
2002

Proceedings of the
2nd International Modelica Conference

March 18-19, 2002
Deutsches Zentrum für Luft- und Raumfahrt e.V.

Oberpfaffenhofen, Germany

Martin Otter (editor)

organized by
The Modelica Association and

Institut für Robotik und Mechatronik, Deutsches Zentrum für Luft- und Raumfahrt e.V.

All papers of this conference can be downloaded from
http://www.Modelica.org/Conference2002/papers.shtml

Proceedings of Modelica’2002
Deutsches Zentrum für Luft- und Raumfahrt e.V.,
Oberpfaffenhofen, Germany, March 2002
Editor:
Martin Otter
Published by:
The Modelica Association (http://www.Modelica.org) and
Institut für Robotik und Mechatronik, Deutsches Zentrum für Luft- und Raumfahrt e.V. (http://www.robotic.dlr.de)
Printed by:
Digital- & Offsetdruck Gerdfried Wolfertstetter, Carl-Benz-Str. 14, 82205 Gilching
Acknowledgement:
The organization of this conference was in parts supported by the European Commission under contract
IST-199-11979 with DLR for the project entitled ”Real-time Simulation for Design of Multi-physics Systems”.

Preface

Preface

The Modelica modeling language has been designed to allow convenient and efficient modeling and simulation of
complex, multi-domain physical systems described by differential, algebraic and discrete equations, aiming at full
system simulation. Since January 2002, version 2.0 of the Modelica language definition is available together with
many free Modelica libraries, as well as commercial Modelica simulation environments. Convenient interfaces
exist for Matlab and Simulink (with Dymola) and to Mathematica (with MathModelica). The language, libraries
and tools are used by a growing number of people in industry and academia for advanced applications, such as
detailed fuel cell simulations, power systems, full vehicle dynamics models, hardware-in-the-loop simulations,
embedded control systems with nonlinear Modelica models.

In October 2000, the first Modelica workshop took place in Lund, Sweden. Due to the great success, with more
than 80 participants, this event is repeated in March 2002, to bring together people interested in Modelica, Mod-
elica language designers, Modelica tool vendors and Modelica library developers. This gives the conference
participants the opportunity to be informed about the latest developments, to influence the future development of
Modelica and its libraries and to get in touch with people solving similar modeling problems.

This volume contains papers that are presented at the Second International Modelica Conference at DLR in Oberp-
faffenhofen, Germany, March 18-19, 2002. A number of high quality papers were received. The program com-
mittee had a difficult task of planning the conference since not all submissions could be accommodated for the
limited time of two days. Thirty-five papers were selected for presentations, and four papers were selected for
poster presentations.

More information about the Modelica language, the Modelica association, this and future events can be found at
the web pagehttp://www.modelica.org. Especially, all papers from these proceedings are stored at this site after
the conference.

The Modelica’2002 conference was arranged by the Modelica Association in cooperation with the Institut für
Robotik und Mechatronik, Deutsches Zentrum für Luft- und Raumfahrt e.V., Oberpfaffenhofen, Germany.

Oberpfaffenhofen, March 5, 2002.

Martin Otter

The Modelica Association 1 Modelica 2002, March 18-19, 2002

Preface

Program Committee

• Martin Otter, Institut f̈ur Robotik und Mechatronik, Deutsches Zentrum für Luft- und Raumfahrt,
Oberpfaffenhofen, Germany (chairman of the program committee).

• Hilding Elmqvist, Dynasim AB, Lund, Sweden.

• Peter Fritzson, PELAB, Programming Environment Laboratory, Department of Computer and
Information Science, Link̈oping University, Link̈oping, Sweden.

Local Organizers

Martin Otter, Astrid Jaschinski, Christian Schweiger, Erika Woeller, Johann Bals,
Institut für Robotik und Mechatronik, Deutsches Zentrum für Luft- und Raumfahrt,
Oberpfaffenhofen, Germany.

Modelica 2002, March 18-19, 2002 2 The Modelica Association

Contents

Contents

Tutorials . 5

M. Otter, H. Olsson:New Features in Modelica 2.0. 7

Mattsson S.E., Elmqvist H., Otter M., and Olsson H.:
Initialization of Hybrid Differential-Algebraic Equations in Modelica 2.0. 9

Applications and Tools . 17

Tiller M., Tobler W.E., Ming Kuang:Evaluating Engine Contributions to HEV Driveline Vibrations. 19

Clauß C., Beater P.:Multidomain Systems: Electronic, Hydraulic, and Mechanical Subsystems
of an Universal Testing Machine modeled with Modelica. 25

Tummescheit H., Eborn J.:Chemical Reaction Modeling with ThermoFluid/MF and MultiFlash. 31

Fritzson P., Gunnarsson J., Jirstrand M.:MathModelica - An Extensible Modeling and Simulation
Environment with Integrated Graphics and Literate Programming. 41

Brück D., Elmqvist H., Mattsson S.E., Olsson H., :Dymola for Multi-Engineering Modeling and Simulation55

Automotive Powertrains and Hardware-in-the-Loop Simulation . 57

Elmqvist H., Mattsson S.E., Olsson H.:New Methods for Hardware-in-the-Loop Simulation of Stiff Models.59

Soejima S., Matsuba T.:Application of mixed mode integration and new implicit inline integration at Toyota65

Schlegel C., Bross M., Beater P.:HIL-Simulation of the Hydraulics and Mechanics of an Automatic Gearbox67

