acausal, precise
model, the pressure in A falls slightly, because cylin-
der E gets filled by a considerable volume flow.
Thus, the working pressure drops, which is also
reflected in the pressure in cylinder A. As it can be
expected, the causal model does not show this effect.

Figure 15 shows the influence of a EGS parameter
modification (application parameter). The result
represents an uncomfortable gear shift, as the pres-
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sure in cylinder E shows a peak (blue circle). The
fact that changes in these parameters are reflected in
the pressure buildup opens the possibility to use
these models for application purposes, too.
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Figure 13: Simulation results: Acausal model
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Figure 15: Simulation results: Effects of poor
application parameters.

6. Conclusion & Outlook

Using the available component models of Modelica,
quite detailed models of gearbox hydraulics and
mechanics have been developed. Further investiga-
tion showed the possibility to model the gearbox
hydraulics in part with fixed causality, which al-
lowed real-time simulation of both hydraulics and
mechanics. This model was implemented on a HIL
environment together with the gearbox controller.
For fully automated component failure tests of the
EGS the respective models have to be enhanced by
failure injection inputs.

The fixed causality hydraulics model may also be
implemented in Modelica. This would enable to split
up the combined mechanics and hydraulics model in
“slow” and “fast” parts and thus using the potential
advantage of Dymola’s inline integration scheme
[14]. A limitation may be that the presumable “slow”
mechanic parts of the model need “fast” sampling
too, in order to meet the real-time condition if itera-
tions occur at an event instance in the clutch models.

An other area of future investigation might be the
use of simulation models for application purposes.
This creates the need for further improvement of the
models without loss of simulation speed. Since only
a limited set of signals are available for measure-
ment with reasonable effort, setting up procedures
for identification and validation of those refined
models needs to be addressed.
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Abstract

Several variable valvetrain technologies are being
aggressively pursued to increase vehicle fuel economy

and reduce engine exhaust emission levels.
Electromechanical Valve Actuation (EMVA) is a
promising alternative that uses electromagnetic

actuators to replace the conventional camshaft and
provide fully flexible valve timing control. This
"camless" valvetrain provides new opportunities and
challenges for engine control optimization. In this
work, we present two Modelica applications for
EMVA development.

Control and prediction of the Air to Fuel (A/F) ratio in
a port fuel injected spark-ignited (PFI SI) engine is an
important factor for emissions, performance, and fuel
economy. A Modelica model to simulate the dynamic
behavior of fuel vaporization and storage inside a PFI
SI engine has been developed. This "wall wetting"
model was developed from an existing FORTRAN
based model and employs several control volumes to
represent fuel in various phases and locations in the
engine. A multi-component fuel model (i.e.
containing different constituents with a wide range of
molecular weights) is used where the fuel component
masses are the state variables and the mass flow rates
are the flow variables. The fuel model can be easily re-
declared so that different numbers and types of fuel
components can be used to simulate the distillation
characteristics of various fuels. For the control
volumes that represent liquid fuel puddles, the
connectors have additional information such as puddle
area, puddle height, fuel component vapor pressure,
puddle temperature, and puddle heat transfer. The
processes of fuel injection, vaporization, liquid flow,
and shattering are used to move fuel between the
various control volumes. The Modelica model can be
coupled by various degrees to engine simulation
models. By comparison, in the original FORTRAN
model, engine operating inputs to the wall wetting
model were made by rough approximation with no
opportunity for feedback from the wall wetting model
to affect the operating conditions. In this application
we fully couple the wall wetting dynamics to a single
cylinder engine model. The complete model is then
more generally applicable to the increased number of
degrees of freedom afforded by the variable valve

timing control. The engine model incorporates a
simple valve actuator model to replace the
conventional camshaft motion with the flexible timing
and transition characteristics of EMVA. The engine
model predicts gas flows, temperatures, and pressures
that were inputs to the FORTRAN wall-wetting model.
The wall wetting model then determines the fuel
vaporization rate, which in turn determines the A/F
ratio input to the engine model. This subsequently
changes the temperatures, pressures, and flows in the
combustion chamber and port sub-models. Initial
comparison of results to the FORTRAN model show
reasonable agreement in A/F prediction but the
FORTRAN version currently runs faster.

The other of Modelica involves actuator
development.  Actuator design and control is a
significant challenge for EMVA engines. To achieve
performance, durability and fuel economy objectives,
valve motion must be carefully controlled via
electromagnets to achieve both fast transitions and low
contact velocities. The actuator system must also be
designed to minimize electrical power consumption. A
detailed actuator model is developed to study valve
transition characteristics. =~ The model incorporates
mass, spring, and electrical elements from the
Modelica standard translation and electrical sub-
libraries. A detailed sub-model of a solenoid with an
"E-shaped" core has been developed to predict
magnetic forces and inductive characteristics. The
magnetic force is coupled to a reciprocating mass
which represents the armature and valve assembly.
Various actuator design modifications have been
investigated. The effect of a simple voltage control
scheme on valve motion is investigated here.

use

Introduction

The global automotive industry is under increasing
pressure from governmental, consumer, and non-
governmental groups to improve the fuel economy of
motor vehicles. Reasons for improvement range from
concerns about global warming to the need to reduce
the dependence on foreign, and often volatile,
petroleum sources. Consumer demand and competitive
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forces demand that improvements in fuel economy not
be accompanied by decreases in other metrics of
vehicle performance — safety, power, interior space,
emissions, price, and NVH. It is often required that
these other metrics improve along with fuel economy.

One group of technologies that holds promise for
improving fuel economy while maintaining or
improving most other areas of vehicle performance is
variable valve timing (VVT). VVT reduces or
eliminates many of the tradeoffs between low and high
speed torque, fuel economy, idle quality, and emissions
that are currently made with fixed valve timing. VVT
includes current production technologies like variable
cam timing, cam switching, and variable valve lift. All
of these technologies use a cam to open and close the
valves. A new VVT technology that holds promise is
Electromechanical Valve Actuation (EMVA). EMVA
uses electromagnets to open and close the valves. The
valve timing is then independent of crankshaft position,
and valve opening and closing times can be optimized
to reduce throttling losses and to control residual gas
fractions. Additionally, valves may be deactivated to
reduce power consumption or to deactivate cylinders
for improved fuel economy.

EMVA presents several engineering challenges in
which modeling plays an important role. One such
area is the development of strategies for transient air
fuel control. We will discuss the development of the
plant model to predict liquid fuel dynamics. Another
engineering challenge is the development of the
electromagnetic actuator. Both will be discussed and
results will be presented.

Wall Wetting Model Development

Prediction of transient fuel dynamics is difficult with
conventional port fuel injected (PFI) engines running at
fixed valve timing. In PFI engines, a fuel injector is
placed in the intake port as close to the intake valve as
packaging will allow. A schematic of the fuel injection
and wall wetting process in a standard camshaft engine
is shown in Figure 1. Fuel is injected towards the
intake valve and port walls just before intake valve
opening. Some fuel becomes entrained in the air
stream, but most lands on the valve and port where it
forms small "puddles". The fuel evaporates off the hot
port walls (~95 C) and the hotter intake valve (~175
C). The fuel, gasoline, is composed of many different
chemical species with widely different characteristics.
The lighter, more volatile, components will evaporate
easily while the heavier, less volatile, components will
tend to evaporate slowly and stay in the puddle. The
evaporation rate increases dramatically when the intake
valve is open and the air speed in the port is high. The
high air speed in the port also produces a forward flow
phenomenon, which causes some of the liquid fuel on
the port walls and the intake valve to be sucked into the

combustion chamber where it forms a puddle.
Additionally, right at the moment of intake valve
opening, the pressure in the intake port is much less
than that in the cylinder. This produces a backflow
pressure wave that splatters some of the fuel off of the
valve and up into the port. In both the forward and
backward flow processes some of the fuel is entrained
in the air stream before it lands.

1. Port Film

2. Valve Film

3. Upstream Film
4. In-Cylinder Film

Figure 1: Schematic of Fuel Injection.

Prediction of transient air fuel dynamics becomes even
more difficult under certain EMVA engine operating
modes (e.g. late intake valve closing (IVC), alternating
valve closing, and cylinder deactivation). A detailed
wall wetting model to predict transient air fuel
dynamics has been created in Modelica. A starting
point for the Modelica model was a FORTRAN model
developed by Curtis, et. al. [1]. The FORTRAN wall
wetting model contains models of all of the processes
described above, all of which have also been
implemented in the Modelica version. Additionally,
the Modelica version is also tied to an engine cycle
simulation that provides data such as air speeds,
pressures, and temperatures to the wall wetting model.
The FORTRAN version used approximations for this
data.

Basic Models

In the most basic form, the wall wetting model is a
collection of fuel puddles (control volumes) linked
together by processes that move fuel between the
various puddles. This is similar to modeling in the
thermal domain where a series of thermal capacitances
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exist with thermal resistances and convective elements
to move the thermal energy between them.

The control volume model has the following connector
instantiated as cv (control volume):

connector MassConnector
import Modelica.Siunits;
parameter Integer n "# of species";
parameter String FuelNames;
SIunits.Mass m[n];
flow SIunits.MassFlowRate mdot [n];
end MassConnector;

The control volume model also contains the following
equation to link the flow and across variables:

[der (cv.m) = cv.mdot;]

A multi-component fuel model is used. The number,
type, and injected mass fraction of each component
(species) is selected to match the distillation
characteristics of the fuel. There are 21 chemical
species from which to select. The fuel model contains
both fuel composition and material property data. It
has the following code:

model Fuel
extends FuellIcon;
replaceable Two Component Test
Fuel Comp ;
FuelsDataAdjustable
Data (Fuel Comp=Fuel Comp) ;
end Fuel;

The replaceable Two_ Component Test model
defines the fuel. This model contains the injected mass
fractions, the fuel names string, and an array of
integers that specifies which components are used.

This  information is then passed to the
FuelsDataAdjustable model. The
FuelsDataAdjustable model extracts the

material property data for the used species from the list
of possible species. FuelsDataAdjustable is
implemented as a model and not as a record
because of an assert statement in the equation layer of
the model. This forces Fuel to be a model because
one of it used classes is a model and not a record.
Knowing which fuel, and hence which species, will be
used at translation time decreases the number of
variables and run time.

Note that the connector definition has a string
parameter FuelNames. The string FuelNames is a
concatenation of abbreviations for the names of all the
various fuel components that make up the current fuel
model. An example of FuelNames for the indolene
fuel model is: "ispnt|ioctn|tolunndecn|cy-
hex|naphlethylb". This is on the connector to assure

that all the parts of the model are using a consistent
fuel model.

The control volumes used to represent the liquid fuel
are placed inside a wrapper model. The wrapper model
contains the fuel model and a thermal connector that is
connected to a thermal model that predicts the
temperature of the puddle. It also has two models that
calculate the surface tension and the vapor pressure of
the fuel mixture in the puddle from the puddle
temperature and fuel properties. The geometry (area,
height, perimeter) of the liquid puddle is calculated in
the equation layer of the model. It also has a liquid
fuel connector that is similar to the control volume
connector:

connector LiquidMixture
import Modelica.SIunits;
parameter Integer n "# of species";
parameter String FuelNames;
SIunits.Mass m[n];
flow SIunits.MassFlowRate mdot [n] ;
SIunits.Pressure Pv[n];
STunits.Temperature T;
flow SIunits.HeatFlowRate q;
STunits.DynamicViscosity mu;
STIunits.SurfaceTension SurfTen;
SIunits.Area A;
SIunits.Height H;
WallWetting.Types.Perimeter Pwet;
end LiquidMixture;

The liquid puddle model and liquid mixture connector
allow all of the information pertinent to the puddle to
be calculated in one place. This prevents, for example,
both the evaporation and forward flow models from
calculating the puddle geometry.

The FORTRAN version used liquid puddle models to
represent the liquid fuel puddles — one on the intake
valve, one on the cylinder, and two in the port (see
Figure 1). The fuel in the port is split into two puddles
— one downstream in the port near the valve and one
upstream away from the valve and close to the injector.
The downstream puddle is nominally hotter than the
upstream port. The modular nature of Modelica
permitted easy creation of two different models with
different numbers of control volumes. One is identical
to the FORTRAN wall wetting model with 4 puddles.
Both 4-puddle models can be used to model engines
with multiple intake valves, bifurcated and non-
bifurcated ports, and charge motion control valves by
the use of multipliers. For example, an engine with
two valves and a bifurcated port with fuel injected
evenly into both ports would have the amount of fuel
injected divided by 2 and the amount of fuel vaporized
multiplied by 2.
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To model liquid fuel dynamics with EMVA it was
necessary to use 7 control volumes because each
cylinder has two intake valves and a single fuel
injector. Only one cylinder puddle control volume was
used, but all of the other puddles were doubled to
represent the two intake valves. The use of 7 control
volumes instead of 4 with multipliers was necessary
because of certain EMVA modes that are non-
symmetrical. One such mode occurs when the intake
valves open on alternating cycles, but the single fuel
injector sprays fuel into both ports on each cycle.

The FORTRAN version of the wall wetting model had
a control volume to keep track of the fuel evaporated.
Some versions of the Modelica wall wetting model
have a separate control volume to keep track of the fuel
that has been vaporized. Others simply convert the
multicomponent evaporation mass flow rate into a
single component mass flow rate that can be applied
directly to the medium connectors that Ford uses for
cycle simulation [2].

In addition to the fuel model, four different records are
used to pass information to different sections of the
model. They are passed down the hierarchy as
replaceable records or models.

Processes

The wall wetting model has several processes that add
fuel to the liquid puddles, move the liquid fuel between
the puddles, and remove the evaporated fuel. The
dominant process is evaporation [3]. Each puddle is
connected to the air-stream using an evaporation
model. The evaporation model uses the Reynolds
number of the flow over the puddle, the free stream gas
state (temperature, pressure, composition), and puddle
information from the puddle connector. It calculates a
total mass convection rate from the puddle to the air
stream. The evaporation mass flow rate is governed
by:

. A X, —X,
Mevap = Shp, . af“ddleDln( {va ) (1)

port fp

where Sh is the Sherwood Number (dimensionless
concentration gradient which is dominated by the
Reynolds Number), pyx is the density of the air/fuel
mixture in the gas phase directly above the puddle,
Apuaae 18 the area of the puddle, dyo: is the port
diameter, D is the diffusion coefficient, Xy, is the mass
fraction of fuel in the vapor phase above the puddle,
and Xy, is the mass fraction of fuel vapor in the inlet
stream. The total mass convection rate is divided
among the various fuel components (species) in the
puddle based on their mass fractions in the vapor
phase.

Liquid fuel is added to the puddles via an injector
model. The injector apportions the total fuel injected
by means of data about the engine hardware (e.g.
injector targeting info) and calibration parameters (e.g.
how much fuel dribbles off of the injector as opposed
to being sprayed). Most of the fuel during closed valve
injection goes to the valve puddle and the downstream
port puddle. During the rare event of open valve
injection a large portion of the fuel goes directly to the
cylinder puddle. The injector model also calculates an
amount of fuel that is either vaporized or entrained in
the air stream before it reaches the puddle. It does this
by calculating a Roslin-Rammler distribution of the
fuel droplet size in the injection spray. Then it
assumes that all the drops under a certain diameter are
entrained, and half of the drops between that size and a
larger size are entrained. Both sizes are calibration
parameters.

A forward flow model simulates the dragging effects of
the air-flow in the port. The forward flow model
moves liquid fuel from the upstream puddle to the
downstream puddle, and liquid fuel from the
downstream and valve puddles into the cylinder
puddle. All of these flows are modeled by instances of
the same flow model.

Using the mass flow rate of air in the port, the forward
flow model makes several assumptions in order to
calculate a mass flow rate. First, it is assumed that
there is no slip at the surface between the puddle and
the engine. Next, there is an equal shear force between
the puddle and the air stream. Finally, there is a
laminar flow distribution in the air and fuel film. The
model then divides the total mass flow rate among the
various fuel components in the puddle by their mass
fractions in the puddle. The forward flow model also
has an entrainment model similar to that in the injector
model.

The process of backflow shattering is also modeled.
This occurs at intake valve opening (IVO) when the
pressure in the port at part throttle operating conditions
is much less than that in the cylinder. At typical
operating conditions, the cylinder pressure at IVO
would be at atmospheric (100 kPa) and the pressure in
the port would be about 50 kPa. This pressure
difference produces a short duration but large
magnitude, sometimes sonic, backflow event. This
shatters the downstream and valve puddles. A
percentage of the fuel that was shattered will be blown
up into the port, a percentage will fall back into the
puddle, and a percentage will be entrained in the air.
The process is modeled as an event in Modelica. At
IVO an event is triggered and a submodel calculates
the redistribution of fuel. This information is then
passed up to higher levels so that all of the control
volume models are children. This model uses reinit
statements to move the percentages among the various
control volumes.  This method is not entirely
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satisfactory because the process is not completely
represented in one submodel. We are currently
evaluating the experimental impulse handling
functionality in Dymola to rewrite the backflow
shattering model.

Thermal Warm-up Model

One of the most important features in predicting
transient A/F dynamics is good prediction of the
temperature of the liquid fuel. The liquid fuel puddle
is thin and is assumed to be in thermal equilibrium with
the engine surface. The task is therefore to make a
thermal model of the intake valve, seat, and cylinder
walls. The Modelica version of the wall wetting model
is essentially the same as the FORTRAN version [4].
The valve and valve seat are modeled by thermal
capacitances connected by thermal resistances. This
resistor-capacitor network is connected to the
combustion gases, backflow gases, fresh charge gases,
and coolant fluid via thermal convective resistances.
Twenty-six thermal capacitances are used. Four are for
the valve stem, three are for the valve seat, one is for a
thermocouple, and 18 are for the valve head. The
thermal capacitance and thermal resistance models are
the HeatCapacitance and HeatResistance
modes from the HeatFlowlD package found in the
ModelicaAdditions library. The Convection
model in the HeatFlowlD library was not suitable
because the convection coefficient is a parameter.
In our model the convection coefficient changes
throughout the simulation so we made our own
convection model with a variable convection
coefficient. When a formal heat transfer library is
available in the Modelica Standard Library, we will
migrate our models to use the standard components.

The temperature of the valve puddle is calculated as a
weighted average of the cells on the valve head. The
downstream port puddle is connected to one of the seat
cells. The upstream port puddle is connected to an
average of the coolant and the seat.

Interface with Cycle Simulation

The original FORTRAN wall wetting model was not
coupled or integrated into to a detailed engine cycle
simulation model.  Therefore simple but useful
approximations for information such as in-cylinder
pressure, burned gas temperatures, and in-cylinder and
port air velocities were used as inputs.

The Modelica version of the wall wetting model was
designed to permit integration with engine cycle
simulations of varying complexity. The simplest cycle
simulation would be to use the approximations that the
original FORTRAN model uses. The next level of
complexity would be to have a simple cycle simulation
(e.g. using a single species ideal gas model, prescribed

burn model, and no in-cylinder heat transfer effects) to
provide results for input to the wall wetting model, but
not visa versa. A more complex cycle simulation could
also be used (e.g. using a multiple species gas model
with detailed property models, a predictive burn model,
and in-cylinder heat transfer effects). Finally, the most
complex form of integration would involve the two-
way communication of results between the wall
wetting model and the cycle simulation model. In
other words, the cycle simulation would provide the
wall wetting models with the necessary temperatures,
pressures, air flow velocities, and heat transfer
coefficients while the wall wetting model would
provide the cycle simulation with the air/fuel ratio.

For our purposes we have built two versions of the wall
wetting model. This first was for model verification.
Here we used a simple cycle simulation that was
coupled one way to the wall wetting model. Then for
the camless application we chose a slightly more
complex cycle simulation model (four gas species,
thermodynamic relations by polynomial, prescribed
burn, and no in-cylinder heat transfer effects) that was
fully coupled to the wall-wetting model.

Actuator Model Development

Both simplified and detailed models of the EMVA
have been developed. The simplified model is
incorporated into the wall wetting simulation of the
camless engine, while the more detailed "stand-alone"
model is used for actuator controls development.

The actuator, shown schematically in Figure 2, is
comprised of an upper and lower electromagnet and a
moving armature which pushes on the engine poppet
valve. Compression springs of equal stiffness (k;) are
placed above and below the armature, and are pre-
loaded during assembly (by positioning the threaded
top spring housing) to center the armature between the
solenoid pole faces as shown in the left figure. During
engine start-up, the valve is pulled from the center
position to one of the pole faces corresponding to the
open or closed position of the poppet valve. During
normal engine operation, the armature and engine
valve essentially operate as a reciprocating system.
The motion during a transition from one pole face to
the other is then primarily harmonic with the transition
speed being determined by the effective armature/valve
mass (mgg) and the effective stiffness (k. =2k;) of the
upper and lower springs. The electromagnets are used
to (1) hold the valve in either the open or closed
positions position, and (2) to inject enough magnetic
energy into the armature to overcome frictional losses
during transitions.
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Middle equilibrium position

Fully closed position

Fully open position

1

| L.
Cylinder head

Moveable armature and
engine valve assembly, m,y

Figure 2: Schematic of the EMVA actuator in
middle, fully open and fully closed positions.

Simplified EMVA Model

A simplified sub-model is developed for use with the
engine cycle simulations. The simplified model
provides valve profiles to the valve port flow models
which subsequently determine the gas flow to and from
the engine cylinder. From a free-body diagram of the
effective reciprocating mass mesy, the equation of
motion during a transition can be expressed in terms of
the viscous friction damping coefficient c, the effective
spring constant ke, the upper F,,, and lower magnet
Fmag,1 forces, and the gas pressure and flow forces F,s:

Foy @

mag,l ~ 1 gas

myZ+cz+kyz=F,,, —

mag ,u

In Equation 2, z is the distance from the center position
(the upper magnet face is at z = L/2 and the lower
magnet is at z = -L/2. Lift L is the total armature
travel). The magnetic force drops off as with the
square of the armature distance from the pole face;
therefore, during most of the transition, Fagy and Fag
are small compared to the spring forces. Additionally,
the damping coefficient is very small, and for light to
moderate engine loads, the gas forces are relatively
small. A reasonable first approximation to the valve
lift x = z — L/2 is harmonic motion at a frequency of ®,
= (keﬁ/meff)” 2 For example the position for movement
from the closed position at time t, is given by:

xz%(l—cos{w,, (t —1, )})fort'to ST, 3)

and
x=L fort-t, >m/w, 4)

This simply generates a time based one-half period
harmonic transition from closed to open position. A
similar expression is used for the valve closing
transition.