Puchalsky C., Megli T., Tiller M., Trask N. and Wang Y., Curtis E.:
Modelica Applications for Camless Engine Valvetrain Development. 77

Electrical Systems . 87

Hongesombut K., Mitani Y., Tsuji K.:An Incorporated Use of Genetic Algorithm and a
Modelica Library for Simultaneous Tuning of Power System Stabilizers. 89

Urqúıa A., Dormido S.:
DC, AC Small-Signal and Transient Analysis of Level 1 N-Channel MOSFET with Modelica. 99

Ferretti G., Magnani G., Rocco P., Bonometti L., Maraglino M.:
Simulating permanent magnet brushless motors in DYMOLA. 109

Kalaschnikow S.N.:PQLib - A Modelica Library for Power Quality analysis in Networks. 117

Automotive Powertrains . 123

Treffinger P., Goedecke M.:Development of Fuel Cell Powered Drive Trains With Modelica. 125

Newman C.E., Batteh J.J., Tiller M.:Spark-Ignited-Engine Cycle Simulation in Modelica. 133

Thermodynamic Systems I . 143

Pfafferott T., Schmitz G.:
Modeling and Simulation of Refrigeration Systems with the Natural Refrigerant Carbon Dioxid. 145

Felgner F., Agustina S., Cladera Bohigas R., Merz R., Litz L.:
Simulation of Thermal Building Behaviour in Modelica. 147

The Modelica Association 3 Modelica 2002, March 18-19, 2002

Contents

Poster session . 155

Bunus P., Fritzson P.:Methods for Structural Analysis and Debugging of Modelica Models. 157

Torrey D.A., Selamogullari U.S.:A Behavioral Model for DC-DC Converter using Modelica. 167

Torrey D.A., Selamogullari U.S.:
Modelica Implementation of Field-oriented Controlled 3-phase Induction Machine Drive. 173

Wischhusen S., Schmitz G.:Numerical Simulation of Complex Cooling and Heating Systems. 183

Discrete Event Modeling . 193

Freiseisen W., Keber R., Medetz W., Pau P., Stelzmueller D.:
Using Modelica for Testing Embedded Systems. 195

Remelhe M.A.P.:Combining Discrete Event Models and Modelica -
General Thoughts and a Special Modeling Environment. 203

Färnqvist D., Strandemar K., Johansson K.H., Hespanha J.P.:
Hybrid Modeling of Communication Networks Using Modelica. 209

Thermodynamic Systems II . 215

Steinmann W.D., Zunft S.:
TechThermo - A Library for Modelica Applications in Technical Thermodynamics. 217

Fabricius S.M.O., Badreddin E.:Modelica Library for Hybrid Simulation of Mass Flow in Process Plants. 225

Jensen J.M., Tummescheit H.:Moving Boundary Models for Dynamic Simulations of Two-Phase Flows. . 235

Mechatronic Applications . 245

Hellgren J.:Modelling of Hybrid Electric Vehicles in Modelica for Virtual Prototyping. 247

Pelchen C., Schweiger C., Otter M.:
Modeling and Simulating the Efficiency of Gearboxes and of Planetary Gearboxes. 257

Andreasson J., Jarlmark J.:Modularised Tyre Modelling in Modelica. 267

Moormann D., Looye G.:The Modelica Flight Dynamics Library. 275

Aberger M., Otter M.:Modeling Friction in Modelica with the Lund-Grenoble Friction Model. 285

Special Methods and Tools . 295

Fritzson P., Aronsson P., Bunus P., Engelson V., Saldamli L., Johansson H., Karström A.:
The Open Source Modelica Project. 297

Saldamli L., Fritzson P., Bachmann B.:Extending Modelica for Partial Differential Equations. 307

Franke R.:Formulation of dynamic optimization problems using Modelica. 315

Sjöberg J., Fyhr F., Grönstedt T.:Estimating parameters in physical models using MathModelica. 325

Aronsson P., Fritzson P.:Multiprocessor Scheduling of Simulation Code From Modelica Models. 331

Modelica 2002, March 18-19, 2002 4 The Modelica Association

The Modelica Association 5 Modelica 2002, March 18−19, 2002

Session 1

Tutorials

Modelica 2002, March 18−19, 2002 6 The Modelica Association

M. Otter, H. Olsson New Features in Modelica 2.0

The Modelica Association 7 − 1 Modelica 2002, March 18−19, 2002

New Features in Modelica 2.0

Martin Otter1 and Hans Olsson2

1DLR, Oberpfaffenhofen, Germany, Martin.Otter@dlr.de
2Dynasim AB, Lund, Sweden, Hans.Olsson@dynasim.se

Abstract
The second major release of Modelica was finished
and formally approved at the last Modelica design
meeting, January 2002, Lund, Sweden. In this
paper, the new features of Modelica 2.0 are
described.

1. Introduction
The freely available, object-oriented modeling
language Modelica is developed continuously
since 1996. Modelica is designed to allow
effective, component-oriented modeling of
complex engineering systems described by
differential, algebraic and discrete equations, e.g.,
systems containing mechanical, electrical, elec-
tronic, hydraulic, thermal, control, electric power
or process-oriented subcomponents. A large num-
ber of free and commercial libraries of fundamen-
tal models are available as well as commercial
Modelica simulation environments. More in-
formation is provided at http://www.Modelica.org/.

In 1997, the first major version of Modelica was
released, followed by four minor revisions released
once a year. The second major release of Modelica
was completed and formally approved at the last
Modelica design meeting, January 2002, Lund,
Sweden. The most important design goal was to
enhance the development and use of application
libraries, incorporating the experience and feedback
of library developers, while keeping backward
compatibility. A number of language enhancements
have been added, significantly facilitating library
development and use. In this paper, the new features
of Modelica 2.0 are described. The following
members of the Modelica Association have
contributed to the development of Modelica 2:

P. Aronsson, Linköping University, Sweden.
B. Bachmann , University of Bielefeld, Germany.
P. Beater, University of Paderborn, Germany
D. Brück, Dynasim, Lund, Sweden
P. Bunus, Linköping University, Sweden
H. Elmqvist, Dynasim, Lund, Sweden
V. Engelson, Linköping University, Sweden
P. Fritzson, Linköping University, Sweden
R. Franke, ABB Corporate Research, Ladenburg

P. Grozman, Equa, Stockholm, Sweden
J. Gunnarsson, MathCore, Linköping
M. Jirstrand, MathCore, Linköping
S. E. Mattsson, Dynasim, Lund, Sweden
H. Olsson, Dynasim, Lund, Sweden
M. Otter, DLR, Oberpfaffenhofen, Germany
L. Saldamli, Linköping University, Sweden
M. Tiller, Ford Motor Company, Dearborn, MI, U.S.A.
H. Tummescheit, Lund Institute of Technology, Sweden
H.-J. Wiesmann, ABB Corp. Res., Baden, Switzerland

2. Component Arrays
One part of the redesign of Modelica 2 was based
on the experience with the Modelica.Blocks library
in Modelica 1. The redesign supports generic
formulation of blocks applicable to both scalar and
vector connectors, connection of (automatically)
vectorized blocks, and simpler input/output
connectors. This allows significant simplifications
of the input/output block library of Modelica, e.g.,
since only scalar versions of blocks that naturally
vectorize have to be provided. Furthermore, new
library components can be incorporated more
easily. In addition, it is possible to use functions
and functional blocks allowing, e.g., the sin-
function to be inserted in a block diagram.

Since the first release, it was possible in Modelica
to define homogenous component arrays, i.e.,
arrays where the array elements are instances of
any desired class, for example:

 Resistor R[10];

is an array of 10 resistors including both the
resistor parameters and the resistor equations. In
Modelica 2, features have been added for
component arrays to widen their applicability.

Component Array Modifications
Assume a component is defined as

model FixedFrame
parameter Real r[3] = {0,0,0};
parameter Real alpha = 0;
parameter Real beta = 0;
parameter Real gamma = 0;

 ...

New Features in Modelica 2.0 M. Otter, H. Olsson

Modelica 2002, March 18−19, 2002 7 − 2 The Modelica Association

end FixedFrame;

which describes a coordinate system with respect
to another one as fixed translation with vector r
and fixed rotation around angles α, β, γ along x-,
y-, and z-axis respectively. A part may have
several frames and also other properties and can be
defined as

 model Part
parameter Integer n=0;

 FixedFrame frames[n];
 ...

end Part;

There are different possibilities to define a part
which has several frames:

Part p(n=2, frames[1](r={1,0,0},
 alpha = 1),
 frames[2].alpha = -1);

Here, every element of the frame vector is
explicitly modified. Another alternative is

 Part p(n=4,frames(beta={1,2,3,4},
 r = fill(1,4,3)));

where the same parameter of all frames are
modified. For example, frames[:].beta is treated as
a vector of 4 elements and therefore a vector of 4
elements has to be provided as modification. On
the other hand, frames[:].r is treated as a (4,3)
matrix.

 Part p(n=10, frames(each r={1,0,0});

defines 10 frames, using the same vector r for all
frames. In a similar way also nested component
arrays are handled:

 Part p[10](each n=3,
each frames(each beta=1);

Here, 10 parts are declared, where every part has 3
identical frames with beta=1. In this application it
is not very useful to define so many identical
frames. However, in lumped models deduced from
the discretisation of partial differential equations,
often many elements of a component array have
the same value. Example:

parameter Integer n;
parameter Real L=1 "length";
parameter Real r=1 "resistance

 per meter";
protected

parameter Real Re=r*L/n;
 Resistor R[n+1](R =

vector([Re/2;
fill(Re,n-1);

 Re/2]));

All elements of the resistance vector R are the
same, with the exception of the first and last one
which each take half of the value of an element
Resistance Re.

Block Vectorization
Connectors of signals of the Modelica.Blocks
library are in Modelica 1.4 defined as

 connector InPort
parameter Integer n=1;
input Real signal[n];

end InPort;

That is, the connector consists of a vector of Reals
which are used as input signals. Such a connector
is utilized in an input/output block as:

 block FirstOrder
parameter Real T=1 "time const.";

 InPort inPort;
 OutPort outPort;
 ...
 end FirstOrder;

Accessing the input signal of such a block is
inconvenient:

FirstOrder b;
 ...
 b.inPort.signal[1] // input signal

In Modelica 2 it is possible to define a connector as
an extension from the base types, i.e., the
following definition is possible:

 connector InPortNew = input Real;

Also annotations for the graphical layout of icon
and diagram layer of such a connector can be
defined. Therefore, this connector may be dragged
from a library window in a model window to
construct a new model graphically. In a model, this
connector is used as:

 block FirstOrderNew
parameter Real T=1 "time const.";