Figure 3 illustrates an instance of the simplified EMVA
model within the context of the camless engine exhaust
valvetrain model. The sub-model incorporates a
rotational connector to sense engine position and a
control connector that provides opening and closing
timing signals from higher levels of the model. The
output is the harmonic lift profile which is then
connected to the exhaust port flow model.

Simplified EMVA model
3 Valve lift profile generator

exhaus_viive
Valve control connector

18/

Figure 3: Exhaust valvetrain model showing the
simplified EMVA model

Detailed EMVA Model

Modelica standard libraries for linear masses and
springs are used to model the mechanical
characteristics of the system. Additionally a model of
an E-core type electrical solenoid is developed and
used in conjunction with the electrical libraries. This
provides a plant model for evaluation of passive and
active motion control schemes.

The model, shown in Figure 4, is used to evaluate the
dynamics of the armature motion during catching near
the end of a transition. It includes the mechanical
system, a catching electromagnet, and simple voltage
supply.

The mechanical system is modeled as a reciprocating
mass that is connected to 4 spring-damper elements.
These elements are piece-wise linear with a change in
stiffness and damping coefficient defined by the
positions where the armature meets the magnet pole
face. Two of the spring-dampers represent the
mechanical stiffness of the upper and lower actuator
springs, while two other high-stiffness elements
simulate the collision between the armature and the
electromagnets. The lower stiffness spring-damper
parameters are active during mid-travel (-L/2 < z <
L/2) and are tuned to match the free oscillation motion
of the armature. The high stiffness spring-dampers
(active for |z| L/2) are then tuned to match the
experimental data to simulate the inelastic collision of
the armature with either of the magnet pole faces.
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Figure 4: Actuator model

Also shown in Figure 4 is an e-core magnet sub-model.
Electrical connectors are provided to connect the coils
to a voltage source. In addition, a translational
connector is provided to apply the magnetic force to
the spring-mass-damper system.

Figure 5: "E'"-core magnet schematic

The magnet model development begins with a
consideration of the e-core geometry and flux path,
which is shown schematically in Figure 5. By applying
Gauss' law for magnetostatics:

§BedA=0 )

where B is the magnetic field and Ampere's law:

{Hedl = [enclosed = Ni (©)

where H is the magnetic excitation, i is the current, and
N the number of coil turns, the flux can be expressed in
terms of the geometry, windings, material properties,
air gap x, and current i for both the linear (where
magnetic field B=pH) and magnetic saturation regions
of operation. In the linear region the flux is given by:

_ai o
k+x

where a and k are constants determined by the core and
armature dimensions and material properties.

Integrating A with respect to current i gives the co-
energy, which can be differentiated with respect to the
air gap to give the magnetic force Fyn,g:

2
ai

F =— 8
" 2k +x)’ ®

The flux and magnetic force will vary according to
Equation 7 and Equation 8 until either the core or
armature begins to saturate at higher current levels.
Here, an exponential form for the flux is defined which
permits the characterization of the flux and magnetic
force in terms of the B-H curve characteristic of the
materials.

With the flux characterized, the equation which
describes the voltage V, applied across the coil the can
be expressed using Kirchoff's, Faraday's and Ohm's
laws:

dh
PR ©)

v

a

where R is the coil resistance which is parameterized in
terms of the e-core dimensions and wire diameter d.

Equations for the magnetic force and the coil voltage
essentially describe the magnet sub-models. The
model interfaces with the electrical and mechanical
subsystems through translational connectors and
electrical pins.

Results and Discussion

Wall Wetting Simulations

The camless wall wetting model has been used to
model 1200 RPM 300-second engine "cold-start" tests.
The engine starts from near ambient conditions, and is
then operated at 1200 RPM. The engine load (or
torque) is periodically moved between a lower and
higher level, with the excursions being made during a
1-second interval. The load changes are accomplished
by changing the engine airflow induction rate. Both
"throttled" and "unthrottled" operating modes are
investigated, and simulation results are compared to
experimental data. In the throttled mode, the camless
engine is operated in a conventional way. The valve
timings are fixed and load changes are executed by
throttling the air flowing into the intake manifold. In
the unthrottled mode, the intake manifold air is at
atmospheric pressure. Load changes are accomplished
by changing the intake valve closing timing (IVC) to
change the length of the induction stroke.
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Figure 6 shows the results for the throttled engine
operation. Both experimental and predicted results are
shown for injected air-fuel ratio (the ratio of inducted
air mass per cycle to injected fuel mass per cycle) and
for the air-fuel ratio in the engine exhaust (inferred
from measuring exhaust species concentrations). Note
that these are in general different under transient
conditions due to the wall wetting fuel dynamics. The
model prediction for injected air/fuel ratio is
significantly higher than the experimental injected air
fuel ratio during the high load operating condition.
This difference may be attributed to modeling and
experimental error. The difference could be due to
over-prediction of the inducted air mass during high
load conditions. The exhaust air fuel ratio for the
experimental data and modeling simulation behave
similarly during low load engine operation, but during
high load operation conditions the experimental and
modeled exhaust air fuel ratio diverge. This may be
due to the differences in the injected air fuel ratios and
experimental error.

Dual intake valve operation, Throttled results for fixed valve timings
20 I ‘
19 1 —— Experimental AFF Ratio — Model AFF Ratio
18 ‘\ —— Experimental Injected AF Ratio Model Injected A/F Ratio
I |
\ !
A AN | ‘
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Bl | hed | -
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Condition Time, s

Figure 6: Throttled Operation.

Figure 7 shows the results for unthrottled engine
operation. The injected air fuel ratio for the model
closely matches the experimental data, demonstrating
that the air charge estimation is improved compared to
the throttled operating condition. = However, the
modeled exhaust air fuel ratio does not yield similar
results. Although the experimental exhaust air fuel
ratio tracks close to the desired stoichiometric
conditions, the modeled exhaust air fuel ratio is
calculated to be much richer. The model reasonably
represents the air fuel excursions during load
transitions, but most likely underestimates the quantity
of fuel lost to the crankcase. If the model calibration of
the lost fuel becomes more representative, the
simulation is expected to more closely match the
experimental results.

Dual Intake and Exhaust (EIVC) - Results for variable IVC and
Unthrottled Operation
17 T
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Figure 7: Unthrottled Operation.

These results show reasonable agreement for the
general trends in air fuelratio behavior and
demonstrate that Modelica is suitable for modeling
transient air fuel dynamics; however, they also
underscore the need for good model calibration and
experimental air charge estimation. The FORTRAN
version of the wall wetting model has a routine to
calibrate the model by adjusting several parameters.
The values of these calibrated parameters were used for
the Modelica wall wetting model. However, the results
show that the Modelica version of the model needs a
different calibration process. Once a calibrated version
of the model is available, it should be generally useful
for both hardware and control strategy development.

Actuator Simulations

The actuator model has been exercised to investigate
various design and motion control scenarios. Here we
present results that compare model predictions to
experimental data for armature catching using a simple
square-wave catching pulse.

The model flux and force relationships are tuned to e-
core and armature properties for a 200V prototype
actuator using data from [5]. Mass, spring and
damping parameters are selected to provide reasonable
agreement between the predicted and measured free
oscillation data. Experimental data are obtained by
using a bench-top experimental set-up described in
[6]. An actuator is installed on a cylinder head, and
instrumentation is provided to drive the coil and to
measure the position, velocity, current, and voltage.
Figure 8 illustrates the experiment. The actuator is
held in either the open or closed position with a low
holding current in the corresponding coil. This holding
coil current is then quenched at the time of the release
command. After a delay time t5, a square wave
catching pulse of amplitude V,,, and pulse-width t,, is
applied to the opposite coil to catch the armature at the
magnet pole face. The catching coil voltage is then
decreased to provide the lower current required to hold
the valve in position.
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Figure 8: Schematic of armature

experiment.

catching

Figure 9 shows both predicted and measured position
and velocity traces for a V,,, = 117 V, t,,, = 10 ms
catching pulse applied at t; = 1.4 ms from the armature
release point. The release spring first accelerates the
armature and valve assembly to peak velocity of about
3.7 m/s. As the armature approaches the coil seat, it
decelerates due to the catching spring force, but the
magnetic force increases to pull the armature in to the
open position. The predicted and measured contact
velocities are about 0.3 m/s and 0.5 m/s respectively,
and occur at 3.2 ms from the release point. Note that
under these conditions the armature bounces and
contacts a second time at about 0.6 m/s at around 4.5
ms.
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predicted
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0.0 1.0 2.0 3.0 4.0 5.0 6.0

Time, ms

Figure 9: Predicted and measured position and
velocity for apply voltageV,,, = 117V, delay time t,
= 1.4 ms, and pulse-width t;,, = 10 ms.
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Figure 10: Predicted and measured position and
current for apply voltage V,,, = 117V, delay time tq
= 1.4 ms, and pulse-width t,,, = 10 ms.
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Figure 11: Predicted and measured contact velocity
versus catching pulse delay time t, for apply voltage
Vapp =150 V and pulse-width t,,, = 3ms

Figure 10 shows the predicted and measured current
responses. The measured current first increases to
about 2.0 amps, and then decreases as the armature
lands due to the counter electromotive force (EMF)
induced when the armature moves toward the magnet
pole face. After bouncing, the armature moves away
from the pole face and induces a reinforcing EMF.
The current then increases, and this subsequently
increases the magnetic force to pull the armature in
with a higher contact velocity during the second
impact. After the armature lands, the current then
increases even more rapidly due to magnetic saturation
effects. The model over-predicts current until very
near the landing point. Here the model predicts a much
sharper current decay than is shown by the
measurement. The overall trends agree; however,
model refinements are being developed to improve the
current prediction.

An important issue for actuator design and control is
the poppet valve and armature contact velocities.
Valve seating velocities must be low enough so that
valvetrain durability and noise level targets are met.
Figure 11 shows the predicted contact velocities for the
pulse timing sweep experiment shown in Figure 8.
Here the applied voltage is V,,, = 150 V, the pulse
width is t,, = 3 ms, and the pulse timing delay t; is
varied. As the pulse timing delay t, is varied from 0.5
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ms to 1.7 ms, the contact velocity decreases from about
2.7 m/s to a minimum of about 0.2 m/s. The minimum
occurs when the injected energy from the magnetic
force is about equal to the frictional losses from
damping. For ty;> 1.7 ms the contact velocity begins to
increase (due to reinforcement of the coil current as the
armature motion reverses near the landing point) until
tqg = 2.0 ms. Beyond this point, the magnetic force is
not sufficient to catch the armature. Experimentally
measured contact velocities are also shown in Figure
11.  The predicted and measured trends agree
reasonably well.

Conclusion

The Modelica language proved to be useful for creating
a model for transient fuel dynamics in port fuel
injected engines. The model was easily integrated into
a cycle simulation model, and was suitable for
modeling the transient fuel dynamics in a camless
engine, as the predicted trends agreed reasonably with
measured data. Modelica was also useful for
developing camless engine valve actuator models. An
actuator model was developed by using an e-core
solenoid sub-model and a mixture of elements from the
standard translational and electrical libraries. The
model predictions for valve motion agreed reasonably
well with experimental data.
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Abstract

ObtectStab package that has been successfully ap-
plied to power system studies is a general-purpose
simulation tool developed by the Modelica language.
It takes advantages from the capability of physical
modeling of Modelica language that make ones read-
ily develop new models and use them for complex
and large cases of power system studies based on
object-oriented programming. However, in the situa-
tion that control of complex power systems is not easy
to be realized by traditional methods, genetic algo-
rithm (GA) becomes an alternative powerful method
that can be used to solve several difficult problems
without any prior or little knowledge of the systems
being solved. Proposed in this paper is an incorporat-
ing the use of GA to an ObjectStab library to enhance
the use of this library into optimization environment.
The idea has been applied to one challenging problem
of simultaneous tuning power system stabilizers in a
multimachine power system. The simulation results
show that the resulting controller obtained by a GA
can achieve good performance.

Index Terms — ObjectStab, genetic algorithms, Simu-
link interface, simultaneous tuning, power system
stabilization.

1. Introduction

Until recently, there has been widespread interest
using genetic algorithms (GA’s) to search and opti-
mize in several difficult problems. Compared to tradi-
tional search and optimization procedures, such as
calculus-based approach, GA’s are robust, conceptu-
ally simple to apply in problems where little or no
prior knowledge is available for the problem being
solved. Problems on modern power systems are more
and more difficult to be solved by using only conven-
tional techniques due to large complex networks and
nonlinear characteristic of power systems. The need
of using other alternative tools such as genetic algo-
rithms to solve such difficult problems become evi-

dent in case many conventional techniques get into
difficulties. Incorporating the use of GA and power
system simulation tools, among them such as
PSCAD/EMTDC, EMTP, EuroStag, etc, ObjectStab
[1] in Dymola [2] which is a library developed by
Modelica language [3] for power system studies is
more flexible than those in the view point of its easi-
ness to realize the phisical models and its powerful
interface with MATLAB and Simulink that can allow
ObjectStab be used with optimization methods such
as GA. This paper describes a method of how a GA
can be applied to a Modelica library named Object-
Stab. An example of simultaneous tuning of power
system stabilizers in a multimachine power system is
used to validate the effectiveness of the incorporated
use of these two features. It opens up a new idea of
the use GA and Modelica library together allowing
designers to design more sophisticated controllers.
The idea does not limit only the applications to power
systems, but also other Modelica users can adapt this
idea to their own works. The simulation tools used in
this paper are the Dymola, ObjectStab library,
MATLAB [4] and Simulink [5] and Genetic and Evo-
lutionary Algorithm Toolbox (GEATDbx) [6].

2.Genetic Algorithms

A Genetic algorithm (GA) is a biologically inspired
search algorithm pioneered by Holland [7]. The ap-
proach is based on Darwin’s survival of the fitness
hypothesis. In GA’s, candidate solutions to a problem
are analogous to individuals in a population. A popu-
lation of individuals is maintained within search space
for a GA, each representing a possible solution to a
given problem. The initial population can be a random
collection of bizarre individuals. The individuals will
interact and breed to form future generations (off-
spring). The stronger individuals will reproduce more
often than weaker individuals. Presumably, the popu-
lation will get collectively stronger as generations
pass and weaker individuals die out. Unlike other
optimization methods, GA’s do not limit by con-
straints on the form of fitness function. The fitness
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function does not need to be differentiable or con-
tinuous. This flexibility in which GA’s use a fitness
function to search for the solution makes GA’s be-
come a power tool for optimization in many difficult
problems in many fields.

GA’s work with coding of the parameters them-
selves (called string) and then use the genetic opera-
tors to evolve the solution with minimum computa-
tion. An optimal solution can be found and repre-
sented by the final winner in the competitive envi-
ronment. GA’s consist of simple three operators; se-
lection, crossover and mutation. Selection is the op-
eration in which the fittest individual of the popula-
tion in the current generation forms part of the popu-
lation to the new generation. Crossover is responsible
for providing new offspring by selecting two indi-
viduals and exchanging some parts of their structures.
Mutation is an operator which is applied for altering
the value of a random position in a string. A simple
algorithm flowchart is shown in Fig.1.

3.Combination of Modelica library and
Genetic Algorithms

In this section, we will generally describe how a
Modelica library combines with a GA. One of the
most powerful features of MEX files, including C
format S-functions is it allows ones to incorporate
existing code into a Simulink model. The key idea of
combination a Modelica library and GA is using this
feature by converting a Modelica model to a compiled
MEX-file used in Simulink as an S-function block.
Then a GA that exists in MATLAB environment will
adjust some parameters of a Modelica model accord-
ing to the fitness values. Briefly, incorporating a
Modelica library and GA can be achieved by these
following steps:

1. Build a Modelica model. The model is build up in
Dymola environment.

2. Build a Simulink model named model 1 by using a
DymolaBlock which is a new interface to Simulink
that can be found in Simulink’s library browser. This
block is shielded around an S-function MEX block
that interfaces to the C code generated by Dymola for
the Modelica model. Model 1 is constructed for serv-
ing as an interfacing block for editing and compiling
for two environments by switching the current active
window between Dymola and Simulink environment.
3. Compile to Simulink dlI file. It is possible to con-
verted a Modelica model to a compiled MEX-file

Initial &
poPuianOn [ 1101 0011 [ 1101 [ 1111 ]
New Population of chromosome
. individuals decode
generation
Crossover parents )
and Fitness
Mutation evaluation
Mates ' ObJecjuve
. function
Selection

Fig.1 Simple algorithm flowchart of GA

SimStr.dll to be used as one block in Simulink envi-
ronment. By doing this, command dymcomp is used.
4. Build a Simulink model named model 2. This
model is served as a main system for connecting with
a GA. It contains an S-function block representing a
model as in Dymola and Simulink model for calculat-
ing fitness values used in a GA. Parameters and initial
conditions are be defined or changed by passing these
variables as inputs to S-function block.
5. Build a main m-file and a function used in a GA.
Details of above procedures are summarized and
given in Fig.2. After this short summary of how a
Modelica model combines with a GA, we will con-
tinue by real building a model for simultaneous tuning
PSSs in a multimachine power system. We will show
the flexibility of using GA by using two objective
functions with the same Modelica model.

4. Problem Formulation

The objective of this problem is to tune an appro-
priate set of PSSs to damp local and inter-area modes.
This problem is not easy by using traditional analyti-
cal methods to simultaneously tune all PSSs. The
fixed structure of i™ PSS as shown in equation 1 is
used for all 4 generators. It consists of a two-stage
lead lag compensation with time constants 7; - T,
and a gain K;. We set the wash out time constant 7,
with large enough value so that it can be considered
as a constant.

PSS(s), =K,

sT,, 1+sT,; 1+sT;;
W ( 1 3] (1)

1+s7, \ 1+ T, 1+57T;
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Fig. 2 Summary of how to combine a Modelica library with a GA
where Typically, the performance of the design controller
is measured directly from the output responses vary-
L =T, = \/7, and T, =T, = 1 @) ing with time. This is a straightforward approach that
S, i \/71 can guarantee the performance of controllers under

scenarios which are predefined by the designer. Equa-
tion 3 shows the objective function used in a GA
meaning that we are trying to minimize the deviation
of generator speed for local and inter-area modes by
applying the suitable set of PSS control parameters.

We present two methods to satisfy the objective of
tuning PSS as follows,

4.1 Method 1: time domain-based performance
index
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where n is the number of generators by assuming that
generator 1 is a reference.

4.2 Method 2: eigenvalue-based performance
index

For every operating conditions under consideration,
here, it is supposed that a linearized model of power
system is obtained first. The problem of selecting the
parameters for power system stabilizers that can as-
sure minimum damping performance over the consid-
ered set of operating point is converted to a simple
optimization problem and then is solved by a GA with
an eigenvalue-based performance index. The GA ob-
jective function is derived in this following way:

A linear model of power system is extracted around
a certain operating condition. The system can be ex-
pressed in the linear state-space form as shown in the
following equations

X=Ax+ Bu

(4)

y=Cx+Du (5)
The equation expressed for the controllers is shown
in (6) where in this study, the controller K(s) is a lead-
lag type that is the same as described by the transfer
function in (1). y(s) is the measuring signal and V(s) is
the output signal from the controller which provides
additional damping by shifting under damped or un-
stable oscillation modes to the left hand side of the s-
plane.
V(s)=K(s)y(s) (6)
Combining equation 4 through 6, a closed-loop
eigenvalues of the system can be obtained. Here, let

A =a, % jB. be the i" mode of the closed-loop sys-
tem. Damping coefficient &, of the /* mode is calcu-
lated by

5 =——"2

N

If p is a number of operating conditions where each
condition contains the matrix of damping coefficient

()

O.,i=1, ... nwhere n is the number of oscillation

1

modes of the closed-loop system. The optimization

problem to be solved by a GA can be written in the
following form:
max ' = min(min(d,)), ®)

For simplicity, we will choose only one operating
condition for considering in this paper.

5. Test Power System and Scenarios

Fig.3 shows a single line diagram of a test power
system constructed by using a graphical editor of
Dymola and ObjectStab. The data of this power sys-
tem network is given in [8]. The disturbance consid-
ered in this study is a three-phase to ground fault near
Bus 7 by the following situations:

t=1s: fault is applied,

t = 1.1 s : fault is cleared by tripping one of two
parallel lines.

t=2.5s: line is reclosed.

Sre

Flle
-

lass TestPsSga (diagram)

B8] /o) o)) Al i)

Fig.3 Power system model

6. Demonstration Example

In this section, we will describe the implementation
of a GA to a Modelica library called ObjectStab by
using 2 different objective functions as described in
section 4. Considering the procedure chart in Fig.2,
we need to follow 5 steps. It should be noted that only
step 5 is different when changing the objective func-
tion of a GA. This is due to the manner in which a GA
uses the fitness function to evaluate the goodness of
solutions that provides greater flexibility of using GA
to realize many difficult problems.
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In order to follow the procedure in Fig.2, first task
is to build a power system model in Dymola. By using
the objective function in method 1, we need 3 output
variables which are the speed difference of generator
1 and 2, the speed difference of generator 1 and 3, and
the speed difference of generator 1 and 4. It should be
noted that this is because generator 1 is taken as a
reference, hence, the speed difference of generators
within the same area is represented as the local mode
and the speed difference of generator with different
area is represented as the inter-area mode.