 InPortNew u;
 OutPortNew y;
 ...
 end FirstOrderNew;

M. Otter, H. Olsson New Features in Modelica 2.0

The Modelica Association 7 − 3 Modelica 2002, March 18−19, 2002

Accessing the input signal of this block is now
much simpler:

FirstOrderNew b;
 ...
 b.u // input signal

In the 1.4 version of the Modelica.Blocks library,
most blocks are manually vectorized, e.g., to
define an instance which has 10 input and 10
output signals and 10 first order blocks for every
signal path. This complicates the class definitions
in Modelica.Blocks considerably, and in all cases,
except Sources.KinemanticPTP, a vectorized block
behaves as a vector of scalar blocks. With the
extensions described above, this is much simpler.
For example, a scalar Sine block may be defined
as:

 block Sine
import Modelica.Math.*;
import.Modelica.Constants.*;
parameter Real Amplitude =1;
parameter Real frequency =1;
parameter Real phase=0;

 InPortNew u;
 OutPortNew y;

equation
 y = Amplitude*
 sin(2*pi*frequency*time+phase);
 end FirstOrderNew;

This looks like a text-book example of a sine
source. Using 3 Sine sources is now performed by
component arrays:

Sine s[3](each frequency=50,
 phase = {0,2,-2});

Note, that it is easy to define that all sine-sources
shall have the same frequency, but different phases
roughly corresponding to 3 electrical phases. A
state space model may be defined as:

 block StateSpace
final parameter Integer nx =

size(A,1);
final parameter Integer nu =

size(B,2);
final parameter Integer ny =

size(C,1);
 parameter Real A[: ,nx];
 parameter Real B[nx, :];

parameter Real C[: ,nx];
parameter Real D[ny,nu];

 InPortNew u[nu];
 OutPortNew y[ny];

 Real x[nx]
equation

 der(x) = A*x + B*u;
 y = C*x + D*u;

end StateSpace;

Connecting the 3 sin-sources as input to an
instance of StateSpace which has three inputs can
be performed in the following way:

 Sine s[3](each frequency=50,
 phase = {0,2,-2});
 StateSpace b(B=[0,0,1;...],...);

equation
connect(s.y, b.u);

This is a connection of s[:].y with b.u[:]. This is
allowed due to a new connection rule, provided the
dimension sizes match, which is the case here.

3. Enumeration Types
Modelica 2 introduces enumerations to construct
new base types which consist of countable sets of
elements. Example:

 type TextStyle = enumeration(
 Bold, Italic, UnderLine);

This declaration defines a new type TextStyle. An
instance of this type may have only the values
TextStyle.Bold, TextStyle.Italic or
TextStyle.UnderLine. Such a type can be used in
the following way:

TextStyle t1 = TextStyle.Bold;
 TextStyle t2 = t1;

Currently, the only operations defined for
enumeration types are the equal ("=") and the
assignment (":=") operations. Furthermore, the
relational operators <, <=, >, >=, ==, <> can be
applied. The result depends on the order of the
element in the enumeration declaration. For
example TextStyle.Bold < TextStyle.Italic. It is
planned to provide more operations in future
Modelica releases, e.g., to access array indices by
enumerations or inquire the next or previous
enumeration element.

Enumerations are useful for defining properties
and options in an understandable and safe way.
Since enumerations are internally mapped to an
Integer type, processing them is safer and much
more efficient than if properties or options would
be defined as Strings. Compared to using Integer
constants it is clearer, requires less typing, and is

New Features in Modelica 2.0 M. Otter, H. Olsson

Modelica 2002, March 18−19, 2002 7 − 4 The Modelica Association

safer since each enumeration is a separate type. In
Modelica 2, several enumeration types are
predefined, such as StateSelect (see next section)
and enumerations in graphical annotations.

4. State Selection Control
The continuous part of a Modelica model is
mapped to a DAE, a differential-algebraic equation
system, of the form

0 = f(dx/dt, x, y, t)

where x(t) are variables appearing differentiated
and y(t) are pure algebraic variables. Conceptually,
this DAE is transformed in to state space form

 dxs/dt = f1(xs, t)
xn = f2(xs,t)
y = f3(xs,t)

where xs(t) are a subset of x which are independent
from each other and xn(t) are the other variables of
x. Variables xs(t) are called states of the model. A
numerical integration method essentially
discretizes xs over time, whereas all other variables
are calculated as the solution of an algebraic
system of equations at the actual time instant. The
selection of xs is not unique. Different choices may
lead to drastically different numerical behaviour. A
dynamic automatic selection of xs by a tool is
always possible, [4]. However, experience shows
that user insight may lead to better choices or
avoid the need for dynamic selection. On the other
hand automatic selection is an efficient and reliable
method, and users should not be forced to
manually perform a complete manual state
selection merely because dynamic state selection
might be inefficient for some models. For this
reason, in Modelica 2 it is possible to guide the
state selection via the new attribute stateSelect of
Real variables. The attribute has values from the
enumeration StateSelect defined as:

 type StateSelect = enumeration(
 never, avoid, default,
 prefer, always);