Next, we build 3 models in Simulink. Model 1 as
shown in Fig.4 can be constructed by drag and drop a
DymolaBlock which can be found in Simulink’s li-
brary browser to a Simulink model. Model name and
its path of the Modelica model must be specified in
the DymolaBlock in order to point the location of a
created Modelica model. It is possible that users can
modify a Modelica model directly by using the editing
command in the DymolaBlock or compiling a Mode-
lica model by using compiling command. In order to
make a Modelica model useful in Simulink and a GA,
we will declare external outputs of a Modelica model.
These outputs are used for evaluating the fitness value
in a GA. The following script is an example of exter-
nal output declaration in a Modelica model.

class TestPSSga
extends ObjectStab.Examples.Kundur126.linefault;
Real wl, w2, w3, w4;
output Real w12;
output Real w13;
output Real wl4;
equation
wl =Gl.w;
w2 =QG2.w;
w3 =G3.w;
w4 = G4.w;
wl2 =wl - w2;
wl3 =wl - w3;
wld =wl - w4,
end TestPSSga

After compiling the model, the declared outputs
will appear in the DymolaBlock. These outputs can be
connected with other Simulink blocks. Now, we can
covert a Modelica model to a compiled MEX S-
function file by using the following MATLAB com-
mands

dymcomp;
[p, x0, pnames, xOnames, inputnames, outputnames] = loaddsin;

The first command line is used to generate a com-
piled MEX S-function file (dll file). The second
command line is used to load values such as parame-
ters, initial conditions and their names from dsin.txt

which are necessary for input parameters to S-
function block. GA will change parameters p every
iterations according to the decoded chromosome.

fle Edt Yiew Simulation

IoleEa& t=a ==y = =

Format, Tooks

Edit by Komsan Hongesombut
Osaka University, Graduate School of Engineering,
Tsujilanoratory, 2-1 Yamada-oka, Suita, Osaka 565-0871, JAPAN
History: 21 Dec 2001 - add micro-GA

0% fodeiss 7

Fig.4 Model 1 in Simulink
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Simstr

5 Function
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Fig.5 Model 2 in Simulink

Elle mak Tools

Ioem&|izdaxr = =&

Edit by Komsan Hongesormbut
Osaka University, Graduate School of Engineering,
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Fig.6 Model 3 in Simulink
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Fig.7 Comparison of two objective function used by a GA
After we get a compiled MEX S-function file

which has a default name SimStr.dll, as stated earlier,
we need to calculate j|Ao)|2t~dt for each generator

speed deviation. Model 2 shown in Fig.5 is served for
this function where model 3 shown in Fig.6 is a sub-
system for calculation j|Ao) | ’t.dt of each speed sig-
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nal. The summation of 3 speed signals become the
objective function of a GA by using the method 1.
Particularly useful in conjunction with a GA is the
way to write the objective function. It is worthwhile
to discuss the construction of the objective function.
In Fig.7, it shows the comparison of two objective
functions used in this study. The meaning behind each
style is

Method 1:

1. Decode the chromosome of a GA.

2. Find the index of parameters which correspond to
the tuning parameters in a Modelica model. The syn-
tax of this command is

pindex = tnindex(pnames, ‘parameter name’)
where pnames is obtained from loaddsin command

3. Replace current parameters with new parameters
obtained by a GA.

4. Run the Simulink model with sim command. Simu-
link will run the model 2 and save the index calcula-
tion of each signal when the simulation is complete.

5. Calculate the fitness value by summing 3 signals
which each signal is calculated by subsystem model 3.

Method 2:

1. Decode the chromosome of a GA.

2. Find the index of parameters which correspond to
the tuning parameters in a Modelica model.

3. Replace current parameters with new parameters
obtained by a GA.

4. Run the Simulink with sim command in order to
find good initial condition x0.

5. When the initial values are obtained, we can then
proceed to use the MATLAB linmod function to de-
termine the [A, B, C, D] matrices of the small-signal
model of the nonlinear system about the chosen
steady-state operating point. The syntax of the lineari-
zation command is as follows:

[A, B, C, D] = linmod(‘model name’, x0)

It should be noted that when calculating the eigenval-
ues, it is not necessary to have an input, but there
should be at least one output of a Modelica model.

6. Calculate the fitness value by (8).

7. Simulation Results

A GA is applied to solve the problem of simultane-
ous tuning by using 2 different objective functions. In
this study, routines from GEATbx were used with

bounds for PSS parameters shown in Table 1. The
implementation of a GA in this work used real encod-
ing chromosome, a population size 30, maximum
generation 50, a uniform crossover rate of 0.9 and a
uniform mutation rate of 0.01. The approach also
adopted an elitist strategy that copied the best string
found in the current generation to the next generation.
Selection was performed by using the tournament
selection with tournament size of 2. After executing a
GA, the final result as shown in Table 2 were ob-
tained. Fig.8 and 9 show the screen outputs of a GA
by using the objective function by method 1 and
method 2 respectively.

Table 1 Bounds for PSS parameters

PSS parameter value
Kinax 20
Yinin 0.1
Yonax 10
8min 1
Ormax 10

Table 2 Final result obtained by a GA

Method 1 K T,=T; T,=T,
PSS1 20.000 0.331 0.139
PSS2 20.000 0.107 0.291
PSS3 17.791 0.127 0.153
PSS4 18.319 0.201 0.055

Method 2 K T,=T; T,=T,
PSS1 19.175 1.583 0.632
PSS2 20.000 0.161 0.184
PSS3 14.209 0.198 0.239
PSS4 7.513 0.051 0.218

To demonstrate the effectiveness of the resulting
controller obtained by using 2 objective functions,
nonlinear simulation and plot of close-loop ei-
genvlaues were performed. In nonlinear simulations
of Fig.10 to 12, the responses of generator speed de-
viation for local and inter-area modes confirm the
effectiveness of the results obtained by a GA. It
should be noted that the method 1 gives better result
than the method 2 when using time domain-based
performance index. The system is well damped and is
stabilized in less than 5 seconds.

Fig. 13 to 14 show the plot of dominant eigenval-
ues of the closed-loop system. It can be observed that
using PSS parameters obtained by both methods, the
system is sufficiently damped with all modes of the
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Fig.9 Screen output from a GA by using the objective function in method 2

system having the minimum damping greater 5%
which is a typical requirement in PSS tuning. It is also
found that the method 2 gives better result than the
method 1 in case of using eigenvalue-based perform-
ance index.

It is become clear that using different GA objective
function, the final result may be quite different. In
addition, GA is a time consuming search procedure.
Thus, GA is not generally used for problems easily
optimized.
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Fig.10 Speed deviation of generator 1 and 2
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Fig.14 Closed-loop eigenvalues obtained by
method 2

8. Conclusions

This paper deals with the incorporated use of a
Modelica library called ObjectStab and a GA and
application of a GA for simultaneous tuning of power
system stabilizers in a multimahcine power system.
The power system modeling can be realized by using
ObjectStab where the behavior of dynamic systems
can be expressed by using advance features of Mode-
lica language for detailed physical modeling. We also
showed how to link a GA and a Modelica model by
using the Simulink interface of the Dymola. We
showed the flexibility of optimization by a GA with
two different objective functions without modifying
the original Modelica model. Given a suitable objec-
tive function, the final solution will satisfy the re-
quired controller performance. It is important to point
that the idea does not limit only the applications to
power systems as shown in an example of this paper,
but also other Modelica users can adapt this idea to
their own works.
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ABSTRACT

The “translation” of the SPICE -capabilities into Modelica language would allow
combining the best of each tool: the SPICE expertise at circuit analysis and the
Modelica/Dymola expertise at object-oriented modelling and simulation of hybrid
systems. This contribution intends to be a first step to achieve this goal. A reduced group
of SPICE device models are translated into Modelica language for OP, AC and TRAN
analyses. It includes passive components (resistor and capacitor), independent voltage and
current sources, and the SPICE2 levell n-channel MOSFET.

1. INTRODUCTION

The simulator SPICE is an essential computer-aid for

circuit design. Originally, SPICE2 was conceived as

a stand-alone, general purpose, analog circuit

simulator. However, since the development of

SPICE2 at the University of California in 1975,

many commercial and freeware SPICE-compatible

simulators have been developed for a variety of

systems (UNIX, PC, etc). Most of these tools

e run in connection with other simulation
programs used in the circuit design flow,

e support analog, digital and mixed analog/digital
simulation, and

e include improved device models, additional
analyses and device model libraries.

They provide some support to the multi-domain
system simulation facilitating the analog behavioral
modelling (ABM). Behavioral parts allow defining a
circuit segment as a mathematical expression or a

lookup table. PSpice (OrCAD, 1999) is a
commercial, PC-version, SPICE-compatible
simulator. PSpice ABM library includes math

functions, limiters, Chebyshev filters, integrators,
differentiators, etc. However, the SPICE-based
simulators impose a hard restriction to ABM: the
function continuity (OrCAD, 1999; Kielkowski,
1998).

Device equations built into SPICE are continuous.
For instance, voltage- or current-controlled switches
are not ideal: they have a finite (very small) “on”
resistance and (very large) “off” resistance. The
switch resistance changes smoothly between the two

as its control voltage or current changes. Equally, the
functions available for ABM are also continuous (for
instance, the int function can not be implemented).
The reason behind this requirement is the heavy use
that SPICE numerical algorithms make of continuity
(OrCAD, 1999; Kielkowski, 1998). In consequence,
SPICE-based simulators are not suited for the
simulation of hybrid models (i.e., combined
continuous/discrete models) due to its inability to
handle discrete events.

On the contrary, general-purpose modelling
languages are intended for the simulation of multi-
domain hybrid models. To this respect, the object-
oriented modelling language Modelica (Modelica,
2000) is intended to serve as a standard format so
that models arising in different domains can be
exchanged between tools and wusers (Astrom,
Elmqvist and Mattsson, 1998). The “translation” of
the SPICE capabilities (device models and analysis
modes) into Modelica language is one of the
Modelica library improvements that have been
suggested (Clauss et al., 2000). It would allow
combining the best of each tool: the SPICE expertise
at circuit analysis and the Modelica/Dymola
(Elmgqvist et al., 2000) expertise at object-oriented
modelling and simulation of hybrid systems. This
contribution intends to be a first step to achieve this
goal.

An important feature of SPICE device models is their
variable-structure nature. A model is said to have a
variable structure when its mathematical description
changes during the simulation run. A different device
model is formulated for each analysis mode:

The Modelica Association

99

Modelica 2002, March 18-19, 2002



DC, AC Small-Signal and Transient Analysis of Level 1 N-Channel MOSFET ...

e static model (DC analysis),

e AC small-signal model (AC analysis), and

e large-signal model (transient analysis).

The transitions among these three device

formulations are carried out in simulation time. A

DC analysis (Massobrio and Antognetti, 1993)

e can be performed prior to a transient analysis to
determine the transient initial conditions, and

e it is automatically performed prior to an AC
small-signal analysis to determine the linearized,
small-signal models for the non-linear devices.

In addition, some DC analysis algorithms require the

combined use of the three device formulations.

In this contribution three analysis modes are

considered:

e Dbias point (OP),

e AC sweep (AC), and

e transient analysis (TRAN),

for three analog device types:

e Passive devices: linear resistor and capacitor.

e [Independent voltage and current sources.

e Semiconductor device: SPICE2 levell n-channel
MOSFET. It is composed of linear resistors,
voltage-dependent capacitors and voltage-
controlled current sources.

In addition, IC1 and IC2 pseudo-components are

modelled for setting initial conditions.

Model structuring into libraries and the interaction
between models are discussed in Section 2. The way
of using the model libraries to analyse the user-
defined circuits is also outlined. Initial condition
setting is described Section 3. Two procedures are
supported: IC symbols and the capacitor IC property.
The translation into Modelica language of the
passive device and source models is addressed in
Section 4. Device models have a variable structure
and signals are defined to control the model structure
transitions. Each analysis mode consists on an
ordered sequence of elementary operations implying
changes in the device model structure. Analysis
models set the control signals in order to accomplish
the required device-model structure changes.
Analysis models are discussed in Section 5. Bias
point calculation is the most problematic step from
the numerical point of view. Four alternative bias
point calculation algorithms are implemented.
Finally, levell NMOS model is outlined in Section 6.

For the sake of simplicity, neither parameter
dependence with temperature nor TEMP analysis
have been considered in the present library release.
Temperature is considered a constant variable
intervening in some device constitutive relations (for
instance, the MOSFET source-substrate pn-junction
model).

2. ARCHITECTURE

A two-level architecture is proposed (see Fig. 1):

e Upper (controller) level is composed of the
analysis models.

e Lower (controlled) level is composed of the
device models.

e Unidirectional control signals (arrow in Fig. 1)
and global variables transmit the information
from analysis models to device models. In
addition, global parameters sets properties
common to both analysis and device models.

Controller level: analysis models

ANALYSES package contains the OP, TRAN and
AC models. Bias point calculation is a part of OP and
AC analyses and it is an option of TRAN analysis.
Therefore, the bias point calculation algorithms are
programmed in a separate partial model, called
BiasPointCalculation, inherited by the analysis
models (see Fig. 1). Control signals (see Table 1) and
global variables (see Table 2) are evaluated in the
analysis models.

Control signal T W R
Ctrl AC B * S
Ctrl CBREAK resetTran B BPC C
Ctrl_CBREAK_Tran2DC B * C
Ctrl_CBREAK_Tran2IC B * C
Ctrl DC B BPC S
Ctrl IC clampDC B BPC C, IC
Ctrl IC clampTran B BPC C, IC
Ctrl IC mode I BPC C,IC
Ctrl IS inhibit B BPC
Ctrl IS TranOP B BPC
Ctrl log AC B * S, R
Ctrl log DC B BPC S, R
Ctrl_OP_mode 1 BPC S
Ctrl OP value I * S
Ctrl_ RBREAK Tran2DC B BPC R
Ctrl Tran B * S

Table 1. Control signals.
T: Variable type. (B): Boolean. (I): Integer (0,1)
W: Control signal written during the...
(BPC): bias point calculation. (¥): other steps of the analyses.
R: Control signal read by ...
(S): source. (C): capacitor. (R): resistor. (IC):IC symbols

scaleGMIN | Scale factor of the “GMIN stepping”
algorithm for bias point calculation.

Freq AC small-signal frequency.

Temp Analysis temperature.

Table 2. Global variables.

Controlled level: device models

Device models are grouped in three packages:

e BREAKOUT,

e SOURCE, and

e SPECIAL.

The models of BREAKOUT and SOURCE packages
allow the composition of user-defined circuits, while
the SPECIAL’s provide one way to specify the
simulation initial conditions. In addition, a fourth
package containing the device model interfaces has
been defined: INTERFACE.
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package ANALYSES (analyses.mo)

r—-—— " " T /= I
artial model BiasPointCalculation
I P I
extends INIT.Analysis;
I replaceable model Circuit = NULL; I
| extends Circuit; |
I I
I model OP model Tran model AC |
I extends BiasPointCalculation; extends BiasPointCalculation; extends BiasPointCalculation; I
L e e e d
(init.mo)
(functions.mo) typ;;ékage INIT
rfunction 1 / r —————————
| | 2 - . |
I partial model Analysis
e —— ———— | inner... |
! |
I partial model Part |
I outer... I
' |
v _________
A —
— N

__________ 1 .
|r ‘model Ground I (source.mo) PﬁkEeE’IEIA_L (_speialiqo)_ _
extends INTERFACE... | I
| package WAVEFORMS model IC1 I
| lir—————— 1 I extends INTERFACE... [
model Rbreak P — — — 1 [ extends INIT.Part; |
| | extends INTERFACE... | | package SOURCE | |
| extends INIT.Part;, | Vi 27778 77 """ del IC2
[ Ll | I moexiends INTERFACE... |
model Cbreak | | I extends INIT.Part; |
I'[ " extends INTERFACE | I [ I
A il —— | (o ———————— [
: extends INIT.Part; | I :
| [modervosT e
extends INTERFACE... |
: extends INIT.Part; I
| I

Figure 1. Two-level architecture.

Initialisation file

The initialisation file, init.mo, contains:
e Type definitions. Types conform to the Modelica
Slunits package. However, they are redefined for

the sake of conciseness when used. For instance:
type Voltage =
Modelica.SIunits.Voltage;

e INIT package. The control signals, the global
variables and the global parameters are defined
in the INIT package. It contains two partial
models (see Fig. 1):

e Analysis, inherited by the analysis models.

e Part, inherited by the device models.

The same set of control signals, variables and
parameters is defined in both partial models:
Analysis model variables are inner ones, while
Part variables are outer ones.

Global parameters

Two global parameters have been defined (see Table
3). TME_scaLk is used for setting the length of the
source-ramping processes of some bias point
calculation algorithms. In addition, it is used for
establishing the time elapsed between consecutive
control signal transitions (conceptually similar to the
system clock period). To this end, the integer
parameter TIME sroT is defined in the analysis
models. It represents a percentage (1 to 100). The

time between consecutive events, cLock, is defined

as follows:
CLOCK = TIME SLOT * TIME SCALE / 100
TIME SCALE It is intended for providing an (rough)
approximate value of the circuit time-
constant.
LOG_RESULTS |[t determines the amount of

information to be logged during the
bias point calculation and the AC
small-signal analysis.

Table 3. Global parameters

TIME SCALE parameter plays another important role
(not implemented in the current release of the
libraries): redefine the units of the time variable in
order to allow the adequate numerical solution of the
system. Circuit simulation for microelectronics
applications requires very small time values in
comparison with the by-default time-related DAE-
solver parameters. For this reason, it is best to
include a scale factor between the circuit time and
the DAE-solver time (i.e., the time variable).

Similar considerations will be made when discussing
the pn-junction model. The use of the international
system of units for the current is inadequate, because
it leads to numerical problems. Large differences in
the order of magnitude of the variables (for instance,
the current and the voltage) makes impossible to set
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adequate values for the numerical algorithm
tolerances, the Dymola eveps parameter for event
detection (Elmqvist, Cellier and Otter, 1993), etc.
This fact is taken into account by re-formulating the
model constitutive relations. In order to keep the
compatibility with Modelica standard libraries, the
international system of units is used for all the model
terminal variables.

Performing circuit analyses

Two pieces of information are needed to perform a
circuit analysis: the analysis model and the circuit
model. The analysis models inherit (as a replaceable
model, called Circuif) the circuit model (see
BiasPointCalculation in Fig 1). The analysis model
instantiations have to contain the redeclaration of the
Circuit model. Consider the following example:

(File: my_circuit.mo)
model my circuit

end my circuit;

model circuitAnalysis OP =
ANALYSES.OP ( redeclare model Circuit =
my_circuit);

model circuitAnalysis Tran =
ANALYSES.Tran ( redeclare model Circuit =
my_circuit);

model circuitAnalysis AC =
ANALYSES.AC ( redeclare model Circuit =
my_ circuit);

The analysis to perform (only one per run) is selected
in the script file. For instance, AC analysis:

(File: my_circuit.mos)

openModel ("pspice.mo") ;

openModel ("my_ circuit.mo") ;

checkModel (problem="circuitAnalysis_AC") ;

translateModel (problem=
"circuitAnalysis AC");

The file pspice.mo:
e imports the library files (see Table 4), and

defines the graphic windows containing the
model icons.

File Package
analyses.mo ANALYSES
breakout.mo BREAKOUT
functions.mo
init.mo INIT
interface.mo INTERFACE
pspice.mo PSPICE
source.mo WAVEFORMS

SOURCE
special.mo SPECIAL

Table 4. Complete list of files and packages.

3. SETTING INITIAL CONDITIONS

Adopting the PSpice methodology (OrCAD, 1999),
two equivalent procedures are provided to specify
the analysis initial conditions:

e Setpoint pseudo-components: IC1 and IC2 (see
Fig. 1, SPECIAL package). IC1 is a one-pin
symbol that allows setting the initial voltage on a
node. IC2 is a two-pin symbol that allows setting
the initial voltage between two nodes.

e The IC property of capacitors (inductor model is
not included in this library release).

IC property allows associating the initial condition
with a device, while the IC symbols allow the
association to be with a node or a node pair. Note
that these ways of specifying the simulation initial
condition substitute the Dymola standard procedures
to set the initial value of the state variables.

Two operations require the static model solution:
bias point calculation (during OP and AC), and
transient initial condition calculation.

When the transient initial condition calculation is
skipped (a Boolean parameter controls this option),
the devices with the IC property defined start with
the specified value. However, all other such devices
have an initial state of zero. IC symbols are ignored.

IC symbols clamp the voltage for the entire bias
point calculation. PSpice attaches a voltage source
with a 0.0002 ohm series resistance (r_Ers) at each
net to which an IC symbol is connected. This is the
set-up of the IC-symbol Modelica model. The model
of the capacitor IC-property depends on whether the
bias point is calculated or the calculation is skipped:
During the bias point calculation, the capacitor
IC property is implemented using an IC2 symbol
in parallel with the capacitor. The capacitor
model contains this voltage-clamp circuit.

When the initial transient solution is skipped, the
capacitor voltage is initialised to its IC value
using a “when clause”.

Control signals have been defined to set the state
(open/close) of the IC symbols switches, initialise the
capacitor voltage drop, etc.

4. DEVICE MODELS

Resistor, capacitor and independent source models
are discussed.

4.1. Interface

Device models are composed of three formulations:
static, AC small-signal and large-signal. Each model
formulation is described by its own set of equations
and variables. Pin model is conceived to allow the
simultaneous connection of the three formulation
terminal variables. AC small-signal currents and
voltages (complex numbers) are represented in
rectangular coordinates (i.e., real and imaginary).
The current is positive when flows into the pin.

The interface of the two-pin devices is composed of
two Pin connectors. PSpice sign criterion for current
is adopted: positive current flows from the (+) node
through the device to the (-) node.

(File: interface.mo)

connector Pin
Voltage
Voltage
Voltage
Voltage
flow Current
flow Current
flow Current
flow Current

vDC
vTran
VvAC_Re
VAC_Im
ibcC
iTran
iAC_Re
iAC_Im

"Static model”;
"Large-signal model";
"AC small-signal";
"AC small-signal”;
"Static model”;
"Large signal”;

"AC small-signal";
"AC small-signal";

end Pin;
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partial model TwoPin
Pin P "(+)
Pin n "(-)

node";
node";

4.2. Linear resistor

Resistor static model is shown in Fig 2. The purpose
of the IC1-like circuits (switches, R_Eps resistors and
voltage sources) is clamping the DC-formulation
voltage at the pins. The bias point calculation
algorithm “dynamic model ramping” requires the
following operation: clamping the DC-formulation
voltage to the instantaneous value of the large-signal
formulation. The ctrl RBREAK Tran2DC signal
controls this information transfer between
formulations. When ctrl RBREAK Tran2DC becomes
true:

e The source voltages (vDcclampp and vDCclampN)
are set to the instantaneous value of the transient
voltage at the correspondent pin. Then source
voltages are held constant.

e The switches are closed. They remain closed
only while the signal is true.

The large-signal and AC small-signal models do not

include these IC1-like circuits.

R

n(-)

p(H)

ctrl_RBREAK_Tran2DC >

R_EPS R_EPS

I

I

vDCclampP vDCclampN

When Then

ctrl RBREAK Tran2DC vDCclampP

vDCclampN

p.vTran;
n.vTran;

Figure 2. Resistor static model.

4.3. Capacitor

Linear and voltage-dependent capacitors have to be
modelled. The partial model Capacitor describes all
the capacitor behavior except its large-signal and AC
small-signal capacitance. Cbreak model (linear
capacitor) and MOSI capacitors extend Capacitor.

Capacitor static-formulation is shown in Fig. 3. The
implementation of the IC property requires the IC2-
like circuit (switch, rR_EPs resistor and vclampDc
source). Large-signal formulation is shown in Fig. 4.
IC2-like circuit is also included because the
“dynamic model ramping” algorithm uses the large-
signal formulation during the bias point calculation.
The Boolean signals

® ctrl IC_clampDC, and

® ctrl IC clampTran.

controls the static and large-signal model switches
respectively.