For "never", a variable will never be selected as a
state, whereas for "always" the variable shall
always be used as a state. For "default", which is
the default for all Real variables, the states are
automatically selected among the variables which
appear differentiated. If "prefer" is used, the
variable need not to be differentiated and is

preferably used as state over those having the
default value. Finally, for "avoid", the variable is
only selected as a state, if it appears differentiated
and if no other selection of variables with
"default", "prefer", or "always" value is possible. A
state preference definition may be given in the
following way:

 Real w(stateSelect =
 StateSelect.prefer);

Examples for appropriate state selection (from [2]):

Accuracy:
In rotating machinery systems used for power
transmission (but not for positioning drive
systems) and in power systems, angular positions
of shafts are increasing with time, but relative
positions between shafts are rather constant, at
least in normal operation. Say that two rotating
inertias are connected by a spring such that the
relative distance between them are 0.1 rad and that
their angular speed is 1000 rad/s. If the positions
are calculated with a relative accuracy of 0.001,
after 10 seconds there is hardly any accuracy in
calculating the distance by taking the difference.
The difference behaves irregularly and gives an
irregular torque if simulations take too long. It is
very difficult for a tool to find this out without
actually doing simulation runs. Therefore, it is
useful to define StateSelect.prefer for all relative
variables in force elements (e.g., spring, damper,
clutch). This will be performed in the next version
of the Modelica.Mechanics.Rotational library.

Avoiding function inversion:
In thermodynamic problems property functions are
utilized. These functions usually assume two
variables to be inputs (for example pressure and
enthalpy) and calculate other properties (such as
temperature, density). Thus, if such variables are
selected as state variables it is "simply" calling
property functions to calculate other needed
variables. Otherwise, it is necessary to solve non-
linear equation systems to calculate the input
variables of the property functions. Therefore, a
good choice is to use StateSelect.prefer on all
input variables of property functions, or use
StateSelect.avoid on output variables from
property functions.

Less nonlinear equations:
For three-phase power systems several choices of
states are possible, especially selecting states from
the stator side or from the rotor side. The first

M. Otter, H. Olsson New Features in Modelica 2.0

The Modelica Association 7 − 5 Modelica 2002, March 18−19, 2002

choice leads to a non-linear DAE, whereas the
second one leads (under certain assumptions) to a
linear DAE. In a periodic steady state, the first
choice results in a periodic solution of the states
whereas in the second choice the states are
identical to zero. As a result, selecting states from
the rotor side (= Park transformation) leads to a
more efficient and more reliable numerical solution
and therefore these variables should have the
attribute value StateSelect.prefer.

Avoid dynamic state selection:
For 3-dimensional mechanical systems having
closed kinematic loops, an automatic static
selection of states is not possible. Instead, the
states have to be dynamically selected and changed
during simulation in order to keep the (time-
varying) Jacobian of the system non-singular. In
many cases a suitable set of state variables is
known, e.g., the relative position and velocity
variables of the joints driving the mechanism. If
these variables have attribute value
StateSelect.always the simulation is more efficient
which is especially important for real-time
simulations.

Sensors:
A sensor may measure the speed "v" of a
translational connector. Since the speed is not part
of the connector, but the position "s" is, an
equation of the form "der(s) = v" is present in the
sensor, i.e., "s" appears differentiated and can be
potentially used as a state. However, in most case
the selection of "s" as a state is not appropriate,
since introduction of a variable for just plotting
should not influence the state selection. Therefore,
an attribute value of StateSelect.avoid should be
preferably used for differentiated variables in
sensor objects (here: "s").

The general advice is that selection of states ought
to be done automatically. This is also possible and
unproblematic in most models. Only if there are
good reasons, as pointed out above at hand of
several examples, the modeler may give hints for
state selection. Note, that in a library the values
StateSelect.never or StateSelect.always should
not be used, because a library has usually not
enough information to rigidly force a state
selection.

5. Improved Initialization
Modelica 2.0 introduces a mathematically rigid
specification of the initialization of Modelica

models, i.e., of hybrid differential algebraic
equations. The new language constructs permit
flexible specification of initial conditions as well
as the correct solution of difficult, non-standard
initialization problems occurring in industrial
applications, for example:
• Stationary initialization around a constant

reference velocity of an aircraft.
• Stationary initialization around periodic

solutions, needed in power systems or in
detailed engine models.

• Stationary initialization of continuous systems
controlled by sampled data systems (the states
of the discrete controllers are computed in such
a way that the overall system is in a steady
state when simulation starts).

• Initialization of discontinuous or variable
structure systems, e.g., systems containing
friction or backlash.

Since this is a large topic by itself, only a short
overview is given here. Details are presented in the
companion paper [3].

Before any operation, in particular simulation, is
carried out with a Modelica model, initialization
takes place to assign consistent values for all
variables present in the model, including
derivatives, der(…), and pre-variables, pre(…).
The initialization uses all equations and algorithms
that are utilized during the simulation.

In the most simplest case, when only continuous
equations are present without algebraic
dependencies of states (= no higher DAE index), a
Modelica model is mapped to the following
differential-algebraic equation system (DAE):

0 = f(dx/dt, x, y, t)

where x(t) are variables appearing differentiated,
y(t) are algebraic variables and dim(f) = dim(x) +
dim(y). These equations have to be fulfilled at all
time instants, especially also at the initial time t0.
During simulation, an integrator calls the model
providing basically x as input. Therefore, the
model equations are solved under the assumption
that x is known. During initialization, x is,
however, unknown. As a result, there are only
dim(x) + dim(y) equations for 2*dim(x) + dim(y)
unknowns during initialization. In the most general
case this means that the modeler has to provide
additionally dim(x) equations g(..) at the initial
time resulting in the following system of equations

New Features in Modelica 2.0 M. Otter, H. Olsson

Modelica 2002, March 18−19, 2002 7 − 6 The Modelica Association









=

)t,y,x,xg

)t,y,x,xf
0

0000

0000

)()()((

)()()((

ttt

ttt

�

�

which has to be solved for the unknowns dx/dt(t0),
x(t0), y(t0). In general this means that the standard
algorithms, such as BLT transformation, should be
applied to this system, in order to compute the
solution reliably and efficiently. From a user's
point of view this procedure means that dim(x)
equations have to be additionally provided for the
initial time, e.g., x(t0) = x0 or dx/dt(t0) = 0. In
Modelica 2 these initial equations can either be
defined in the new initial equation / initial
algorithm sections or as start value with attribute
fixed = true. For example two initial equations
x1(t0) = 1 and dx2/dt(t0) = 0 may be defined as:

Real x1(start=1, fixed=true);
 Real x2 //default: fixed=false
 initial equation
 der(x2) = 0;
 equation
 der(x1) = -x1 + x2;
 der(x2) = -x2;

If there are constraints between states, the number
of initial equations to be provided is less than
dim(x). It may be difficult for a user of a large
model to figure out how many initial equations
have to be added. Therefore, it is essential that a
Modelica environment has appropriate support. For
example, Dymola performs index reduction and
selects state variables for the simulation model [1],
[3], [4]. Thus, it establishes how many states there
are and how many initial conditions have to be
additionally provided. If there are too many initial
equations, Dymola outputs an error message
indicating a set of initial equations or fixed start
values from which initial equations must be
removed or start values inactivated by setting fixed
= false. If initial conditions are missing, Dymola
makes automatic default selection of initial
conditions. The approach is to select continuous
time states with inactive start values and make
their start values active by turning their fixed
attribute to true to get a structurally well posed
initialization problem. A message informing about
the result of such a selection can be obtained.

6. Function Applications
In Modelica 1.4, a function application can have
either positional or named input arguments. In
Modelica 2, a function application may have
optional positional input arguments followed by

zero, one or more named input arguments.
Arguments not explicitly present get the default
value supplied in the function declaration. This
feature is useful to make the same function fit for
beginners and expert users. For example, a
function RealToString may be defined as follows
to convert a Real number into a String
representation:

 function RealToString
input Real number;
input Real precision = 6;
input Real minLength = 0;
output String string;

 algorithm
 ...
 end RealToString;

Argument "number" is the number to be converted,
"precision" is the number of significant digits in
the String representation and "minLength" is the
minimum length of the String in which the number
is stored right justified. Since positional, named
and default arguments are allowed, the following
function applications are equivalent:

RealToString(2.0);
RealToString(2.0, 6, 0);
RealToString(2.0, 6);
RealToString(2.0, precision=6);
RealToString(2.0, minLength=0);

Note, that the following call leads to an error

RealToString(2.0, 6, precision=4);

since argument 2 is defined twice. This function
may be used to conveniently build up a message
string, such as

 Variable "mass" (= -10.4562) shall
 be non-negative.

via the function call

assert(v>=0,"Variable \"mass\" (="
 + RealToString(v) + " shall be "
 + "non-negative.\n"

As before, only positional output arguments of a
function application are possible. However, output
arguments shall be omitted, if the corresponding
variables has attribute enable=false in the function
declaration. This makes it possible to avoid
dummy output arguments in the function
application which are not used in the calling
function. For example, a function to compute
eigenvalues and optionally right and left
eigenvectors may be defined in Modelica as:

M. Otter, H. Olsson New Features in Modelica 2.0

The Modelica Association 7 − 7 Modelica 2002, March 18−19, 2002

function eigen
parameter Integer n = size(A,1);
input Real A[:,n];
input Boolean getREV = false;
input Boolean getLEV = false;
output Real eigenValues[n,2];
output Real REV[n,n](enable=getREV);
output Real LEV[n,n](enable=getLEV);

algorithm
 // compute eigenvalues
if getREV then

 // compute right eigenvectors
end if;
if getLEV then

 // compute left eigenvectors
end if;

end eigen;

This function may be called to calculate only the
eigenvalues of a matrix or to just determine
whether a matrix has only stable eigenvalues:
 ev = eigen(A);
 b = isStable(eigen(A)); //

to calculate eigenvalues and right eigenvectors:

 (ev, REV) = eigen(A, getREV=true);

to calculate additionally also the left eigenvectors:

 (ev, REV, LEV) = eigen(A, getREV=true,
getLEV=true);

7. Record Constructor
In Modelica 2, the missing constructor for the
record data type is introduced. It is defined as a
function with the same name and the same scope
as the corresponding record containing all
modifiable components of the record as input
arguments and a record instance as output
argument. Since a record constructor is just a
function, it can be used at all places, where a
function call is allowed. For example, with the
following record declaration

 record Complex "Complex number"
 Real re "real part";
 Real im "imaginary part";
 end Complex;

a Complex data type is defined and implicitly its
constructor function

 function Complex
input Real re "real part";
input Real im "imaginary part";
output Complex out(re=re,im=im);

 end Complex;

Additionally, functions are needed, operating on
this data type, such as:

 function add "Add Comp. numbers"
input Complex u, v;
output Complex w(re=u.re + v.re,

 im=u.im + v.im);
 end add;

The record constructor allows, e.g., to avoid the
usage of unnecessary auxiliary variables:

 Complex c1, c2;
equation

 c2 = add(c1, Complex(sin(time),
 cos(time));

Note, that the second argument of the function
application uses the record constructor to construct
a temporary instance of type Complex.