The capacitor parameter 1c ENABLED enables or
disables the IC property. It allows distinguishing
between the cases when IC is intentionally set to zero
and those cases when the IC property is not enabled
(and its by-default value is also zero).

The signal ctrl 1c mode controls vclamppc and
vClampTran voltages. Some bias point calculation
algorithms need the independent sources ramping
from zero up to their nominal initial values. When
implementing these algorithms, the voltage clamping
sources of the IC symbols and the capacitor IC
property need also be ramped from zero to their
respective IC values. Two cases are distinguished:

e ctrl IC mode==0, the clamping voltage
(vClamppC vClampTran) is constant and
equal to the IC value.

e ctrl IC mode==1, the clamping voltage
ramped from zero up to its IC value.

or
is
In addition, control signals trigger instantaneous

changes in the capacitor large-signal voltage drop
(see Fig. 4).

p()
+ ctrl_IC_clampDC
4 and IC_ENABLED
vDC
R_EPS
- | vClampDC
ne) ctrl_IC_mode

Figure 3. Capacitor static model.

p() —
+ ctrl_IC_clampTran
c 4 and IC_ENABLED
vIran ==
R_EPS
- vClampTran
T 4
n(-)
ctrl_IC_mode
‘When then

ctrl CBREAK Tran2IC
and IC_ENABLED

reinit (vTran, IC);

ctrl CBREAK Tran2DC reinit (vTran, vDC) ;

ctrl CBREAK resetTran |reinit (vTran, 0);

Figure 4. Capacitor large-signal model.

4.4. Independent sources

There are a lot of similarities between the models of
the voltage and the current independent sources:

e the interface,

e the DC and transient analysis signals, etc.

The elements in common are defined in the partial
model Stimulus (SOURCE package) and the source
models (VSource and ISource, see Fig. 1) inherit it.

Source model parameters allow defining the DC and
AC characteristics of the source:

e DC analysis: bc_VALUE.

e AC analysis: Ac_MAG and AC_PHASE.
Time-dependent waveforms used in the transient
analyses are defined in the WAVEFORMS package
(see Fig. 1): EXP, PULSE and PWL. PSpice standard
has been adopted for waveform parameter names.
The Stimulus model inherits the waveform model as
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a replaceable model. Therefore, the waveform model
can be declared when instantiating the source model
(no waveform is selected by default). Some examples
are provided in Table 5.

DC and AC specifications:
SOURCE.VSource V1 (
DC_VALUE=3, AC MAG=10, AC PHASE=45 );

EXP waveform:
SOURCE.VSource V1 (
DC_VALUE=3, AC_MAG=10,
redeclare model
TransientSpecification =
WAVEFORMS.EXP( S1=1,S2=2,TD1=1,TC1l=1,
TD2=3,TC2=1 )) ;

AC_PHASE=45,

PULSE waveform:
SOURCE.VSource V1 (
DC_VALUE=3, AC_MAG=10,
redeclare model
TransientSpecification =

WAVEFORMS . PULSE ( S1=1,S2=2, TD=1,TR=1,
PW=3,TF=1, PER=8 ));
PWL waveform:
SOURCE.VSource V1 (
DC_VALUE=3, AC_MAG=10, AC_PHASE=30,

redeclare model

TransientSpecification =

WAVEFORMS . PWL (
signalCorners {1, 2, 4, 8, 16 },
timeCorners { o, 1, 2,3, 41}));

Table 5. Examples of source instantiations.

DC analysis

The control signal ctrl pc enables or disables the
DC model:

e While ctr1 pc==false, the DC value of all the
independent sources of the circuit is zero.

While ctrl pc==true, the DC value of the
sources is determined by the integer parameters:
L4 ctrl_OP_mode,and

L4 ctrl OP_value.

In order to set the source value when calculating the
initial transient condition, a parameter is associated
to each waveform model: TrRans 1niTIAL. This
parameter coincides with the waveform initial value.

The parameter ctrl op value determines the source
value during the static model solution:

e ctrl OP_value==0: source value is DC_VALUE.

® ctrl OP_value==1:value is TRANS INITIAL.

The parameter ctrl oP _mode determines the mode

of reaching the previous value:

e ctrl OP_mode==0: the source is hold constant to
the value.

e ctrl oP_mode==1: the source value is increased
linearly from zero with a slope equal to the value
divided by TIME_SCALE.

The “dynamic model ramping” algorithm requires

the cancellation of the independent sources. The

control signal ctrl IS inhibit allows this

operation. While it is true:

e voltage independent sources are substituted by
opens (current=0), and

Transient analysis

The control signal ctrl Tran determines:

e whether the transient analysis is enabled, and the
source signal is calculated of its associated
W@V@ﬂnin(ctrl_Tran::trueL

e or the static bias point calculation is enabled
(ctrl Tran==false). The algorithm “dynamic
model ramping” requires the circuit large-signal
model simulation in order to calculate a “good”
initial value for static model iteration.

While ctrl Tran--false, the source value

determined by the parameter ctrl IS Tranop:

e While ctrl 1S Tranop==false, the value is
Zero.

e While ctrl 1s Tranop-=true, the value
depends on the parameters ctrl op mode, and
ctrl op_value. The response associated to these
parameters is the same than the previously
discussed for the static formulation.

is

AC small-signal analysis

While the control signal ctrl ac is true, the AC
small-signal value of the source is set according to
the source parameters Ac mMac and AC PHASE.
Otherwise, the value is zero.

Model of the disabled formulations

It is important to notice that while a model
formulation is not enabled, the correspondent values
of the independent sources are zero. In this situation,
the circuit node voltages are trivially calculated and
the simulation computational effort is not
unnecessarily increased. The control signals that
enable each of the three formulations are:

® ctrl DC,

o ctrl_Tran,and

® ctrl AC.

Total power dissipation

The bias point calculation includes the evaluation of
the total power dissipation. It is calculated adding the
contribution of all the independent voltage sources:

Wpe = ZVDC (~ipc)

all indep.
V sources

The calculation is implemented thanks to the
Modelica capability of describing “physical fields”
(see Table 6). The powerDisipation connector is
defined. The model of the voltage source contains:

e an instantiation of this connector,

e the declaration of an outer connector of this type,
e the connection between them.

The “environment” (inner) connector is defined in
the BiasPointCalculation model.

4.5. Log of analysis results
The analysis results are logged to the dslog.txt file

e current independent sources by  shorts using the Dymola’s LogVariable function. Two
(voltage=0). parameters control this information log:
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e 10c RESULTS (global parameter). It allows

specifying the required detail level at logging
results (see Table 7).

HIDDEN coMPONENT. This  device-dependent
parameter classifies the circuit devices into two
types: those whose variables have to be logged
always (HIDDEN COMPONENT==false), and those
whose variables have to be logged only in
special cases (HIDDEN COMPONENT==true).

The complex AC small-signal voltages and currents
are logged in Cartesian and polar coordinates. In
addition, the polar magnitude is also expressed in
decibels (defined as 20log10( )).

(File: interface.mo)
connector PowerDisipation
flow Power disipatedPower;

(File: source.mo)
model VSource

outer INTERFACE.PowerDisipation
TotalPowerDisipation;
INTERFACE.PowerDisipation powerDisipation;

equation
when ctrl log DC then
powerDisipation.disipatedPower =
vDC* (-1iDC) ;
end when;
connect ( powerDisipation,
TotalPowerDisipation ) ;

(File: analyses.mo)
partial model BiasPointCalculation
inner INTERFACE.PowerDisipation
TotalPowerDisipation;

Table 6. Total power dissipation calculation.

PSpice first tries to solve the static model of the
circuit using the Newton-Raphson algorithm. If a
solution is not found and “GMIN stepping” is
enabled (using .OPTION STEPGMIN) then GMIN
algorithm is applied. If it also fails or it is not enabled
then “static model ramping” is applied. In addition to
these three algorithms, a fourth one is programmed in
the BiasPointCalculation model: the ‘“dynamic
model ramping” algorithm, proposed in (Cellier,
1991). The sonveE sTaTic parameter determines
which of the four algorithms to use.

Two control signals, internal to the analysis models,
are defined to synchronize the bias point calculation
with other analysis operations:

. Its transition from false to true
indicates that the static-model solution must
start.

biasPointCalculated. When the static-model
solution is just finished, it becomes true.

The BiasPointCalculation model reads the value of
biasPoint signal and writes biasPointCalculated.

biasPoint.

Next, the four algorithms are briefly discussed. The
control signal transitions required for algorithm
completion are shown, but for the sake of clarity,
their cause-effect relationships are omitted. Two
additional comments:

e ctrl op value signal is not written by the bias
point calculation algorithms.

Control signals evaluated at bias point
calculation (see Table 1) and hold to false during
the whole algorithm, are omitted.

Static model iteration (soLvE_sSTATIC:=0)

The solution of the static problem is left in hands of
the modelling language. PSpice has two symbols to

HIDDEN COMPONENT provide an initial guess for Newton-Raphson
False true algorithm: NODESET1 and NODESET2 (OrCAD,
Voltage at resistor pins 0,1,2 2 1999). These symbols have not been translated into
Current through 0,1,2 2 Modelica language because they do not represent any
independent voltage sources advantage compared to Dymola Initial Calculation
Total power dissipation 0,1,2 2 methods (Elmgqvist et al., 2001). The Modelica
Voltage drop at resistors 1,2 2 implementation of the algorithm is shown in Fig. 5.
Current through resistors 1,2 2
Power dissipation of each 1,2 2 CLOCK
independent voltage source o >
Table 7. LOG_RESULTS values producing the variable biasPoint
log as a function of HIDDEN COMPONENT value.
ctrl_DC J
5. ANALYSES
ctrl_log_DC

PSpice OP, AC and TRAN analyses are translated
into Modelica language. Note that analysis models
force the simulation end when they have completed
their operations (ferminate function is used). Large
simulation times should be selected in the Dymola
program window to avoid interfering with analysis
execution.

5.1. Bias point calculation

PSpice provides three alternative algorithms for
solving the circuit static model (OrCAD, 1999):

e static model iteration,

static model ramping, and

GMIN stepping.

biasPointCalculated

RREE

Figure 5. Static model iteration algorithm.

Static model ramping (SOLVE_STATIC:=1)

PSpice cuts back the power supplies to almost zero
(0.001%) so that all non-linearities are turned off.
When the circuit is linear, a solution can be found
(very near zero, of course). The initial condition of
this first step is zero for all voltages. Then, PSpice
works its way back up to 100% power supplies using
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a variable step size (OrCAD, 1999). The process
relies heavily on the equation continuity with respect
to the power supplies.

This algorithm is translated into Modelica language
ramping the static-formulation value of the
independent sources from zero up to their target
values. The clamping voltages of the IC symbols and
the capacitor IC property are also adequately ramped.
The value of the parameter TIME scarLe determines
the length of the ramping. The algorithm is
implemented by means of the signal transitions
shown in Fig. 6.

TIME_SCALE CLOCK
yva
biasPoint 4
yva
ctrl_DC 7/
i
ctrl_OP_mode 77
ctrl_log_DC
yva
7z
ctrl_IC_clampDC 77
yva
ctrl_IC_mode 77
biasPointCalculated Y
/77

Figure 6. Static model ramping algorithm.

GMIN stepping (SOLVE_STATIC:=2)

GMIN stepping attempts to find a solution for the
static model (with power supplies at 100%) by
starting with a large value of GMIN, initially 1.0e10
times the nominal value. If a solution is found at this
setting, PSpice reduces GMIN by a factor of 10 and
tries again. This continues until either GMIN is back
to the nominal value, or a repeating cycle fails to
converge. This algorithm makes heavy use of
equation continuity with respect to GMIN model
parameters. The Modelica implementation of this
algorithm is shown in Fig. 7.

CLOCK
<4 yva
. . /77
biasPoint
yva
/77
ctrl_DC
10°
— 110 8
\_\ 10
\_‘ 107
1
scaleGMIN 10 10°
11 CLOCK
ctrl_log_DC Y
‘7z
/77
ctrl_IC_clampD!
biasPointCalculated yy
/77

Figure 7. GMIN stepping algorithm.

Dynamic model ramping (SOLVE_STATIC:=3)

The initial condition to iterate the static model is
obtained by simulating the large-signal model
(Cellier, 1991). A transient analysis is performed: all
sources are ramped up from zero to the desired initial
value for the simulation and this value is held for
some time to allow the circuit to stabilise. Then the
large-signal formulation voltages are transferred to
the static model (using ctrl RBREAK Tran2DC and
ctrl Is inhibit). This static-circuit setting is held
for a clock cycle. Then, the power supplies are
connected to the circuit, the resistor voltage-
clamping circuits are disconnected, and the static
model is solved. The Modelica implementation of the
algorithm is shown in Fig. 8.

TIME_SCALE TIME_SCALE CLOCK

yva i
biasPoint 44 4
7777
ctrl_IS_TranOP
77
ctrl_OP_mode )y
/77
ctrl_IS_inhibit Yy Yy
/77 /77
ctrl_ RBREAK_Tran2DC ) .
/77 /77
ctrl_DC Y Y
/77 /77
ctrl_log_DC Y Y
/77 /77
ctrl_CBREAK_]esetTra/n// , » // ,
/L 7/
/77 /77
ctrl_IC_clampTqan
7a
ctrl_IC_mode )y
/77
ctrl_IC_clampDC Y .
/77 /77
biasPointCalculated Y .
/77 /77

Figure 8. Dynamic model ramping algorithm.

5.2. Bias point analysis (OP)

The OP analysis (see Fig. 9):

e forces the biaspoint signal to become true,

e setsctrl op value signal to zero, and

e finish the simulation one clock cycle after the
biasPointCalculated signal becomes true.

CLOCK
<+

yva

. . /77
biasPoint

biasPointCalculated Y
/77

terminate .
/77

Figure 9. OP analysis signals.
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Example

Consider the application of the OP analysis
algorithms to the trivial circuit shown in Fig 10.
Dymola’s experiment StopTime variable is set to an
arbitrary large wvalue: 100. The TIME sroT,
TIME SCALE and LOG RESULTS parameters are left to
their by-default values: 10%, 1s and 0 respectively.

R=1
+ -
R1
+ + +
8309 P o
< Tz0 b 5L Q i
= I i N o = )
©o Il w o
‘IO 1 1

Figure 10. Simple example of a RC circuit.

e sorLveE sTaTIC:=0. Once finished the simulation
(at T=0.1), dslog.txt file contains the results:

V1_iDC(1le-010) = -2
V1_vDC(le-010) = 3
Rl n vDC(le-010) = 1
ctrlx 0Ologx ODC(le-010) = 1
V1_powerDisipation_disipatedPower (1e-010)=6

e sowve staric:=1. The dslog.txt file contains the
results, logged at T=1. The simulation terminates

at T=1.1 (see Fig 11).

e sowLve staric:=2. The circuit does not contain
any device with the GMIN parameter, so this
algorithm is equivalent to SOLVE_STATIC:=0.
Results are logged at T=1.1 and the simulation
finishes at T=1.2 (see Fig. 12).

e SoLVE STATIC:=3. Results are logged at T=2.2
and the simulation finishes at T-2.3. Large-
signal and static voltages at rR1.n node are shown
in Fig. 13. At T=2.0: large-signal to static info.
transfer. At T=2.1: Static model solution.

4 R1.n.vDC V1.vDC
5 e
I e

0 0.4 0.8 1.2

Figure 11. Voltage at circuit nodes.
150 scaleGMIN
100+
50+
O T | I

I
0.8 1 1.2
Figure 12. GMIN scale factor

12 R1.n.vDC R1.n.vTran
08+
0.4-
N
[ [
0 1 2

Figure 13. Static and large-signal voltages.

5.3. AC sweep analysis (AC)

The TyPE_Ac_sweep parameter defines the frequency

sweep type (LIN and DEC PSpice arguments):

e TYPE AC SWEEP==0: frequency linear sweep.

e TYPE AC sweep==1: the frequency is swept
logarithmically by decades.

AC small-signal analysis (see Fig. 14):

e forces the biaspoint signal to become true, and
e setsctrl op_value signal to zero.

When biasPointCalculated becomes true, the AC

analysis:
e forces ctrl Ac to become true, enabling the AC
model.

e Starts the frequency sweep. The frequency
variation in time depends on the sweep type. In
both cases, the required log frequencies are
spaced at regular time-intervals of length
2+crock. Therefore, the ctrl log Ac signal is a
pulse train of period 2*crocxk.

The simulation is finished one clock cycle after the

frequency reaches Enp rreEQUENCY. An AC analysis

of the Fig 10 circuit is shown in Fig 15.

CLOCK
<+
Yy yyi
biasPoint 4 77
biasPointCalculated
yyi Y4
/77 7 // ,
ctrl_AC 77
Y4
/77
J S3N) 5 J SRS S Y S N S S T R
-//—,._—————-'a
freq START——e—"
Y4
/77
ctrl_log_AC |
i Y4
/77 77
terminate )y )y |
/77 /77

Figure 14. AC analysis implementation.

R2.vAC_phase(freq) R2.vAC_mag_dB(freq)

~~e

R e S $ruza

5 10
Figure 15. Example of AC small-signal analysis.
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5.4. Transient analysis (TRAN)

When the transient simulation is started, the value of
the time variable is different of zero. For this reason,
a variable is defined to measure the transient
simulation time: timeTran. The length of the
transient simulation is set by the TRAN sTOP TIME
parameter. The transient analysis depends on the
SKIP_INITIAL TRAN SOLUTION parameter.

SKIP_ INITIAL TRAN SOLUTION:=false

When biasPointCalculated becomes true, the
circuit static model contains the transient initial
solution. Then (see Fig. 16):

® ctrl CBREAK Tran2DC becomes true. The large-
signal circuit state is initialised to the static-
circuit voltage values.

ctrl Tran becomes true. The large-signal device
models are enabled.

The simulation terminates when timeTran reaches
the value TRAN_STOP TIME.

CLOCK CLOCK
)/ > )/ >
. ) 77 77
biasPoint < >
TRAN_STOP_TIME
biasPointCalculated . // , .,
4, /77
ctrl_OP_value 77
Y4
77
/77
ctrl_Tran .
/77
ctrl_CBREAK_Tran2DC Y i
/77 77
terminate . .
/77 /77

Figure 16. Transient analysis with initial calculation.

SKIP_ INITIAL TRAN SOLUTION:=true

At initial time (see Fig. 17):

® ctrl CBREAK Tran2IC becomes true. The large-
signal circuit state is initialised to the IC-
property correspondent values.

ctrl Tran becomes true. The large-signal device
models are enabled.

CLOCK CLOCK
- 1, >
initial 77
ctrl_Tran < »
TRAN_STOP_TIME
ctrl_CBREAK_Tran2IC yy
77
terminate )y
/77

Figure 17. Transient analysis w/o initial calculation.

6. SPICE2 LEVEL 1 NMOS

The SPICE2 levell MOS model is basically the
model proposed by Shichman and Hodges
(Massobrio and Antognetti, 1993). The Dymodraw
diagram of the model is shown in Fig 18. Each
substrate junction is modelled as a voltage-controlled
current source (diode-like icon in Fig. 18) in parallel
with a voltage-controlled capacitor. /g is a non-

linear current source controlled by the voltages Vg,

Vqs and Vige. The gate capacitance is modelled
using three voltage-controlled capacitors: Cgp, Cgg
and Cgp .

Voltage-controlled capacitors have been modelled
extending the Capacitor model. Expressions for the
large signal capacitance are provided and the small-
signal capacitance is evaluated at the bias point (i.e.,
when ctrl ac signal becomes true). Large-signal
and static formulations of controlled current sources
are equal (of course, each one is described by its own

set of wvariables). Their small-signal models
(conductance) are evaluated at bias point.
T .
rRe =
Cbd
Y -
Dbd
+ - 11
) -+
G — ] —— B
Dbs
+ - 11
i 3
Cbs
y -
+ /-
;
R =T
S
Figure 18. SPICE2 levell NMOS
Conclusions

A reduced set of SPICE device models has been
successfully translated into Modelica language for
OP, AC and transient analyses.
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Abstract

Multi-domain dynamic simulation is becoming an is-
sue in the design of high performance mechatronic
systems, where advances are foreseen only if the mu-
tual interaction of different parts of the system is well
understood. The modelling environment provided by
DYMOLA with Modelica language proved to be ideal
for studying the mutual effects of mechanics, elec-
tronics and control in a brushless motor, whose model
has been conceived as one of the building blocks of a
wider project, aimed at simulating a complete machin-
ing centre. Details on the model of the brushless motor
as well as on its simulation are given in the present pa-
per.

1 Introduction

The most common actuation systems adopted in
robotics, machine tools industry and machining cen-
ters are by far servomechanisms with permanent mag-
net brushless motors, connected to the loads by trans-
mission chains (or gearboxes).

In a brushless motor the electromechanical commu-
tation typical of brushed DC motors is replaced by
an electronic commutation of the currents in the three
phases of the stator windings. This should in principle
guarantee that the electromagnetical torque delivered
on the motor shaft is independent of the rotor posi-
tion. However some constructive imperfections in the
motor or in the drive, where electronic commutation
is implemented, produce an undulation (ripple) [4] on
the actual torque. While this problem could be consid-
ered minor in the static dimensioning of the actuation
system, it is of utmost importance for its dynamic per-
formance. Torque ripple might in fact excite the res-
onances of the mechanical system, usually associated
to the elastic couplings between motors and loads.

Dynamic simulation [2], or virtual prototyping in a
more recent jargon, is a valuable tool to study these
phenomena, and in particular to separate the effects of
the single sources of disturbances on the performance
of the system. Mechanics, electronics and control are
different domains involved in this truly mechatronic
problem. Multi-domain simulation environments are
required to simulate with a reasonable effort the sys-
tem, while the particular electrical configuration of the
stator windings (Y connected) calls for the adoption of
modelling languages where algebraic constraints on
state variables can be easily specified.

DYMOLA (with Modelica language [7, 5]) has been
found to fit easily both the above requirements. Me-
chanical, electrical and control systems can be com-
bined in a natural and physics-driven way, while the
acausal modelling based on DAE equations, proper of
this environment, allows to specify the constraint on
the phase currents as it is, avoiding reformulation of
the system’s equations in terms of two out of three cur-
rents, typical of procedural modelling languages.

In the present work DYMOLA has been used to sim-
ulate a brushless motor controlled with an analogue
driver and with a full digital driver. The simplified
model ([3]) of torque ripple has been validated through
these simulations. The model of the brushless motor
with its analogue or digital drivers has been actually
used as one of the building blocks of a wider project,
where the simulation of a complete machining center
(detailed simulation of the mechanical parts of the sys-
tem and of various features of the CN) has been imple-
mented.

2 Torque ripple modelling

The functional scheme of a sinusoidal PMAC ma-
chine is represented in Fig. 1. If a reference torque
T should be delivered by the motor, typically as re-
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Figure 1: Functional scheme of a brushless motor

quired by a position controller, the current reference
I has to be given the value I = T/K;, where K; is the
torque constant. This scalar setpoint is then modulated
through three sinusoidal functions of the electrical an-
gle o. = pq,,, p being the number of pole pairs and gy,
being the motor angle, that are offset by an angle 21t/3
one from each other. The three resulting signals be-
come the current references for the three phases. High
bandwidth current controllers make the currents track
their setpoints in each phase (actually two out of the
three Y connected phases are closed loop controlled).
If the current reference in each phase is given the same
dependence on the electrical angle characterizing the
back EMF (ideally sinusoidal or trapezoidal), a torque
T is produced, approximately equal (in a band of fre-
quencies limited by the current loops) to the desired
torque T, and thus proportional to the scalar current
reference 1.

Brushless motors, however, introduce a disturbance in
the system in the form of a ripple on the torque. Sev-
eral constructive imperfections of the motor and the
servodrive sum up to form this pulsating disturbance.
Examples are cogging torque, offsets in the current
sensors, imperfections in the construction of the mo-
tor and the drive, implying that both the back EMF
profiles and the phase currents may be affected by un-
desired higher order harmonics.

As it is shown in [3], the following relation can be used
to represent in a compact form the effects of the dis-
turbances on the torque production:

T="1(o,I) =y(ot) + K (1+8(cx)) €))
The term y(ot) accounts for the disturbances due to the
cogging torque and to the current offset in the drives,
while the second term is responsible for the nominal
torque (with &(a) = 0) and for the disturbances related
to the harmonic content. It is also possible to include
in 8(a) the effects of the amplitude imbalances and
the phase misalignments of the current and back EMF
shapes profiles [3].

Curmert_ChiD

j:_

startTime={0}

driveer

hrushless

Figure 2: Complete model of the system

3 Modelling the system in DYMOLA

The model of the system is obtained by the feed-
back connection of two sub-models, one representing
the brushless motor, the other one the driver (Fig. 2).
The two models are connected through three electrical
connectors (the three phases of the motor) as well as
through a control connector (the measure of the rotor
position).

The brushless model is shown in Fig. 3. The
three phases are Y connected in the block emf3,
that generalizes the EMF model in the Model-
ica.Electrical. Analog.Basic library. In the emf3 model
the back-emf profiles on the single phases are as-
signed. The nominal sinusoidal profiles can then be
modified to study ripple due to higher order harmon-
ics. The torque at the flange of the emf3 model de-
rives from the equilibrium with the sum of the prod-
ucts of currents and back emf profiles on the single
phases. Remarkably, the acausal modelling environ-
ment provided by DYMOLA allows to specify in the
most natural way the algebraic constraint on the cur-
rents (the sum of the currents must be zero). This con-
straint would obviously generate troubles in other sim-
ulation environments based on causal specifications of
the models, expressed with ODE systems. Just for
comparison, Fig. 4 shows the SIMULINK model of
the electrical part of a brushless motor, obtained by
resolving the algebraic constraint and expressing the
whole model in terms of two out of three currents. The
derivation of the model is time consuming and error
prone and the result lacks readability.

Modelling of the mechanical part of the motor is on
the other hand standard.

The analogue version of the current controller is
shown in Fig. 5. The current reference (usually the
output of a position/velocity controller) is modulated
through sinusoidal functions of the electrical angle, to
form the references for two of the three Y connected
currents. Current sensors are included in the drive and
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Figure 3: Model of the brushless motor
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Figure 4: Model of the brushless motor in SIMULINK

possible offsets can be added to the measures, in order
to simulate their effects on the generation of torque rip-
ple. Two anti-windup PI controllers close the current
loops. Their outputs are then linearly amplified and
form the voltages to be applied to the single phases of
the motor.

A full digital version of the current controller has been
implemented as well (Fig. 6). A vector control scheme
[6] has been adopted, where the phase currents are
first transformed into direct and quadrature currents
through Park’s transformation. Two digital loops are
closed on these currents, the quadrature reference be-
ing the output of the outer position/velocity controller,
the direct reference being zero as usual. The volt-
age commands output of the two antiwindup PI con-
trollers are then back transformed to voltages on the
three phases through inverse Park’s transformation.
The PWM amplifier has not been simulated since, op-
erating with a frequency 10 or 20kHz and with a mod-
ulation of the pulse width of 1us, it requires an integra-
tion step size less than 1us, which might be acceptable
for the simulation of the electronics of a motor drive
but is far too small in the combined simulation of the
mechanics and the electronics. This is particularly true
if the model of the motor is instantiated several times,
for the simulation of a complete machine.

4 Simulating the motor without load

Simulations obtained with the analogue version of the
driver will be presented here, in order to show the util-
ity of the model. The input of the system is a step
on the current reference: the signal is expressed in
Volt and has been given the value 1V (correspond-
ing to 10% of the entire scale and to a current of
1.9A4). The current-to-torque gain of the motor (K;)
is equal to 1.1Nm/A, while the number of pole pairs is
equal to 3. Both the current loops have been tuned
for a bandwidth of 1kHz. The inertia of the motor
is equal to 0.012Kgm? while the damping factor is
0.371Nms/rad.

Fig. 7 and Fig. 8 show, on different time scales, the re-
sponses of the electromagnetic torque and of the motor
velocity in nominal conditions. The responses match
the expectations ! both from the transient point of view
and from the steady state one (no oscillations is pro-
duced).

IThe negative sign of the torque is of no particular meaning,
being associated just to the way the balance of torques is written
in the block emf3.
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5 brushless emf 3_1.flange_b.tau

T T T T T
0 0.001 0.o02 0.003 0.004 0.005

Figure 7: Electromagnetic torque in nominal condi-
tions

hrushless Inertia w

Figure 8: Motor velocity in nominal conditions

In a second simulation, an offset of 1% of the rated
current has been introduced on both the current sen-
sors. The resulting electromagnetic torque is shown in
Fig. 9. As the average velocity is equal to the value
obtained in nominal conditions Q = 5.6rad /s, the pe-
riodicity of the disturbance is consistent with theory
[3] (T =2n/(3Q) = 0.37rad/s).

The effect of higher order harmonics in the back e.m.f.
profiles has been simulated introducing the fifth har-
monic on all the three profiles, with amplitude 5% of
the main harmonic and no misalignments or unbal-
ances. The result in terms of electromagnetic torque is
reported in Fig. 10. Again the periodicity of the distur-
bance is consistent with theory [3] (T =2n/(18Q) =
0.062rad /s).

brushless emf 3_1.flange_b.tau

2.2+

2.4

2B T T —— —— —
0s 1 18

Figure 9: Electromagnetic torque with a current offset

brushless. emf_3_1 flange_b.tau

24
214
224

-2.3

T T T T T T T !
0.25 0a 078

Figure 10: Electromagnetic torque with a high order
back emf harmonic

brushless. ernf_3_1 flange_h tau

2.4

-2.8 T T T
045 1 14

Figure 11: Electromagnetic torque with both distur-
bances

The superimposition of the two disturbances (the off-
set on the current sensor and the high order back emf
harmonic) yields the electromagnetic torque reported
in Fig. 11.

It is not difficult to verify (for example exporting the
results of the simulation in Matlab) that the above
torque profile corresponds, apart from the sign inver-
sion, to (1), where:

Y(o) = 3KI,frsin(oi+ %n) ()

®)

where 1,77 is the current offset, Ks is the amplitude
of the fifth harmonic of the back emf profile, K is the
amplitude of the main harmonic (K = 2/3K;).

d(a) = —% cos(60)

S Simulating the motor with a load

As already mentioned in the Introduction, one of the
reasons why torque ripple deserves accurate modelling
and possibly compensation is that it may act as an ex-
citation signal for the usually lightly damped dynamics
of the two-mass system made up by the motor coupled
with a load through an elastic transmission. As the
torque ripple frequency is proportional to the motor
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Figure 12: Model of the system including a load
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Figure 13: Motor velocity with a load, without ripple

velocity, this problem is particularly critical at those
operating velocities when the multiple of the motor
velocity is comparable to the natural frequency of the
system. In order to confirm this analysis with simula-
tion results, the model of the motor has been coupled
to the models of an elastic transmission and a load,
both taken from the Modelica.Mechanics.Rotational
library (see Fig. 12).

The load has been given the same value as the iner-
tia of the motor while the elastic parameter has been
selected so as to have a resonance frequency approx-
imately equal to 70rad/s. In a first simulation, four
consecutive steps on the current command have been
given, corresponding to 20%, 30%, 40% and 50% of
the entire scale, in nominal conditions (i.e. with all
the sources of ripple disabled). The result, in terms
of the velocity of the motor is shown in Fig. 13, where
the natural oscillations due to elasticity are evident, but
also damped out by the natural damping on the system.

Then a ripple induced by the same offset on the current
sensor as in the previous Section has been introduced.
Notice that, as the natural frequency of the system is
about 70rad /s, major problems to the system are ex-
pected when the average velocity of the motor is about
one third (23rad/s) of this value, namely in the third
interval of the simulation. The result is confirmed in
the plot of Fig. 14, where the effect of the matching be-
tween ripple frequency and natural frequency is most
evident (once triggered in the third interval, the oscil-
lations remains also in the fourth one).

-~ brushless Ineria w
i)

Figure 14: Motor velocity with a load, with ripple
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Figure 15: Top view of the simulator of a machining
center

6 Use of the brushless motor in the
simulation of a machining center

As already mentioned in the Introduction, the model of
the brushless motor has been included in a library of
elements used to simulate a complete machining cen-
ter. Fig. 15 shows the top level of the simulator for a
three axes machine. The model is composed of three
parts: the simulation of the CN and the servodrive, en-
tirely realized with the DYMOLA blocks, the simu-
lation of the transmission chain for each axis, where
the brushless motor has been used, and the simulation
of the kinematic chain, realized with the blocks of the
ModelicaAdditions.MultiBody library.

Again the multi-domain nature of DYMOLA and the
physics driven assembly of the model turned out to be
essential elements to fulfill the task, namely to realize
a reliable simulation environment, easy to use for a
non specialist of dynamic modelling.
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7 Conclusions

DYMOLA proved to be a valuable tool to specify in
the most natural way the model of the three phase
brushless motor, in terms of a high index DAE sys-
tem [1]. Simulations have been run to test various non
nominal situations in brushless motors, where torque
ripple can occur.
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Abstract

In power supply networks, the quality of the
voltage is becoming more and more of a
determining factor.

Non-linear loads such as diode or thyristor
converters contribute to the degradation of the
supply voltage quality. Non-sinusoidal currents of
the non-linear loads result in the distortion of the
supply voltage wave form at the point of common
coupling due to the finite supply impedance.

To improve the power quality of the supply voltage
active filters and reactive current compensators are
used. The optimal power rating and topology of
these units are very important, but also the
determination of the best compensation strategy for
a specific application is very important as well.
Different topologies and strategies can often
perform related compensation functions, resulting
in a situation where financial implications
determine the best solution. In this situation the
power quality analysis in network using simulation
tools is very useful.

This paper describes a Modelica library called
PQLib (Power Quality Library) designed for
power quality analysis in networks using
simulation tools written in Modelica.

The PQLIib contains the following components:

e Definition of connectors for three phase
networks
Models for:

e three phase passive electrical elements like
resistor, capacitor and so on.

e three phase electrical machines and
transformers
three phase transmission lines

e semiconductor controlled dc and ac electrical
drives

e power factor correction devices (passive
filters)

e mains active restoring devices using
semiconductors (active filters)

e measuring instruments: true rms voltmeter and
amperemeter, digital frequency analyser

e Examples

1. Building of the PQLib

The PQLib is based on the package concept. The
package concept was introduced into Modelica to
help organize definitions of models, connectors,
etc. [1, 2]. Fig.1 shows the components of the
package PQLib.

1.1. Types

In the PQLib for currents, voltages and impedances
the per unit (p.u.) quantities with the definitions
according to [3] are used. Currents and voltages
are related to their rated peak- values:

=L - pact s FULib

fim [l

Fig. 1. Components of the package PQLib
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U(t)

2u,

1(t)

(1)
V21,

u(t) = i(1) =

Impedances are referred in the same way as (1) to

Z(w)-1,
Uy,

with: U, and [, are nominal values of the

z(w) = (2)

voltage and the current accordingly.

Consequently, the types in the PQLib are defined
as (for example for the first phase):

type VoltagelstPhase = Real (
final quantity—"Voltage",
final unit="p.u."
displayUnit="p.u. ");

type CurrentlstPhase = Real (
final quantity:"Current",
final unit="p.u.'
displayUmt="p u.");

type Resistance = Real (
final quantity—"Resistance",
final unit="p.u."
min=0,
displayUnit="p.u.");

type Conductance = Real (
final quantity—”Conductance",
final unit="p.u.'
min=0,
displayUnit="p.u.");

type Reactance = Real (
final quantitr"Reactance ",
final unit="p.u."
min=0,
displayUnit="p.u.");

type SignalAnalog = Real,

type SignalBoolean = Boolean;

type SignalDiscrete = Real;

1.2. Interfaces

Usually every package includes some interface
definitions which are used throughout the package.
In the PQLIib package the basic interface definition
is the three phase pin, which is a connector. At the
pin the pin three phase voltages va, vb and vc and
the pin three phase currents ia, ib and ic are
defined. The positive pin is described in the
following way:

connector Pin3Ph
VoltagelstPhase va;
Voltage2ndPhase vb;
Voltage3rdPhase vc;
flow Current1stPhase ia;
flow Current2ndPhase ib;
flow Current3rdPhase ic;

end Pin3Ph

The negative pin differs in its

representation only.

graphical

The TwoPin interface is defined as a partial model:

partial model TwoPin3Ph
PQLib.Interfaces. Voltage1stPhase Vr;
PQLib.Interfaces. Voltage2ndPhase Vs;
PQLib.Interfaces. Voltage3rdPhase Vt;

PQLib.Interfaces.Current1stPhase Ir;
PQLib.Interfaces.Current2ndPhase Is;
PQLib.Interfaces.Current3rdPhase It;

PQLib.Interfaces.Pin3Ph P;
PQLib.Interfaces.NegPin3Ph N;

equation
Vr=P.va-N.va;
Vs=P.vb - N.vb;
Vt=P.vc - N.vc;
P.ia +N.ia = 0;
P.ib +N.ib=0;
P.ic + N.ic = 0;
Ir =P.ia;
Is =P.ib;
It =P.ic;

end TwoPin3Ph

For the control package of the PQLib the analog
and digital as well as logical interfaces are defined
in the classical way of the Modelica interface
definition with the exception of the definition for
three phase vectors [3]. For example, the vector of
voltages u is derived from the instantaneous values

of the three phase voltages u,, u, and u, as
follows:

2 jea e
u=3[ua+ub~e S tu,e P J:ua+juﬁ 3

c

Thus, the connectors for three phase vectors can be
described in the following way:

connector InAB
input SignalAnalog alfa;
input SignalAnalog beta;
end InAB

connector OutAB
output SignalAnalog alfa;
output SignalAnalog beta;
end OutAB

2. Main Components of the PQLib

Any network consists of passive electrical
elements like resistors, capacitors and so on. The
three phase transmission line itself can be
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represented as a circuit of passive electrical
elements. The passive shunt harmonic filter, which
is the traditional method of controlling harmonic
distortion levels, consists of a tuning reactor in
series with a capacitor bank.

At the same time, each network consists of active
electrical elements as well. These elements are:
generators, electrical motors, four quadrant
electrical drives, active harmonic filters and so on.
The PQLib packages imply both passive and active
electrical elements. Fig. 2 shows, for example, the
package of electrical elements which are based on
the TwoPin interface.

2.1 Passive electrical elements

The three-phase elements like resistors, capacitors
and inductors are equally defined. The three phase
capacitor, for example, is defined as:

class C

extends PQLib.Interfaces. TwoPin3Ph;

parameter PQLib.Interfaces.Reactance xc[3]={1,1,1};
equation

1/w/xc[1]*der(Vr) = Ir;

1/w/xc[2]*der(Vs) =Is;

1/w/xc[3]*der(Vt) = It;

end C
= Elemenis - pachage Pl Elomssniz
i £
R G L
N [ &
SW |
[ L] —
T= =5 Y
B -
i i I-||?'...._. {:5
Yo “u
VSideal VS RefCua
s {~4 w{~a off P

Fig. 2. Components of the package Elements

In the same way the three phase switch can be
defined:

class SW

extends PQLib.Interfaces. TwoPin3Ph;

parameter Real OnTime(unit="[s]") = 0 "switch ON Time";

parameter Real Ron(final min=0) = 1.E-5 "Closed switch
resistance";

parameter Real Goff=1.E-5 "Opened switch conductance";
protected

Real s1;

Real s2;

Real s3;
equation

Vr = s1*(if time >= OnTime then Ron else 1);

Ir = s1*(if time >= OnTime then 1 else Goff);

Vs = s2*(if time >= OnTime then Ron else 1);

Is = s2*(if time >= OnTime then 1 else Goff);

Vt = s3*(if time >= OnTime then Ron else 1);

It = s3*(if time >= OnTime then 1 else Goff);
end SW

To get the star connection of the three phase
elements the class Y can be used:

class Y
PQLib.Interfaces.Pin3Ph v0;
equation
v0.ia + v0.ib + v0.ic = 0;
v0.va = v0.vb;
v0.vb = v0.vc;
end Y

To use one-phase electrical elements of the
Modelica standard library the class Connector3Ph
(see Fig. 2 and Fig.3) is used. The class
Connector3Ph is described in the following way:

class Connector3Ph
PQLib.Interfaces.Pin3Ph InOut3Ph;
Modelica.Electrical. Analog.Interfaces.Pin Phl;
Modelica.Electrical. Analog.Interfaces.Pin Ph2;
Modelica.Electrical. Analog.Interfaces.Pin Ph3;
equation
InOut3Ph.va = Phl.v;
InOut3Ph.vb = Ph2.v;
InOut3Ph.vc = Ph3.v;
InOut3Ph.ia = -Phl.i;
InOut3Ph.ib = -Ph2.i;
InOut3Ph.ic = -Ph3.i;
end Connector3Ph

The other passive elements like the three-phase full
wave converter, the three-phase transformers, the
passive harmonic filters and so on are created by
using graphical model editing tools. Fig. 3 shows,
for example, a model of the three-phase full wave
converter.

2.2 Active electrical elements

The voltage source is defined in the following way:
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Fig.3. Diagram of the three-phase full wave
converter

class VS
extends PQLib.Interfaces.TwoPin3Ph;
parameter Real N harmonic[:]={0,0} "Array of

numbers of harmonics";
parameter Amplitude

V_harmonic[size (N _harmonic, 1)]1={0,0};
parameter Phase Ph harmonic[size (N_harmonic,
1)1={0,0};

parameter Amplitude V1=1.0;
parameter Phase Phl=0;

parameter Amplitude V1_opposite=0.0;
parameter Phase Phl_opposite=0;

equation

Vr = Vl*cos(w*time + Phl*pi/180) +
V1 opposite*cos (w*time + Phl opposite*pi/
180) + V_harmonic*cos (N _harmonic*w*time +
Ph harmonic*pi/180) ;

Vs = Vl*cos(w*time - 2*pi/3 + Phl*pi/180) +
V1 opposite*cos (w*time + 2*pi/3
+ Phl opposite*pi/180) +
V_harmonic*cos (N_harmonic* (w*time - 2*pi/3) +
Ph _harmonic*pi/180) ;

Vt = Vl*cos(w*time + 2*pi/3 + Phl*pi/180) +
V1 opposite*cos (w*time - 2*pi/3
+ Phl opposite*pi/180) +
V_harmonic*cos (N_harmonic* (w¥time + 2*pi/3) +
Ph harmonic*pi/180) ;

end VS
This voltage course definition makes it possible to

simulate all possible kinds of the voltage distortion
in industrial supply systems.

The three-phase current source is defined in the
same way.

The very important part of the PQLib package are
the switch mode power devices such as four
quadrant frequency controlled electrical drives and
active harmonic filters. These devices use the
pulse-width modulation IGBT-inverter technology.
Fig. 4 shows basic configuration of a IGBT-
inverter .

o K} JG )
S JK} JK)} ] |

Fig. 4. Basic configuration of a IGBT-inverter

Owing to the fact that the goal of the power quality
analysis is to study the network itself and in order
to simplify the model of the IGBT-inverter, the
following equivalent circuit for IGBT-inverters can
be used [3]:

id ":L
o
R L 1y L
S1
. 0 1
R L %, o3
o——{::j——...——:——— S2 E§C Uq
" R L4 0 fl
%, —_ 1. s3

U%7 O0

B

Fig. 5. Equivalent circuit for IGBT-inverters

Assuming a balanced three-phase system without
the neutral connection and neglecting the
resistance of the power switches, the circuit in
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Fig.5 with a voltage-source inverter can be
described as [3]:

LaZI—F =ug—u, —Ri,
. t3 - n=012,.6
u -2
C—% =Zo(n)Re(i e > —i
s 23 ety )
(1

with
71y

u, =§0(n)ude S

where the used symbols denote:

i, complex vector of the line currents;

ug complex vector of the mains voltage;
u, complex vector of the inverter voltage;
u, dc-link voltage;

I, dc-link current;

i dc-link load current;

L inductance of the line choke;

R resistance of the line choke;

C capacitance of the dc-link capacitor;

n switching- state of the converter (Fig.5)
o} switching function: () = {1’ if n> 0

0,if n=0

For more information about the control unit of
IGBT- inverters see [4]. The description of the
control system for the active filter for industrial
mains can be found, for example, in [5]. The
control system of the four quadrant adjustable
speed drives is described in [6].

2.3 Measuring instruments

Often the goal of the power quality analysis in
networks is to get a value of the total harmonic
distortion factor (THD) or values of harmonic
amplitudes at the point of common coupling
(PCC). In this case, it is very useful to use the
built-in measuring instruments.

Fig. 6 shows the components of the package
Instruments. There are instruments for voltages
and currents. Together with model RMS it is
possible to measure the rms-values of the three-
phase voltages and currents and the THD-factor as

=4 Instrumienils - package POLib Irstrum... [W=] E3
Fie Edi
m I w e ﬁl—i
"'\..\_.:-Fr:." "'\.\\-.:?:,::."
- ¥
DFTG
RMS |
. =
DFT

Fig.6. Components of the package Instruments

well. To get the spectra for voltages and currents
the class DFT can be used. The class DFTG is very
useful for the measuring of single reference
number harmonics. The classes DFT and DFTG
are based on DFT-technique .