Record constructors are very useful in situations
where previously replaceable records have been
needed (which are much less convenient to utilize).
For example, a data sheet library of motors shall be
constructed. The motor model consists essentially
of two parts, one part containing all the data
defining a particular motor as a record, e.g.,

 record MotorData
parameter Real inertia;
parameter Real nominalTorque;
parameter Real maxTorque;
parameter Real maxSpeed;

 ...
end MotorData;

and the motor model utilizing the motor data

 model Motor
 MotorData data;
 // connector definitions
equation

 ...
end Motor;

When using a motor, specific values of the motor
data could be given in the usual way:

 model Robot1
 Motor m1(data(inertia = 0.001,
 nominalTorque = 10,
 maxTorque = 20,
 maxSpeed = 3600));
 Motor m2(data(...));
 ...
 end Robot1;

New Features in Modelica 2.0 M. Otter, H. Olsson

Modelica 2002, March 18−19, 2002 7 − 8 The Modelica Association

When using the same motor type several times, it
is better to define the motor data just ones, i.e.,
build up a data sheet library by modifications of
the default values of the basic MotorData record:

 package Motors
record M103 = MotorData(

 inertia = 0.001,
 nominalTorque = 10,
 maxTorque = 20,
 maxSpeed = 3600);

 record M104 = MotorData(
 inertia = 0.0015,
 nominalTorque = 15,
 maxTorque = 22,
 maxSpeed = 3600);
 ...
 end Motors;

Whenever one of the motors of package Motors is
needed, it can be accessed by using the
corresponding record constructor:

model Robot2
 Motor m1(data = Motors.M103());
 Motor m2(data = Motors.M104(
 inertia=0.0012));
 ...
 end Robot2;

It is still possible to override parameters in such a
definition, see declaration of m2, by calling the
record constructor function with appropriate
positional or (preferably) named arguments.

8. Iterators
Modelica 2 introduces several enhancements to
support more powerful expressions, especially in
declarations, in order to avoid inconvenient local
function definitions:

Deduction of Ranges
In all iterators, e.g., in for-loop, the expression to
define the range of the iteration need not to be
given if the iterator variables appear as array
indices. In such cases the iteration range is
deduced from the dimension sizes of the
corresponding arrays. Example:

 for i loop
A[i] = B[i]^2;

 end for;

A nested for loop

 for i in 1:size(A,1) loop
 for j in 1:size(A,2) loop

A[i,j] = B[i,j]^2;

 end for;
 end for;

may be abbreviated as

 for i in 1:size(A,1),
 j in 1:size(A,2) loop

A[i,j] = B[i,j]^2;
 end for;

or even shorter by automatic deduction of ranges

 for i,j loop
A[i,j] = B[i,j]^2;

 end for;

Reduction Operators
An expression

 function(expression for iterators);

is a reduction-expression. Currently, only the
function names sum, product, min, and max can
be used. The result is constructed by evaluating
"expression" for each value of the iterator variable
and computing the sum, product, minimum, or
maximum of the computed elements. Examples:

sum(i for i in 1:10);

is the same as

=∑ =

10

1i
i 1+2+...+10=55

A Modelica translator may transform this operation
into:

algorithm
 result := 0;
 for i in 1:10 loop
 result := result + i;

end for;

The sum of elements could also be defined as

 sum(1:10);

using the built-in operator sum(). However, when
summing up complex expressions or non-scalar
expressions the reduction-expression can be made
more readable than finding the appropriate
vectorized expressions. As an example consider
summing the squares instead:

 sum(i^2 for i in 1:10);

M. Otter, H. Olsson New Features in Modelica 2.0

The Modelica Association 7 − 9 Modelica 2002, March 18−19, 2002

The sum of squared elements could also be defined
as

sum(diagonal(1:10)^2);

but even though it is slightly shorter it is not as
readable.
Other examples are:

product(a[i,1]*s + a[i,2] for i);

is the same as

...)()()(2221121121 1 ⋅+⋅+=+∏ =
asaasaasa i

n

i i

As usual, a vector of values may be given as an
iterator:

sum(i^2 for i in {1,3,7,6})

Gives { } =∑ ∈

2

6731i
i 1+9+49+36=95

max(i^2 for i in {3,7,6})

results in 49

Iterator Array Construction
In a similar way as a reduction operator, the
construction

 {expression for iterators};

with n iterators generates an array with n
dimensions. The array is constructed by evaluating
the expression for every iterator value and
collecting the results to a corresponding array.
Examples:

 {i^2 for i in 1:5}

results in the vector

 {1, 4, 9, 16, 25}

An (n,m) array having the same value v for all
elements may be constructed as

 {v for i in 1:n, j in 1:m}

which is the same as "fill(v,n,m)". The special
matrix



















4000

0300

0020

0001

may be created with

 {if i==j then i else 0
for i in 1:n, j in 1:n}

9. External Utility Functions
Modelica 1.4 has already a convenient and simple
to use interface for external C and FORTRAN
procedures which allows to pass nearly all data
types of Modelica. The only exceptions have been
String types which could not be returned. In
Modelica 2, the following utility functions can be
called in external C functions:

void ModelicaMessage
 (const char* string)
void ModelicaFormatMessage
 (const char* string, ...)
void ModelicaError
 (const char* string)
void ModelicaFormatError
 (const char* string, ...)
char* ModelicaAllocateString
 (size_t len)
char*
ModelicaAllocateStringWithErrorReturn
 (size_t len)