Several aspects of the PQLib-package usage are
demonstrated in the following example.

3. Examples

Non-linear loads such as diode or thyristor
converters contribute to the degradation of the
supply quality. Non-sinusoidal currents of the non-
linear loads result in the distortion of the supply
voltage wave form at the point of common
coupling due to the finite supply impedance.

In industrial mains, the passive filters have
traditionally been used to absorb harmonics
generated by the load, primarily due to their low
cost and high efficiency. This is a good approach
when power factor correction is needed too.
However, they have the following drawbacks:

- the mains impedance strongly influences the
compensation characteristics of the filter;
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- they result in new resonances and therefore
magnify the levels of the other harmonics;

Compared with the passive filter, the active
filters can be used to reduce harmonics in the
industrial mains without worrying about all the
problems associated with applying passive filters
Additionally they can not be overloaded by
harmonics from the power system. Due to the fact
that active filters use the same IGBT-inverter
technology that is used in adjustable speed drives,
their cost is not high.

The next Modelica model shows the utilization of
the active filter to achieve harmonic cancellation
for an adjustable speed drive (see Fig.7). The
simulation results are shown in Fig. 8-10.

Rhis_Al
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Fig. 7. Using active filter connection to achieve
harmonic cancellation for adjustable speed drives
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Fig. 8. Simulation results: one-phase current of the
adjustable speed drive

The current of the adjustable speed drive in one
phase is shown in Fig.8. Fig. 9 shows the current
of the active filter in the same phase.
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Fig. 9. Simulation results: one-phase current of the
active filter
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Fig. 10. Simulation results: one-phase current in
the mains

The current in the mains (sum current) is presented
in Fig.10. From Fig.10 it is seen that the sum
current has practically sinusoidal wave form. The
harmonics of the ac drive current are practically
eliminated.

4. Conclusion

The presented Modelica package PQLib is very
useful for power quality analysis in networks.
Using the library, the user can quickly create the
network with different kind of mains loads and
measuring instruments using the graphical editor of
the Dymola. The library has an open structure and
all models can be modified.
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Abstract

The DLR Institute of Vehicle Concepts uses
MODELICA in the area of fuel cell powered
vehicles, where multidisciplinary simulation is
required. The paper gives an overview of the
existing libraries of DLR Institute of Vehicle
Concepts and discusses our approach writing models
in MODELICA.

An investigation of hybrid concepts of fuel cell
powered vehicles is presented using the so called
hyzem cycle as reference cycle. The results show
that hybridisation of the energy supply, i.e.
combining fuel cell and battery, yields to lower fuel
consumption compared to vehicles only powered by
fuel cells.

Introduction

The DLR Institute of Vehicle Concepts is
investigating the potential and design of fuel cell
powered vehicles.

One of the main issues is the simulation of the
operational behavior in order to find suitable designs
and operational strategies. Basis of the wvehicle
modeling is an appropriate block diagram, where the
vehicle is separated in several sub systems. Figure 1
shows a block diagram representing a fuel cell
hybrid vehicle.

Drive N . .
» Driver [«
cycle
v
o Vehicle | e,
control
)
Energy :
management| o~ — = - -1
A ! X
! Inverter+
.......... - -—-» Electric
engine

Figure 1: Block diagram of a fuel cell hybrid
vehicle

It consists of the following sub systems: drive cycle,
driver, vehicle control, energy management, fuel cell
system, battery, inverter + electric engine, gear box
and driving resistance. The thin lines represent the
flow of data, the thick lines the flow of energy. The
drive cycle gives the requested velocity as function
of time. The driver model compares the actual
velocity of the vehicle with the requested velocity
and determines a request for acceleration or
deceleration, which is given to the vehicle control.
For safety reasons a direct mechanical or hydraulic
connection between brake pedal and mechanical
brake is mandatory. Therefore the vehicle control
gives priority to the mechanical brakes above a
certain level of deceleration. This approach should
be sufficient to evaluate the potential of regenerative
braking. However, our analysis does not cover the
final realization of the braking system.

Finally, the vehicle control determines the signal for
the inverter of the electric engine with respect to the
state of the energy supply system (i.e. battery and
fuel cell system). This state is determined by the
energy management module, which receives the
signals of the sensors installed in the battery and fuel
cell system. The state of the energy supply system is
also transferred to the vehicle control. For example,
regenerative braking is not possible with fully
charged battery. The state of the fuel cell system
depends on the state of the fuel cell itself and also
the state of several supply systems; e.g. air supply,
fuel supply and heat and water management. Details
to the fuel cell system are given below.

The short introduction should make clear that
modeling of fuel cell powered vehicles is a
multidisciplinary task, requiring electric,
mechanical, electrochemical (fuel cell, battery),
control, thermo-hydraulic models.
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Libraries

Table 1 gives an overview of the existing libraries.

Library Content

Property Thermal and caloric
properties of fluids (air,
water, hydrogen, glycol-
water, ..)

Piping Ducts, fans, compressors,
blowers, valves

Heatex Heat exchanger

Accu Battery models

Carmechanic Mechanical components of
cars

Control Control units

Power electronics | Inverters, DCDC-converters

Fuel cell Fuel cells

Tank Models of fuel tanks
compressed gas, metal
hydride

Table 1: Listing of libraries

Additionally, standard MODELICA libraries as
electric library and block library were used. As
simulation results were needed for ongoing
projects, the libraries were designed under a very
limited time scale. We felt that the hierarchical
layout of the libraries should not be too complex.
We therefore decided to limit the usage of base
models creating a usable model to only one base
model. Our general approach is outlined by two
examples of the property and piping library.
The following listing shows a property model for
wet air. Wet air describes a mixture of ideal gases
(O, and N;) with one condensable component
(H,0). As we are working at moderate pressures
and temperatures, the ideal gas assumption lead to
sufficiently accurate results. General equations for
such a mixture have been put into the base class
base_prop 01 (extend statement) setting the
modifier n to three, which means the mixture is
composed of three components: water[1],
nitrogen[2] and oxygen[3]. The specific properties
of the components are given by functions.

bzvt.property.air0l.wet_air
see bzvt.property.bass_classes.base_prop_01
Modelica definition

model wet_air "siehe bzvt.property.bass_classes.base_prop_ 01"
extends bzvt.property.bass_classes.base_prop_01(n=3);
equation
/] properties:
ps = bzvt.property.h2o.satproperties.ps03(t);
rhom_|_tp*mm_i[1] = bzvt.property.h2o.propfunctions.rho_1_oft(t);

mm_i[1] = bzvt.property.h2o.constants.mm;
mm_i[2] = bzvt.property.n2.constants.mm;
mm_i[3] = bzvt.property.o2.constants.mm;

hm_g_i[1]=xm_g_tp*bzvt.property.h2o.janaf.h_g(t+ 273.15)*mm_i[1];

hm_g_i[2] = xm_i[2]*bzvt.property.n2.janaf.h(t + 273.15)*mm_i[2];

hm_g i[3] = xm_i[3]*bzvt.property.o2.janaf.h(t + 273.15)*mm_i[3];

hm_I_tp=xm_I_tp*
bzvt.property.h2o.janaf.h_1_ofp(t+273.15,p)*mm_i[1];

sm_g i[1]=xm_g_tp*
bzvt.property.h2o.janaf.s_g(t+273.15,p)*mm_i[1];

sm_g_i[2] = xm_i[2]*bzvt.property.n2.janaf.s(t + 273.15, p)*mm_i[2];

sm_g_i[3] = xm_i[3]*bzvt.property.o2.janaf.s(t + 273.15, p)*mm_i[3];

sm_l_tp = xm_l_tp*bzvt.property.h2o.janaf.s_I(t + 273.15)*mm_i[1];
I

end wet_air;

We use the same base model for other mixtures of
gases with one condensable component. The
thermodynamic state of such a mixture is
determined by two state variables and n-1
compositions. After a period of refinement, we
achieved a very good robustness even with several
sets of input variables:

= Composition, p,T

= Composition, p,h.

= Composition, p,s

= Relative humidity, p,T
Key points to get this good performance have been
the appropriate formulation of the general
equations, i.e. structure of the equations. Molar or
mass specific state variable can be used, which
underlines the general formulation of this routine.
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Figure 2 shows the icon and object diagram of a
compressor. The fluid connectors inlet and outlet
contain the potential variables pressure p, enthalpy
h, composition x_i and the flow variable mass flow
rate mdot. The compressor is described by a
efficiency model with the isentropic efficiency as a
parameter. The calculation scheme is indicated in
the object diagram by means of a enthalpy, entropy
diagram. Three similar property models are
embedded into the model: propl, prop2, isentrop.
Propl and prop2 are used to calculate the inlet and
outlet state. Isentrop calculates the state for a
isentropic compression.

v

eta is=0.7

Haamod

prop2

izentrop

. outlet
inlet

propl

Figure 2: Above: icon diagram of compressor;
below: object diagram of compressor.

Formulating our models we have taken special care
to handle cases like mass flow rates getting very
small values down to zero and to get a robust and
stable formulation. Therefore we tried several
formulations of heat exchangers: description by
piecewise discretisation, log mean temperature and
efficiencies.

In the beginning we had problems with robustness
of our models, e.g. the convergence of the
simulation run depended on the parameter values
used. Also the appropriate initialisation of the
model was difficult. To overcome the initialisation
problems we have written special initialisation
routines, which allow us to formulate the equations
with numerically appropriate state variables and
use common variables for parameterisation. For
example inside a volume the internal energy u is
used as state variable. However, by means of the
initialisation function temperature t is used to
parameterise the model.

As mentioned above we have restricted ourselves
primarily to alternative drive trains and fuel cell
systems due to time limitations. To simplify the
usage of models for people working in DLR
Stuttgart e.g. on solar thermal engineering our
colleague Wolf-Dieter Steinmann has generalized a
property and a thermohydraulic library [2].

In the following we will give some examples how
we are using the libraries.
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Modeling of Fuel Cell cars

Figure 3 shows the object diagram of a fuel cell
powered car composed from models of the
libraries listed in table 1. The object diagram
represents the layout of the scheme given in
figure 1, whereby the object dcsupply corresponds
to the gray lighted (energy supply) in figure 1.

desupply

Figure 3: Vehicle model as MODELICA object

diagram.

The object diagram consists of four main parts:

1. the overall control of the vehicle, which
includes the representation of the drive cycle
(object hyzem), which has specially been
derived for hybrid vehicles [1].
the driver model (object Fahrer) and the
control unit (object vcu02).

2. the supply of electrical energy (object
dcsupply), which includes the fuel cell system.

3. the inverter and electrical engine (object
elmotor), which convert the DC current to
mechanical energy.

4. the mechanical parts and driving resistance
of the car (object fahrzeug)

Our special interest is the energy supply, which

provides energy for elmotor, auxiliaries and for to

energy supply system itself (indicated by the two
additional electrical connectors of the object
dcsupply).

Figure 4 shows the object diagram of the object

dcsupply in detail.

Jnae
[ ~

Figure 4: Object diagram of energy supply
Fuel cell system and battery are combined to a
hybrid energy supply system. A bi-directional
DCDC-converter adjusts the battery voltage to the
fuel cell voltage. The DCDC-converter is
controlled by the energy control unit (object ecu),
which gets input from sensors installed in the
battery and fuel cell system.

DC power is supplied to the electrical engine by
the two electrical connectors p and n (right).
Compressors and pumps of the fuel cell system are
supplied with electrical energy by the two
additional electrical connectors (nversorg and
pversorg).

The dcsupply object can be parameterized in order
to generate three different hybrid fuel cell vehicle

designs.
1. Fuel Cell Vehicle: vehicle with a fuel cell
solely to supply energy

2. Fuel Cell Vehicle + Booster battery: a vehicle
with high power fuel cell and relatively low
power battery to recover brake energy and
provide additional peak power

3. Fuel cell as battery loader: high power
battery and low power battery. The fuel cell is
mainly used as a battery loader.

For the following examples we used a reference
vehicle with the following parameters: vehicle
mass 1240 to 1280 kg depending on option, drag
resistance times front area 0.6m> and rolling
resistance 0.01. The total installed power in all
designs is 60 kW.

first design “Fuel Cell Vehicle” the fuel cell power

is 60 kW.

second design “Fuel Cell Vehicle + Booster” the

fuel cell power is 40 kW

third design “Fuel cell as battery loader” the fuel

cell power is 20 kW
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Figure 5 compares the requested velocity of the
hyzem cycle and the achieved velocity of the fuel
cell car for the third design “Fuel cell as battery
loader”. The first 500 s of the hyzem cycle
represent the urban part of the drive cycle, then up
to approximately 1500 s the extra urban part
follows. The last part is the motorway part.

Hyzem Cycle
Battery loader, #1

140

120 -

100 -

velocity / (km/h)

2500

3000

0 500

1000 1500 2000

time/s

Figure 5: Results of drive cycle simulation;
velocity as function of time

The battery loader can not follow the drive cycle at
higher velocities in contrast to the other designs.
Due to the relatively weaker voltage curve
compared to the other designs, which yields to
lower maximum torques of the electric engine.

Figure 6 compares the state of the battery for the
booster design and battery loader design. Over the
urban (first 500 s) and the extra urban part (to 1500
s) of the drive cycle the degree of discharge
decreases, which means the battery is loaded.
During the motorway part of the drive cycle, the
battery loader design needs a significant amount of
energy from the battery, whereas the state of the
battery for the booster design keeps almost stable.
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—o— battery loader, #1
—2— booster, #1
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Figure 6: Results of vehicle simulation; degree
of discharge as function of time.

Table 2 summarizes the results of the investigation.
It shows the energy consumption per km obtained
for the simulation of the three vehicle designs. The
energy content of hydrogen is approximately 120
MJ/kg. Thus the vehicles would consume around 1
kg hydrogen per 100 km.

The operation strategy reflects the control strategy
of the fuel cell system. Operation strategy #1
minimizes the auxiliary energy consumed to
operate the fuel cell system. The results show that
from the point of energy efficiency the second
design “Fuel Cell Vehicle + Booster” battery
combined with operation strategy #1 is the most
energy efficient. The results clearly show that the
energy consumption of the vehicle without battery
suffers from the lack of energy recovery.

Degree of Operation | Cons. Energy
hybridisation Strategy | (MJ/km)
#1 1.57
Fuel Cell Vehicle #2 1.65
#3 1.75
Fuel Cell Vehicle #1 1.09
+ Booster Battery #2 115
#3 1.21
Fuel Cell as a #l 1.17
battery loader #2 1.20
#3 1.23

Table 2: Energy efficiency for Hybrid fuel cell
vehicles
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Modeling of Fuel Cell Systems

Figure 7 shows the object diagram of a fuel cell
system where two stacks are electrically connected
in series. The stacks have to be cooled and
supplied with fuel and oxygen. In this example
hydrogen is used as the fuel. The complete
hydrogen supply containing tank and pressure
reducer etc. is hidden in the object H2 (left in
figure 7).

Oxygen is taken from air. As hydrogen H2 the
components of air supply (compressor, pressure
control, mass flow control etc.) are hidden in the
air object (right in figure 7).

The fuel cell stacks (each with 120 cells) are

h2_hosel

hZ_com...

water_rmodule

dlyc_module

*ir_combin .

directly cooled with water. Each stack has separate
inlets for air and water. Inside the stacks air and
water are combined and dragged out at one single
outlet. Therefore a separator is needed to separate
air and water.

The water(dark blue) and glycol(green) modules
includes pumps, heat exchangers, ducts and control
valves. The glycol module additionally contains a
fan and an air — glycol heat exchanger to cool the
glycol.

An electric load, which is connected to the anode
and cathode of the fuel cells, is used to examine
the fuel cell system with different load profiles.

alyedd_tpi...

ail_hozenr...
out

Fo_air_ghy ...

qlyc3d_pipe b2
o= 335

[Hsepamtor )
|-ph|_out =099

vabs = wabs ..

alyedd_pipe_, .

o= 100.0

Figure 7: Object diagram of a fuel cell system

The description of the fuel cell systems shows
that,
= thermo-hydraulic components are important
= the system has several closed loops
= advanced property routines are needed e.g.
covering phase change
One main problem of fuel cell systems is that
water is dragged with the exhaust stream. Despite
of the production of water in the fuel cell a
negative water balance could occur. In such a
situation an additional water tank would be
needed. The water balance is influenced by a
number of parameters which influence each other,
e.g. air supply strategy, cooling strategy, pressure
drops, load profile. Beyond the task of layout and
design of the components of fuel cell system, we
use our simulation models to adjust the system in
order to achieve water neutrality.

Summary

The DLR Institute of Vehicle Concepts uses
MODELICA in projects, where components of
fuel cell powered cars are developed. During last
year a number of libraries for several disciplines
have been created. We find MODELICA a very
promising tool to analyse the complex interaction
in such systems. Our models have brought us a lot
of insight on how the design of fuel cell powered
cars should be. They are especially useful for the
design of the components of the fuel cell system
and for the definition of operation strategies. The
work with MODELICA will be continued in the
future.
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Abstract

This paper details the use of the Modelica
modeling language for the cycle simulation of a
spark-ignited engine. After a brief overview of the
physical processes which must be modeled by a
predictive cycle simulation model, this work
emphasizes the two main challenges to the
developer of such a model in Modelica: zone
formation/destruction and calculation of realistic
thermodynamic properties of the cylinder contents.
The results illustrate that Modelica is capable of
handling the complex physical models required by
cycle simulation programs.

1 Introduction

Computer programs, which simulate the
thermodynamic cycle of an internal combustion
engine, have been developed over the last several
decades both to assist in understanding the
observed behavior of engines and to predict engine
performance and efficiency as functions of engine
design parameters (see [1], [2]). At Ford Motor
Company the internally-developed General Engine
Simulation (GESIM) program [3-6] has matured
sufficiently that it can accurately predict the effects
of intake and exhaust port design, combustion
chamber geometry, and valve timing on
combustion rate, fuel economy, and emissions for a
spark-ignited engine.

Although very useful, GESIM has some significant
limitations: it simulates only one cylinder of an
engine running at constant angular velocity and
reports the cycle averaged output torque. The
result is essentially a simulation of a dynamometer
test point for the engine. Currently, GESIM is
written in procedural languages (FORTRAN and
C), and its capabilities cannot readily be extended
to include the transient multi-cylinder behavior
required to simulate real engine operation in a
vehicle. An effort is now under way to capture
GESIM's physical models in Modelica [7, §],

thereby retaining its current capabilities, while
removing the limitations on its applicability.
Previous work [9, 10] proved the feasibility of this
type of detailed powertrain modeling in Modelica.
This paper, after a brief overview of the physical
processes which must be modeled by a predictive
cycle simulation model, focuses on the two main
challenges to the developer of such a model in
Modelica: zone  formation/destruction and
calculation of realistic thermodynamic properties
of the cylinder contents.

2 Overview of Cycle Simulation

Physics
The goal of a cycle-simulation program is to
perform a thermodynamic analysis of the engine
cylinder contents through each engine cycle, an
overview of which is shown in Figure 1:

a) The mixture is prepared during the gas
exchange period which extends from the
time the exhaust valve opens (EVO) until
the intake valve closes (IVC); during this
period the burned gases are expelled, and a
fresh mixture of fuel and air is inducted
into the chamber. The mixture is then
compressed until the piston reaches a
position near top dead center (TDC).

In a spark-ignited engine, combustion is
then initiated by the firing of the spark
plug.

The mixture is then burned, raising the in-
cylinder pressure and temperature
considerably. In contrast to the process in a
diesel engine, where combustion occurs
throughout the chamber simultaneously,
the mixture is consumed through the
propagation of a well-defined flame front
across the combustion chamber.

After the flame consumes all the
combustible mixture, usually some time
after TDC, the gas continues to expand,
transferring energy to the piston as it
continues its downward trajectory.

b)

d)
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(a) Gas exchange

(b) Just after spark

(c) TDC

(d) Just before EVO

(e) Just after EVO

Figure 1. Modeling of cylinder contents at various points in engine cycle

e) When EVO is again reached, the process
begins anew.

Successful modeling of the cycle requires
capturing the essential physics of all the processes
described above. In this paper, however, we
concentrate on those processes critical to the
thermodynamic analysis: combustion by a
propagating flame and the computation of realistic
thermodynamic properties of the gases comprising
the in-cylinder mixture.

3 Combustion Modeling

The traditional approach taken to model the spark-
ignition combustion process is suggested by Figure
1: we divide the cylinder contents into two (or
more) thermodynamic zones, each with its own
temperature and composition. Behind the flame is
a zone comprised of only burned gases at high
temperature (the burned zone). Ahead of the flame
is the unburned zone, containing the remnants of
the original mixture at a much lower temperature.

Each zone is regarded as a homogeneous mixture
of N species (or pseudo-species), each modeled as
an ideal gas. The zone must then satisfy the First
Law of Thermodynamics,

du . dVv
= =0-P, 1
dt Q dt M
the ideal gas law,
PV = MRT, (2)
and the conservation of mass for each species
dm, .
— =3, 3
r i A3)
where
O=H+q, “4)
M=>m, (5)
m, = MX, (6)
U =Mu (7)

R=> XR, =RZ£ ®)
i . M
and
U is the total internal energy of the
zone
Q' is the total energy flow into the zone
P is the cylinder pressure
V is the volume of the zone
H is the total flow of enthalpy entering
the zone
q, is the heat transferred from the
chamber walls to the zone
M is the total mass in the zone
R is the overall (mass-specific) gas
constant for the zone
T is the temperature of the zone
m, is the mass of species 7 in the zone
X is the mass fraction of species i in
l the zone
S is the total flow of species i of the
' mass flow entering the zone
u is the specific internal energy of the
zone
u,(P,T) is the specific internal energy of
species i and is a known function of
Pand T
R is the universal gas constant
u,(P,T) is the average molecular weight of

species i and is a known function of
Pand T

In addition to a set of equations (1)-(8) for each
zone z, a constraint on the total volume must be

added:
V,=>V. )
where
Vv, is the total volume of the chamber

The task of the modeler is to complete the system
of equations by supplying conditions to specify the
flows appearing in equations (1)-(8) for all zones.
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3.1 GESIM Implementation

GESIM makes two modifications to the above
approach:

1. During mixture preparation (gas exchange
and compression), the contents are treated
as a single zone. No solution is sought for
the quantities in the burned zone.

2. After combustion is initiated and as soon
as the flame front makes contact with the
surface of the chamber, the burned zone is
further subdivided into an adiabatic core
and a thermal boundary layer between the
core and the wall.

GESIM implements the engine cycle of Figure 1 as
follows:

a) The system to be solved consists of
equations (1)-(9) for a single (unburned)
zone, supplemented by the following
relationships for the flows:

Sui = zvavi (10)
H, =Y mh, (11)

where
m_1s the mass flow into the zone

through valve v
s 1s the specific enthalpy of the mass
flow entering the zone through

valve v
'y is the fraction of species i of the
" mass flow entering the zone

through valve v
b) At spark, the solution is interrupted and a
kernel (diameter ~ 1 mm) of burned gases
is instantly created from the unburned
mixture. This forms the initial state for the
adiabatic zone. Equations (1)-(8) for the
adiabatic zone are added to the system, and
flows for both zones are now specified by

S =-m,X, (12)
H, =-mh, (13)
for the unburned zone and
Sy =1, B({X,}) (14)
H, =nh, (15)

for the burned zone where
; is the burn rate as calculated

n,
by the flame propagation
model

B.({X,}) is the fraction of species

remaining after a mixture of
composition X, is burned.

h, is the specific enthalpy of
the unburned zone

c¢) When the flame contacts the wall, the
solution is interrupted and a thin boundary
layer is initialized and the system of
equations altered in a manner similar to b)
above. The details are omitted here.

At EVO, the solution is again interrupted.
All zones are mixed together instantly to
form a single zone, which represents the
initial state for the unburned zone for the
next cycle.

The set of equations is reduced to those of
a) above and the solution is resumed.

d)

e)

3.2 Modelica Implementation

As GESIM is an in-house product written in
FORTRAN, it has complete control over the
solution method- it can interrupt the solution at
will to expand or shrink the system of equations,
reinitialize, and resume. In Modelica, however,
where the number of equations is fixed, we adopt
two modifications to GESIM's approach:

1. The burned zone (i.e. the adiabatic zone
and boundary layer) exists throughout the
simulation. Each zone satisfies equations
(1)-(8), and equation (9) is imposed on the
volumes. During the mixture preparation
period, when the burned zone does not
exist in GESIM, we require that it have a
small mass (less than the initial spark
kernel) and have temperature and
composition equal to that of the unburned
zone. The solution for the two zones
degenerates to an equivalent single-zone
simulation during this portion of the cycle.

2. GESIM effects the transitions between 1-
zone and multi-zone behavior essentially
by simulating impulses. In the absence of a
stable and mature impulse capability in
Modelica, we choose to perform these
transitions over a finite, but short time.

Since all zones are always mathematically active,
enough conditions must be supplied to specify all
the flows. While our model includes all three
zones, in this paper we discuss only the aspects of
modeling two zones in order to illustrate the
approach. Adding the boundary layer is a relatively
straightforward extension of the technique.

During mixture preparation, the "burned" zone is
just a dummy placeholder, containing a small
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amount of mass in its unburned state, which will be
the first mass to be burned in forming the initial
kernel after spark. We require that both zones have
identical temperature and composition. Since (5)

and (6) imply that ZXI. =1, only N-1

components of the composition vector can be
independently constrained. Hence, our condition
can be expressed as

AT =T, -T,=0 (16)
AX,=X,—-X, =0, 1<iSN-1 (17)
AV =V, -V, =0 (18)

where
Ve is a volume small compared to that
of the initial spark kernel

Denoting the time of EVO as 7,, we achieve the

transition from combustion to the above conditions
by mixing the contents of the two zones over a

short time 7, ~100us ; ie., for
t,<t<t,=t,+1,:

AT =AT,0(t) (19)

AX, =AX,0(t), 1<i<N-1 (20)

AV = AV,o(t) Q1)

where the subscript 0 denotes the value of a
quantity at EVO and

o) = (%)2 .

N

(22)

Referring again to Figure 1, the Modelica
implementation of the cycle is as follows:

a) During mixture preparation, a dummy
burned zone (shown in black) exists.
Except for the transition time at EVO, its
volume is V. i

indistinguishable from the main unburned
zone. To specify the flows, we first
introduce modified forms of (10)-(11):

Su[ + Sb[ = va‘)’}vi

Otherwise 1t 1is

(23)

H,+H,=> mh, (24)
The constraints (16)-(18) or (19)-(21) are
sufficient to complete the specification for
the transition at EVO or the main portion
of mixture preparation, respectively.
Differentiating both of the above sets of

b)

equations, we can combine them into a
single set. Between EVO and spark, then

dAT
—— = AT, At 25
dt M) =
%:Mm;ﬁ(z), 1<i<SN-1 (@6

dAV
—— = AV At 27
v A1) @7

where

ﬂ(t):imin(O,t_tF). (28)

T

N N
The transition at spark from mixture
preparation to combustion is accomplished
in two steps.

1. Denoting the time of spark as #,, we
first burn the contents of the "burned"
zone over a time 7, ~1us; ie., for

t, <t<t, =t, +7,, the flows are

specified by
S, =0 (29)
H, =0, (30)
. M
Sy = [BUX,D-X,]1 6D
1
H,=0 (32)
where the subscript I denotes a value at
ignition.
2. At t=t,, two-zone combustion

begins. Equations (12)-(15) are used
unchanged, just as in GESIM, with the

burn rate m, initially set high enough

to assure that, by =17, +1us, a
burned zone volume will be achieved
equal to that of GESIM's initial spark
kernel. As soon as the required volume
is attained, the flame propagation
model is used to calculate the burn
rate.

The main phase of combustion is identical

to that of GESIM.

At EVO, expansion ends. The current time

is assigned to 7,, and we change over to

the mixture preparation phase.
The next cycle begins.
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Figure 2 shows schematics for successive levels of
the instance hierarchy in the Modelica
implementation of a single-cylinder version of this
model. The engine itself is shown in Figure 2(a).
Its cylinder component appears in Figure 2(b);
it has been designed to facilitate construction of
multi-cylinder ~ configurations  through its
replication. The contents component of the
cylinder, shown in Figure 2(c), models the
thermodynamics of all gases residing in the
cylinder. Finally, in Figure 2(d) we see the
combustion component, the main focus here.

The combustion component controls the
creation, evolution, and destruction of the burned
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(a) single cylinder engine
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(c) cylinder contents

zone in the manner discussed above by
coordinating the activities of a parallel
configuration of three subcomponents:
mix zones to mix burned and unburned together
at EVO by specifying the flows according to a)
above; kernel burn to create the initial spark
kernel as described in b) above; flameadv to
grow the burned zone according b) and c). Each of
these  components  supplies  non-vanishing
contributions to the total flow only during the
portion of the cycle that it is meant to control.
Figures 6-9, included at the end of the paper,
contain code fragments that provide some insights
into how the models described in this section have
been implemented.

(b) one cylinder

-
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(d) combustion model

Figure 2. Schematic representations of the engine model hierarchy
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4 Thermodynamic Properties
4.1 The "MediumModel" Idiom

Different engine simulation applications require
different levels of detail. One of the important
determinations to be made is what level of detail is
required in computing the thermodynamic
properties of the cylinder contents. In some cases,
we can treat the medium flowing through the
engine as simply air but in other cases we might
need to allow for changes in composition of the
gas that would require tracking several chemical
species.

At first glance, it would appear that different
component models (e.g. valves, control volumes)
would be required for each of the possible media.
But if we look carefully at the issue, we find that
the properties of the selected medium are
orthogonal to the equations of the various
thermodynamic processes. In other words, if the
models are formulated correctly, the choice of
media can be made independently of the
components used to model the engine cycle.

In practice, this is achieved by using what we refer
to as the MediumModel idiom. The basic idea
behind this idiom is to define a partial
package that describes the interfaces of the
various models, connectors, efc. that will be
required to implement all of our component
models. However, no implementation is provided
by this partial package. This is essentially a
Modelica adaptation of the "Kit" or "Abstract
Factory" pattern found in [13]. In the same way
that a "Kit" might be used as a means of
instantiating compatible GUI toolkit components
such as  scrollbars, menus, efc., the
MediumModel is used to instantiate consistent
sets of property models, connectors, efc.

The complete definition of the MediumModel
package definition is too lengthy to include here,
but it consists mainly of three things. First, it
contains a partial model definition that
defines the interface for computing medium
properties. Second, it contains partial
connector definitions that include the
appropriate number of chemical species flowing
between components. Finally, it contains several
partial function definitions for computing
useful quantities (e.g. air fuel ratio) using medium
composition information.

4.2 Property Calculations

As discussed previously, the conservation of
energy for the various combustion zones in the
cylinder is at the heart of the cycle simulation tool.
In addition, a specific medium model is needed to
determine the thermodynamic properties (e.g.
specific enthalpy, h, and specific internal energy, u)
of the cylinder contents used in Egs. (4), (7).

In simple combustion simulations the cylinder
contents can be treated as a single ideal gas.
Constructing a medium model for a single ideal
gas is relatively easy. Since the thermodynamic
properties vary as a function of temperature only,
they can be calculated from a look-up table or a
polynomial regression of tabulated data. However,
for detailed combustion systems the medium is
assumed to be a reacting mixture of ideal gases
(e.g. the fuel vapor, air, and combustion products).
Therefore, in order to compute the contribution of
each species to the mixture property we must first
determine the relative amounts of the various
species in the mixture. This calculation requires the
solution of the nonlinear system of equations that
define chemical equilibrium for the mixture.

The steps required for the property calculation are
detailed in [11] and can be summarized as follows:
1. Solve the nonlinear system of equations that
defines chemical equilibrium for the
combustion mixture to yield the mixture
composition
2. Calculate the contribution of each species to
the mixture property
3. Calculate the mixture property from the
individual species contributions and the
mixture composition

While the calculations in steps 2 and 3 above are
simple evaluations, the nonlinear solution of the
chemical equilibrium problem is certainly
nontrivial. In the GESIM property models the
combustion products are comprised of twenty-one
species; thus, obtaining the mixture composition
requires the solution of a set of twenty-two
nonlinear equations for chemical equilibrium.
Furthermore, recall that h and u are functions of P,
T, and ¢ (the equivalence ratio of the combustion
products).  Therefore, the property calculations,
including the determination of the equilibrium
composition, must be computed for each
thermodynamic zone in the engine model
whenever there is a change in the pressure,
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temperature, and/or composition of any of the
thermodynamic zones.

While this method for calculating the mixture
properties could be implemented directly in
Modelica, it would require the cycle simulation
tool to repeatedly compute the solution of the
chemical equilibrium problem, a formulation that
has several drawbacks. First, the repeated solution
of the nonlinear equations used to determine the
equilibrium  chemistry is  computationally
demanding when compared to the other behavior
equations involved, a formulation which would
result in slower simulation times. In addition, the
chemical systems introduce other issues such as
robustness of the nonlinear solution method and
scaling of the chemical concentrations. So, rather
than calculate the needed properties on-demand
during the simulations, an alternative approach is
to pre-compute the properties throughout the
expected domain of operation and simply
interpolate as needed during the simulations. The
ModelicaAdditions package contains a
Tables package that includes models for linear
interpolation in one and two dimensions,
CombiTablelD and CombiTable2D
respectively. However, the mixture properties are
functions of three variables (P, T, and ¢). Even tri-
linear interpolation would not suffice as continuity
of the mixture properties and gradients could not
be insured. It can be shown [11] that this
continuity in gradients is important for fast and
accurate simulation.  Furthermore, maintaining
continuous gradients allows for index reduction in
Modelica and would certainly be of benefit to the
numerical integration schemes in Dymola [12].

As a result, higher order interpolation schemes are
required to provide the desired continuity. They
involve the construction and evaluation of
polynomials to yield the interpolated values and
are more difficult to implement since more
information is needed about the function other than
simply its value at each grid point (i.e. the
derivatives of the function, additional function
values at adjoining cubes, efc.).

Though not detailed in this work, a flexible
modular scheme has been developed to
automatically formulate the chemical equilibrium
problem and solve for the equilibrium chemistry
and mixture properties over a wide range of engine
operating conditions (P, T, and ¢). The remainder
of this section discusses the implementation of a
higher order interpolation scheme in Modelica with

the assumption that a file has been created that
contains all the necessary data to perform the
interpolation.

4.3 Hermite Interpolation

Based on the requirements detailed in the previous
section, the interpolation scheme must be three-
dimensional and provide continuity of the
interpolated function value and its derivative. One
scheme that satisfies those criteria is Hermite
interpolation [14]. The Hermite interpolating
function for a generic property p is defined in
standard tensor notation as follows:

pluv,w)=F,u)F,(v)F,

m n

(Wb 33)

where the following vectors define the cubic
blending functions:

Imn

F(u)=2u" -3u” +1
Fz(u)=—2u3 +3u’ 34)
Fy(u)=u’-2u> +u
F,(u)=u’—u’

and similarly for F(v) and Fy(w). The blending
functions clearly show the cubic nature of the
interpolating polynomial and are evaluated based
on the point within the cube at which the
interpolated value is sought, denoted by the star in
Figure 3.

(i+1,j+1,k+1)
(i,j+1,k+1)

(i+1,j,k+1)

(ij,k+1)

*

(,j+1,k)

(i+1,j+1,k)

w

(ij,k)

(i+1,j,k)
Figure 3. Hermite interpolation cube

The tensor by,, is comprised of externally-
provided data about the function p and its
derivatives, data that is required at the eight cube
vertices shown and labeled in Figure 3. The data
consists of eight pieces of information at each of
the eight vertices, a total of 64 pieces of
information for a single cube: the function value,
three tangent vectors, three twist vectors, and a
vector defined by the third-order mixed partial
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derivative of the function. See [14] for a complete
description of the Hermite interpolation scheme
and data required.

Clearly a significant amount of data is required for
the interpolation of the thermodynamic properties
h and u. With some symbolic manipulation of the
property equations, it is possible to derive all the
necessary function and derivative data analytically
without resorting to numerical differentiation. This
data is available to Modelica in the form of a
Matlab .mat file. A typical 30 x 45 x 45 data file
is approximately 7.6 MB.

4.4 Modelica Implementation

Once we have decided on an appropriate
interpolation scheme and collected all the property
data required, the next step is to implement the
interpolation scheme so that it can be used from
within our Modelica models. In our
implementation, the interpolation and gradient
calculations (associated with the interpolation
function via the derivative annotation) were
written in "C". These functions are then called as
external functions by native Modelica
functions.

While the steps required are straightforward, there
are several implementation details worth
discussing. For example, in order to perform the
interpolation, the property data must be loaded and
made available to the "C" language routines.
Rather than load the data (which is quite
voluminous) into Modelica arrays and pass it as an
argument to the various functions, we chose
instead to load the data into memory and simply
refer to it using an integer identification number.
As a result, the only data passed around in the
Modelica models is the unique ID number that
identifies where the data can be found in memory.
In the future, the interpolation routines will be
upgraded to use the mnewly adopted
ExternalObject class in Modelica 2.0 [8] that
was introduced to provide more direct support for
these kinds of applications.

Another issue with the interpolation routines is to
improve performance by implementing some form
of caching mechanism. There are two reasons to
implement a cache mechanism. First, the
simulation tool may not entirely optimize away
redundant function calls (i.e. calls with the same
arguments and therefore the same results). In such
cases, a cache can be used to store previous results

and avoid expensive recalculations.  Another
reason to implement a cache is to allow for
common calculation to be shared among the
various interpolation-related functions. For
example, calculating the gradient of the
interpolating function requires much of the same
data as the function evaluation itself. These
common quantities can also be stored in a cache
and reused across calculations.

Once we have implemented the interpolation
routines, we can move on to implementing a
medium model that utilizes these interpolation
routines. This calculation involves two different
interpolations. First, the properties of the gaseous
air-fuel mixture (which is treated as a non-reacting
mixture of ideal gases) can be computed via
interpolation in temperature. Then, the properties
of the reacting combustion products are computed
using interpolation in pressure, temperature and
equivalence ratio. These two sets of properties are
then combined to form a single set of properties for
the entire air, fuel and combustion products
mixture.

Although we implemented our own interpolation
routines for this purpose, we will work toward
incorporating similar functionality into the
Modelica Standard Library so that the routines can
be more fully optimized and so that future users
will be able to simply reuse what is in the library
rather than having to create their own.

5 Cycle Simulation Results

The single-cylinder Modelica model was run for 1
second of simulation time at 1500 rpm at slightly
lean conditions. By the end of the tenth engine
cycle, approximately 0.8 seconds, the model has
effectively converged to "steady-state"; i.e., each
cycle is a repeat of its predecessor. Some results
for the tenth cycle are shown in Figures 4-5.

Figure 4 plots the temperature of all three zones.
During mixture preparation the temperatures are
equal, as is required. At spark, they separate, with
the adiabatic temperature exceeding 2600 K, the
unburned zone peaking at around 900 K, and the
boundary layer achieving a value in between.
These temperatures agree well with those
computed in GESIM and are typical of those
encountered in spark-ignited engines. At EVO,
when the zones are remixed, all temperatures again
quickly collapse to a single value, as expected.
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Figure 4. Zone temperatures (converged cycle)

The volumes of the three zones, along with the
total chamber volume, are plotted in Figure 5.
Since some of the zones during parts of the cycle
are artifices of our modeling approach, we cannot
use measurements or GESIM to gauge their
accuracy. However, they do behave as anticipated.
During mixture preparation, when the adiabatic
zone and the boundary layer do not appear in
GESIM, their volumes are indeed insignificant.
When combustion begins those two zones grow
rapidly at the expense of the unburned zone,
eventually reducing the size of the latter to
insignificance at the end of combustion. At EVO,
when the zones are remixed, all zones quickly
revert to their values for mixture preparation.

6 Conclusions

This paper outlines the handling of zone
formation/destruction and calculation of realistic
thermodynamic properties of the cylinder contents
in Modelica for engine cycle simulation. The
results illustrate that Dymola and Modelica are
capable of handing the complex physical models
required for predictive cycle simulation.
Furthermore, the techniques used provide
illustrative examples for the handling of similar
behavior in different applications.
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Code Fragments

This section contains code fragments to illustrate
some of the points raised during discussion of zone
formation and destruction.

constant
constant
constant

Integer
Integer
Integer

mixprep=1;
ignstepl=2;
ignstep2=3;
constant Integer propagating=4;
constant Integer expanding=5;
parameter Modelica.SIunits.Time tau=le-4;
parameter Modelica.SIunits.Time ign_delta=le-6;
Integer status;
discrete Modelica.SIunits.MassFlowRate
ignition_rate "Combustion rate during ignition";
discrete Modelica.SIunits.Time endstep(start=tau) ;
equation

mix_zones.mix.signal[1l] = status == mixprep;
mix_zones.tfinal.signal[l] = endstep;
kernel_burn.burn.signal[l] = status == ignstepl;

kernel_burn.burn_rate.signal([1l] = burn_rate;
flameadv.burn.signal [1] = status == ignstep2 or
status == propagating;

flameadv.burn_rate.signal[1] = burn_rate;

if status == ignstepl or status == ignstep2 then
burn_rate = pre(ignition_rate);
elseif status == propagating then

// post_ignition rate is computed by flame
// propagation model
burn_rate = post_ignition_rate;

else
burn_rate = 0.0;

end if;

algorithm

when status == mixprep and spark.signal[l] then
status := ignstepl;
endstep := time + ign delta;
kernel mass := pre(burned mass) ;
ignition rate := kernel mass/ign delta;

end when;

when status == ignstepl and time > endstep then
status := ignstep2;
endstep := time + ign_delta;

ignition_rate := pre(burned_mass)*
(2.0*initial_kernel_ size/pre (burnedv) -
1.0)/ign_delta;
end when;

when status == ignstep2 and
(time > endstep or
burnedv/initial_kernel size > 1.0) then
status := propagating;
end when;

when status <> mixprep and

endofexpansion.signal[1] then
status := mixprep;
end when;
when status == mixprep then
endstep := time + tau;
end when;

Figure 6. Excerpt from the combustion model

parameter Modelica.SIunits.Volume Vbtarget
"Unburned kernel size";

constant Integer nindep=MediumModel.nspecies - 1
"Number of independent species fractions";

discrete Modelica.SIunits.Time endstep;

Modelica.SIunits.MassFraction dX[nindep] ;

Modelica.SIunits.Temperature dT=a.T - b.T;

Real dv=1.0 - Vbnorm;

Real Vbnorm(start=5, fixed=true);

discrete Modelica.SIunits.Temperature deltaT;

Modelica.SIunits.MassFraction deltaX[nindep] ;

discrete Real deltav

discrete Real r;

Real rate_expr;

equation
// component a refers to the unburned zone, b to
// the burned zone

a.P = b.p;
a.g + b.g = 0.0;
a.mdot = -b.mdot;

// volume b.signal[1] is the volume of the

// burned zone

Vbnorm = volume b.signal[l]/Vbtarget;

rate_expr = 2.0*r"2*min (0.0, time - pre (endstep) ) ;
dX = a.X[l:nindep] - b.X[l:nindep];

if mix.signal[1l] then // true at EVO

der (dV) = pre(deltaV)*rate_expr;
der (dX) = pre(deltaX)*rate_expr;
der (dT) = pre(deltaT)*rate_expr;
else
a.q = 0.0;
a.mdot = zeros (MediumModel.nspecies) ;
end if;
algorithm
when mix.signal[1l] then
deltaX := dX;
deltaT := dT;
deltaVv := dv;
endstep := tfinal.signall[1l];
r := 1.0/ (endstep - time);

end when;

Figure 7. Excerpt from the mix zones model

equation
// Component medium is the burned zone
if burn.signal[1l] then
// MediumModel.BurnMixture computes the
// composition after a given mixture is burned
medium.mdot = burn_rate.signal[1]*

(Xbase - MediumModel.BurnMixture (Xbase) ;
else
medium.mdot = zeros(MediumModel.nspecies) ;
end if;

medium.qg = 0.0;

algorithm
when burn.signal[l] then
Xbase := medium.X;
end when;

Figure 8. Excerpt from the kernel burn model

equation
a.qg + b.qg = 0;
if burn.signal[1l] then
a.q = burn_rate.signal[l]*a.h;
a.mdot = burn_rate.signall[l]*a.X;
// MediumModel.BurnMixture computes the
// composition after a given mixture is burned

b.mdot = -burn rate.signal[1l]*
MediumModel .BurnMixture (a.X) ;
else
b.g = 0;
a.mdot = zeros(MediumModel.nspecies) ;
b.mdot = zeros(MediumModel.nspecies) ;
end if;

Figure 9. Excerpt from the £1ameadv model
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Abstract

This papers presents the current results of the develop-
ment of a Modelica™ library for CO,-Refrigeration
systems based on the free Modelica library Ther-
moFluid.

The development of the library is carried out in a re-
search project of EADS Airbus and the TUHH and is
focused on the aim to get a library for detailed numer-
ical investigations of refrigeration systems with the re-
discovered, natural refrigerant carbon dioxid (CQ,).
A survey of the CO,-Library is given and the modeling
of CO,-Heat exchangers is described in detail. A com-
parison with steady state results of heat exchangers is
presented and results of a transient simulation run are
discussed with respect to plausibility.

1 Introduction

The fact of climate changes due to ozone depletion and
globale warming has been directed to significant re-
search activities on the field of refrigeration and air-
conditioning since the 1990s [7]. The objective of
the investigations may yield to a long-term solution.
Therefore so called natural, resp. alternative refriger-
ants with no Ozone Depleting Potential (ODP) and no
or a very low Global Warming Potentail (GWP) are in-
vestigated and new technical developments are driven.
Carbon dioxid (CO,, R 744) as a natural refrigerant
was rediscovered and has recently a very high potential
to substitute currently used refrigerants in the area of
mobile/automotive air-conditioning and refrigeration.
This development is caused by the excellent thermody-
namic, transport and environmental properties of CO;.
Due to the critical data of CO, the process must be re-

*pfafferott@tu-harburg.de
Tschmitz@tu-harburg.de

alized as a transcritical cycle, which requires special
control strategies.

In order to obtain a better understanding of the com-
plex thermodynamic and hydraulic behaviour of CO;,-
Refrigeration processes under steady and dynamic
boundary conditions the modeling of components of a
CO,-System has been realized. A CO,-Model library
in Modelica™ was built up by using base classes
of the free Modelica library ThermoFluid [14]. The
scope of the CO,-Library is the modeling of the sys-
tem behaviour by consideration of the most important
physical effects like compressible flow, heat transfer,
pressure drop, large capacities and time delays.

The development of a CO,-Library is carried out in a
research project of European Aeronautic Defence and
Space Company (EADS) Airbus and the Department
of Technical Thermodynamics of the Technical Uni-
versity Hamburg—Harburg (TUHH). The main objec-
tive of the project is a proof of concept of a CO, based
integrated cooling system on board of future airliners.
For this purpose numerical and experimental investi-
gations are in progress.

2 Carbon dioxid as refrigerant

Carbon dioxid was used as a refrigerant until the
1930s, but was then replaced by the synthetical refrig-
erants (HCFCs) that offered lower absolute pressures,
simpler techniques and higher efficiencies in conven-
tional vapor compression cycle. Due to the ODP and
the GWP of the synthetical refrigerants substantial re-
search activities on the field of refrigerants are initiated
since the 1990s. Recent research on carbon dioxid is
pushed for mobile, resp. automotive air-conditioning
and refrigeration and has focused on the development
of a transcritical cycle [2]. Figure 1 illustrates the
GWP for the three refrigerants R 12, R 134a and COy;
the use of R 12 is forbidden in europe since the be-
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ginning of 1990s. The refrigerant R 134a today is
the most common refrigerant in mobile and automo-
tive air-conditioning systems.

9000 - 8500
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7000
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o 5000
© 4000
3000
I
2000 1300
1000
0 ' '
R 12 (HCFC) R 134a (CFC) co2

Figure 1: GWP of three different kind of refrigerants;
GWP is standarised to 1 for CO,

2.1 CO;-Refrigeration cycle

The temperature and pressure at the critical point of
CO, are 304,13 K and 73,77 bar. Therefore, the re-
frigerant cycle has to be operated transcritically when
the ambient temperature is near or higher than the crit-
ical temperature. In this case the evaporation takes
place at subcritical pressure and temperature and the
heat rejection at supercritical state. At the supercriti-
cal status area pressure and temperature are not cou-
pled anymore; so a CO,-System has one more degree
of freedom than conventional vapour compression cy-
cles.

4 3

Expansion Internal

Valve Heat Exchanger
Cooling 5
Medium|

Evaporator
- Ambient Air
— Receiver

Compressor

W

Figure 2: Schematic diagram of a CO,-Refrigeration
cycle

As shown in figure 2, the main components of a CO,-
Refrigeration cycle are compressor, gas cooler (instead
of a condenser because of the supercritical heat rejec-

tion, that occurs sometimes), internal heat exchanger,
expansion valve, evaporator and low-pressure receiver.
The process path of a transcritical CO,-Cycle is shown
in figure 3. The path represented by 1-2-3-4-5-6 shows
compression (1-2), isobaric heat rejection at gas cooler
(2-3), isobaric cooling in the internal heat exchanger
(3-4), adiabatic expansion (4-5), isobaric evaporation
(5-6) and isobaric superheating at internal heat ex-
changer (6-1). In steady state the low-pressure receiver
has no influence of the process. For more detailed ex-
planation of the CO,-Cycle see [6], [5].
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Figure 3: ph-Diagram with states of a CO,-
Refrigeration cycle

3 CO;-Library

The aim of the modeling is to create a library with
physical based models of the above mentioned com-
ponents. Such a library with models of these com-
ponents and of additional components for testing, like
sinks and sources, can be used for investigations of
both, single components and complete refrigeration
cycles. Furthermore it is of great interest to make dy-
namic simulation as well as steady state simulation of
CO,-Systems and single components, especially heat
exchanger. Up to now, there is no commercial or free
available simulation tool enabling dynamic and steady
state simulation of CO,-Cycle and -Components with
only physical based models. There are some tools for
steady state simulation but they need measured chara-
teristics of the heat exchangers as an input.

The numerical investigation of heat exchanger com-
ponents is of particular interest to find optimized heat
exchangers for limited space. On the other hand the
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concept of connectors in Modelica provides the oppor-
tunity using the same heat exchanger models for single
component simulation as well as for a complex cycle
simulation.

There are different backgrounds for modeling and
simulation of complex, closed CO,-Refrigeration cy-
cles. The first aim is a better understanding of the
complex, coupled thermodynamic, fluidmechanic and
heat transfer effects in a transcritical operating CO;-
System. Here the influence of some typical sys-
tem parameters like compressor speed, heat exchanger
and receiver geometry and refrigerant filling can be
tested. Furthermore aspects of the control of the sys-
tem should be investigated. Finally, the library is used
for simulation and evaluating of different system de-
sign in various applications.

The library is based on free Modelica library Ther-
moFluid. The ThermoFluid library, especially the
base classes and partial components, is in regard to
the implementation of the three balance equations (en-
ergy, mass, momentum) and the method of discretiza-
tion (finite volume) very well suited for modeling of
CO,-Systems. In cooperation with the developers
of ThermoFluid a high accuracy medium model for
CO, based on an equation of state was implemented
for the whole fluid region [9].

3.1 Survey of CO;-Library

So far, the following models and classes have been im-
plemented:

e Heat transfer and pressure loss relations for
the whole fluid region:
This constitutive equations are used for the calcu-
lation of heat flux and pressure drop due to fric-
tion, which are added to the balance equations of
energy and momentum [10], [11].

e Models for the air side of heat exchangers:
The balance equation of energy is implemented
by the finite volume method [8]; well suited heat
transfer correlations for the air side have been im-
plemented [4].

¢ Pipes and heat exchangers:
Based on the medium model, classes of Ther-
moFluid, the heat transfer and pessure drop cor-
relations and the air side models pipes and heat
exchangers have been modelled. The pipes are
modelled with discretized parameters.

o Compressor:
The model is made for a reciprocating compres-
sor. Therefore, the mass flow is calculated by
the general equation of a reciprocating compres-
sor and enthalpy change is calculated according
to the isentropic efficiency. The compressor is
modelled with lumped parameters.

e Expansion valve:

The throttling process is treated as isenthalpic and
the pressure drop is calculated according to the
flow coefficient of the valve [1]. The flow coeffi-
cient results by the specific valve contruction and
the opening ratio of the valve. Therefore, the flow
characteristic of the valve has to be known and
the model has to be parameterized with the cor-
responding values. For the valve model lumped
parameters are used.

e Receiver:
Up to now, a simple receiver model is imple-
mented. The model seperates the incoming two
phase flow into its vapour and liquid phase. As
long as the liquid level of the receiver is lower
than the outlet height saturated vapour leaves;
if the liquid level reaches the outlet height a
two phase flow leaves up to a height only liq-
uid leaves. Due to the sophesticated construction
of CO;-Receivers in most of the operating modes
a two phase flow leaves the receiver even if the
liquid level is much lower the outlet height. It
seems to be not easy to model this components
with physical correlations; so the modelling is in
progress.

¢ Flow splits and junctions:
For this models classes of ThermoFluid are used;
for the pressure drop in the momentum equation
special correlations for splits and junctions have
been implemented taking the ratio of mass flow
into account [3]. The change of mass flow direc-
tion is taken under account in the implementation.

4 Examples of Modeling

4.1 Modeling of heat exchangers

So far, available heat exchangers for COs-
Refrigeration systems are compact prototype
components from the automotive application, see
figure 4. The heat exchangers are built up as follows:
The CO;,-Flow is splitted in different streams through
so called Flat-Tubes (or Multiport-Micro-Tubes),
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see figure 5. The Flat-Tubes consists of a number of
parallel bores in which the CO, flows. The refrigerant
is splitted and collected at the feeder and manifold
of the heat exchangers. Outside the heat exchanger
air passes over slitted fins enhancing the air side heat
transfer area and heat transfer coefficient, see figure 6.

Figure 4: CO,-Gas cooler

Figure 5: Cross section of a Flat-Tube

In a heat exchanger different flow pathes for the
CO, are possible; usually gas coolers are constructed
as crossflow and evaporators are built up as cross-
counterflow heat exchangers. In figure 7 the schematic
flow path of CO, through a crossflow heat exchanger
is shown; e.g. here the COhas three transits through
the heat exchanger. At every transit the CO,-Flow is
splitted in a number of parallel Flat-Tubes, the bores
of every Flat-Tube are flowed through concurrent.

For the modeling of the CO,-Flow a homogenous dis-
tribution of the flow is supposed. By this assump-
tion the flow is modelled by one single pipe. The

Figure 6: Slitted fins

CO, Outlet

‘ Mass flow air

Figure 7: Flow path through a cross flow heat ex-
changer

heat transfer area and the flow cross section are deter-
mined by the geometry and the number of all concur-
rent flowed pipes; whereas the heat transfer coefficient
and the pressure loss is calculated with the mass flow
rate and the geometry of a single bore.

The assumption of homogenous mass flow and tem-
perature distribution is also made for the air side.
Therefore, it is possible to model the air flow through
one air channel. In the modeling can be assumed that
the slitted fins and the Flat-Tubes create a triangular
channel, see figure 6. So the total mass flow of air is
scaled down to the mass flow through one channel by
division through the total number of air channels of the
heat exchanger. At the air side only the energy balance
equation is implemented by the finite volume method.
The medium properties are introduced by polynomi-
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nales fitting the properties well in the temperature in-
tervall of 253.15 K to 342.15 K. Because the air side
heat transfer is much lower than on the refrigerant side,
a detailed physical model based on characteristic num-
bers and geometry parameters and validated on exper-
imental investigation has been found by a literature re-
view and is implemented [4].

The wall model is taken from the ThermoFluid library.
It is modeled as a capacitive, cylindric wall.

This specific models of CO,-Pipe, wall and air have
to be connected in the right way to get a reasonable
model of a heat exchanger. For the connection the heat
connectors of ThermoFluid can be used; the conneting
variables are temperature and heat flux. The imple-
mentation, especially the connection is as follows:
First the same number of air channel objects is created
like the dicscretization number of the pipe and wall.
The air channel model itself can be discretized in air
flow direction with another number. At the connection
to the air side the calculation of the heat flux for one
single air channel has to be taken into consideration.
Therefore it has to be scaled up by a factor of the
numbers of total air channels and the discretization
number. In the modeling a class is programmed
where the air channel objects are declared and where
the scaling is programmed. Furthermore, every air
channel object is connected with the wall temperature
of the equivalent, discretized wall element. So every
volume of a discretized air channel gets the same wall
surface temperature. The following code example
shows this implementation; here geoHX.pipe_n means
the discretization of pipe and wall and geoHX.AC
means the discretization of air flow:

model AirChannelDCrossFlow

Co2Flow.Air.DiscAirChannelDDry
AirChannels [geoHX.pipe_n] ;
ThermoFluid.Interfaces.HeatTransfer.HeatFlowD
AirHT (n=geoHX.pipe_n) "Heat connector";
equation
for ac in l:geoHX.pipe_n loop
for 1 in 1l:geoHX.AC_n loop
AirChannels[ac] .T_WI[i]
\\ Air surface temp. connected
\\ with heat connector
end for;

= AirHT.T[ac];

AirHT.glac] = AirChannels[ac].Q dot_totalx*
geoHX.total channels/geocHX.pipe n;
\\ Heat flow at the connector is scaled
end for;

end AirChannelDCrossFlow;

A schematic illustration of the modeling idea and the
connections is shown in figure 8. The implementation

of a heat exchanger in Modelica is shown in figure 9 as
the graphical representation in the modeling and sim-
ulation tool Dymola™.

The implementation of a cross counter heat exchanger
can be realized now easily. Only the connections of
temperature and heat flow have to change in the class
AirChannelDCrossFlow in a specific way.

AirChannelDCrossFlow

m air, total
HX-Airchannels /

Air channel i

.
Meo , total

_>

- co2-Pipe

Figure 8: Schematic illustration of the modeling of
heat exchangers

geoHX

mdot_air

init »

FTPipe

¢

Figure 9: Graphical representation of the heat ex-
changer model

4.1.1 Comparison of steady state simulation and
measurement

With these models simulations in a test configuration
have been run. The test configuration consists of a
source providing pressure and enthalpy at the heat ex-
changer inlet and a mass flow sink generating a defined
mass flow at the outlet. The source and sink are used
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to set the boundary conditions resulting from the mea-
sured data at the component.

The following comparison is made for a crossflow
gas cooler and cross-counter flow evaporator from the
CO;-Experimental system built up at the Department
of Aircraft Systems Engineering of the TUHH. The
geometry parameters of the components are known. In
the tables 1 and 2 the measured data and the results of
the simulations at the point of steady state are shown.

The comparison of experimental data and simulation
results shows a very good correspondence, especially
if you take under account that the printed experimental
data are taken as is. The tolerance of the sensors has
not been taken into account, yet.

Table 1: Comparison of measured data at a gas cooler
with simulation results in steady state

Boundary conditions from measured data

Mgy mco2 | Pcoz | Tcozn | hcozin | Tairin

[kg/s] | [kg/s] | [bar] K] [kI/kg] | [K]
0,605 0,013 | 96,0 395,4 538,5 | 308,9
0,593 0,032 | 87,5 355,0 4872 | 312,9
0,598 | 0,036 | 88,3 373,4 513,8 | 312,9

Measured data Simulation

Tcoz,out | Tuirow | Ocoz | Tcozou | Tairow | Qcoz
[X] (K] | [kW] (K] K] | [kW]
309,5 315,7 | -3,02 | 312,7 313,5 | -2,85
314,7 | 320,2 | -3,45 | 316,2 318,0 | -3,14
315,3 323,3 | -4,99 | 317,4 320,0 | -4,37

Table 2: Comparison of measured data at an evapora-
tor with simulation results in steady state

4.2 Implementation of constitutive equations

In order to obtain a most physical modeling of
CO;, flow through pipes and any kind of heat exchang-
ers constitutive equations for pressure drop and heat
transfer for the whole fluid region are implemented ac-
cording to [11], [10]. A comparison of implemented
relations with experimental data from the SINTEF
[12] shows a good correspondence [13]. The pressure
drop and heat transfer correlations are empirical equa-
tions which only are exactly valid for steady state. Due
to the fact that such correlations for dynamic state are
not available it seems to be the best and a very com-
mon method for describing these effects in a dynamic
simulation.

The correlations have been implemented with regard
to numerical robustness and simulation time. At
the foldover between laminar and turbulent flow the
describing empirical equations of heat transfer and
pressure drop have no steady transition. By avoiding
event iterations in this case a function for the smooth
transition has been implemented. The unsteady tran-
sition of the pressure drop coefficient at a Reynolds
number of 2300 is shown in figure 10 with a solid line.
The dashed line between Reynolds numbers of 2000
and 3000 shows the run of the interpolated pressure
drop coefficient. The interpolation function fullfills
the following requirments:

e The gradient inbetween the limits of validity is
always smaller than infinity.

e The gradient near the limits of the intervall is
nearly zero.

e Exactly at the limits of validity the interpolation
function calculates the exact value of the current
function.

: Bounfiary Con‘fiﬁons from measured data The interpolation function is implemented by using
Mair rcor | peoz | Tcorin | hcorin | Tairin | the tanh- and the tan-function as follows:
[kg/s] | [kg/s] | [bar] (K] | [k/keg] | [K]
0,21 0,032 49,1 286,7 295,3 | 301,6
0,21 0,036 40,3 278,7 281,3 | 294,7 function Stepsmoother
(L21 0J)13 3436 272;) 222’1 285,2 //Interpolationsfunction to avoid event iterations
= = input Real func;
Measured data Simulation //value, where function value becomes 100%
hCOZ,out Tair,out Qair hCOZ,out Tair,out Ocoz /7 input Real nofunc;
value, where function value becomes 0%
[(Vkgl | [K] | [kWI | [kkel | [K] | (kW] | //v3iue; where
372,8 289,85 | -2,48 374,8 289,6 2,54 //Variable generating the event
357,4 281,95 | -2,74 357,4 282,0 2,75 output Real result;
3782 | 277,65 | -2,03 | 380,3 | 2756 | 2,04 | Protected
Real m;
Real b;
algorithm
m := Pi/(func - nofunc) ;
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b := -Pi/2 - m*nofunc;
result := (tanh(tan(m*x + b))
end Stepsmoother;

+ 1)/2;

0.01 L L

Re, ,=2300 Re
rit’

Figure 10: Example for the unsteady transition of the
pressure drop coefficient (solid line) and the imple-
mented interpolation function (dashed line)

5 Simulation results of a CO,-System

In the following simulation results of the start up of a
CO,-System are presented. The results are discussed
with respect to plausibility since reliable data of tran-
sient processes from a test rig are only available for a
few weeks. The simulated model is shown in object di-
agram in figure 11. This configuration does not consits
a receiver since the receiver model is not implemented
in the right way, see subsection 3.1.

In table 3 the boundary conditions and initial values
are listed. The following boundary conditions are
changed during the simulation run:

e Start up of compressor speed n = 120 — 1000
rpm in 2 seconds;

e Variation of flow coefficient K, = 0.03 —
0.02m3 /h in 0,1 seconds starting at 60 seconds
simulation time.

5.1 Results

In figure 12 the pressure at compressor inlet and out-
let is plotted versus time. What can be seen from
the results is the divergent run of the pressures and a
typicall overshoot, resp. undershoot at the beginning.

Tair 50

Tt it 50

_/_}\_/_\ Gascooler
Internal HX & “"wiiiy. N
InternzlHE p—— J
Gascooler
o
Valve
Compressor
Wal: FlowCossficient
‘_x_ o Compl
\_ i
durtion={z} o
Evaporatot
— Mot i EV f

duration={}

1:22:5—0
Evaporator 4=
KX

durstisn={Li}k

Figure 11: Object diagram of simulated CO,-Cycle

Table 3: Boundary conditions and initial values of the
simulation run

Compressor A=0.75,n; =0.75

Gas cooler g = 3200 kg/h, Tyirin = 305 K
Evaporator gy = 580 kg/h, Tyirin = 305 K
System volume Vie =1.131

Refrigerant filling | 200 kg/m’

Initial value po = 66 bar, hy = 420 kl/kg

This system behaviour is plausible as well as the di-
vergent run of pressure after changing the flow coeffi-
cient of the valve. This can be made clear by looking
at the mass flow rates at the compressor and the ex-
pansion valve in figure 13. At the beginning the com-
pressor mass flow rate is much higher than the mass
flow at the valve. The compressor mass flow increases
proportional with the compressor speed, whereas the
flow rate at the valve just increases with the increasing
pressure difference at the valve. The difference be-
tween both mass flows effects a shifting of refrigerant
mass from the low pressure section to the high pres-
sure section of the system. The decreasing density of
the sucked refrigerant at the compressor causes in the
strong decreasing of the compressor mass flow after 2
seconds. The valve mass flow rate is mostly affected
by the pressure difference, so the mass flow does not
decrease; the system time delay causes a higher valve
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flow rate for a few seconds resulting in the shown over-
and undershooting of pressures. The same effect of
displaced mass explains the divergent run of the pres-
sures after changing the flow coefficient.

90
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Figure 12: Pressure run at compressor in- and outlet
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Figure 13: Mass flow rate at valve and compressor

This model contains about 2600 nontrivial scalar equa-
tions. The simulating of the start up and the chang-
ing of flow coefficient was performed on a PC with
a Pentium 1000 MHz and 256 MB of main memory
and took 5 minutes. The length of time of simulation
is very sensitive due to the initial values. To realize a
simulation of 5 minutes for this model you have to pro-
vide very suitable initial values; furthermore up to now
the initialization in the two phase region needs wide
experience. To get suitable initial values for the gas
region we are using matlab'™ based script to predict
the steady state pressure drop for the initalized mass

flow rate. Starting a simulation with a mass flow rate
of zero and equal pressure in every object increases the
executing time extremely or generates a termination of
simulation.

Nevertheless, the simulation results show that Mod-
elica, the free Modelica library ThermoFluid and the
CO,-Library are very well qualified for the simulation
of the complex processes in a CO,-Refrigeration cy-
cle.

6 Conclusion

A developed CO;-Library based on free Modelica
library ThermoFluid was presented, which contains
models for all important components of a COs-
Refrigeration system. The intention is to create a
library for the simulation of single components and
complete cycles. Such a library can be used to get
a better understanding of the thermodynamic, fluid-
mechanic and heat transfer effects in a CO,-System.
Furthermore, it can be used for the optimization of
specific heat exchangers, for the evaluating of optimal
system configuration and for the layout and optimiza-
tion of the system control.

The presented simulation results for the steady state
of two different types of CO,-Heat exchangers show
a very correspondence with measured datas. The re-
sults of transient simulation show a plausible system
behaviour due to the thermodynamic and hydraulic ef-
fects. Up to now a validation with transient measured
datas was not possible since an available CO,-Test rig
operates just for a few weeks.

Future work contains the validation of the models and
the improvement of the initialization due to new fea-
tures in Modelica. If the models are verified the con-
trol of the system will implemented.
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