ModelicaMessage and ModelicaFormatMessage
output a string to the message window of the
Modelica environment. The latter with the same
format control as the C-function printf. In both
cases linefeeds need to be explicitly defined in the
string by "\n". Similarly, ModelicaError and
ModelicaFormatError output an error to the error
window of the Modelica environment. Contrary to
the first two functions, these functions never return
to the calling function, but handle the error
similarly to an assert in the Modelica code.
Example for usage:

 ModelicaFormatError(
 "\"%s\" cannot be copied to \"%s\""
 ":\n%s", oldFile, newFile,
 strerror(errno));

Here, an error message is printed if a file cannot be
copied. The error message of the operating system
containing the source of the error is included at the
end of the message by a call to the C function
strerror(...).

New Features in Modelica 2.0 M. Otter, H. Olsson

Modelica 2002, March 18−19, 2002 7 − 10 The Modelica Association

ModelicaAllocateString allocates memory for a
Modelica string which is used as return argument
of an external Modelica function. If an error
occurs, this function does not return. The Modelica
environment is responsible to free this memory
when appropriate. In a similar way
ModelicaAllocateStringWithErrorReturn
allocates string memory, but returns in case of
error. This allows the external function to close
files and free other open resources in case of error.
Due to these two functions, Modelica Strings can
now also be returned from external Modelica
functions. For example, with the following external
Modelica interface

function blanks
input Integer n(min=0);
output String blankString;

 external "C"
 blankString = blanks(n);
end blanks;

a string containing n blanks shall be returned. An
implementation of this function in C could be
accomplished in the following way:

 #include "ModelicaUtilities.h"

 const char* blanks(int n) {
 /* Create string with n blanks */

char *c = ModelicaAllocateString(n);
int i;
for(i=0; i<n; ++i)

 c[i]=’ ’;
 c[n]=’\0’;

return c;
 };

Note, that it is not necessary to check in the C-
function that the input argument "n" is not
negative, because this is already defined in the
Modelica interface and therefore the Modelica
environment is responsible to check this property.
Furthermore, it needs not to be checked whether
memory could be allocated, because
ModelicaAllocateString will not return in such a
case but will raise an exception in the Modelica
run-time environment and will jump to a place
where execution can continue, e.g., after
terminating the simulation.

Note that the newly introduced enumeration types
can also be used as input and output arguments in
external functions. They are mapped to int in C
and INTEGER in FORTRAN. The first value in an
enumeration type is hereby mapped to 1, the
second to 2, etc.

10. External Objects
Formally, external functions in Modelica 1.4 need
to be functions in the mathematical sense, i.e., they
do not have a memory and therefore return exactly
the same result if the function is called with the
same input arguments. In Modelica 2.0,
additionally external objects are supported in C,
i.e., several functions may operate on a C data
structure which is passed between function calls
and represents an "object memory". Example:

A table data structure may be defined in such a
way, that the table data is read in a user defined
format from file. Furthermore, the table is
interpolated in a user defined manner in the
Modelica model utilizing the last used table
interval for efficiently finding the current interval,
i.e., an internal memory is needed. This requires
the following Modelica definition:

class MyTable
extends ExternalObject;

 function constructor
input String fileName;
input String tableName;
output MyTable table;
external "C" table =

 initMyTable(fileName, tableName);
 end constructor;

 function destructor
input MyTable table;

 external "C" closeMyTable(table);
 end destructor;
end MyTable;

That is, a Modelica class has to be defined as a
direct subclass of the new predefined class
"ExternalObject". This class shall contain exactly
two function definitions, called "constructor" and
"destructor" (and no other elements). The
constructor function is called once before the first
use of the object. For each completely constructed
object (here: instance of MyTable), the destructor
is called once, after the last use of the object, even
if an error occurs. These two functions are always
called implicitly and it is not allowed to call them
explicitly. The MyTable Modelica class can be
used in a Modelica model in the following way:

model test
 MyTable table1=MyTable(
 "testTables.txt", "table1");
 MyTable table2=table1; //copy of table1
input Real u1, u2;
output Real y1, y2;

equation
 y1 = interpolateMyTable(table1, u1);

M. Otter, H. Olsson New Features in Modelica 2.0

The Modelica Association 7 − 11 Modelica 2002, March 18−19, 2002

 y2 = interpolateMyTable(table2, u2);
end test;

In the declaration of "MyTable" either the
MyTable constructor is called using the class-name
as a function name, or a copy of another object of
the same type is constructed (see table2). The
objects may then be used in other external
Modelica functions. Here, a special external
interpolation function is used:

function interpolateMyTable
input MyTable table;
input Real u;
output Real y;
external "C" y =

 interpolateMyTable(table, u);
end interpolateMyTable;

The three external functions defined above may be
implemented in C in the following way:

typedef struct {
double* array;
int nrow;
int ncol;
int type; /* interpolation type */
int lastIndex; /* for search */

} MyTable;

void* initMyTable(char* fileName,
 char* tableName) {
 MyTable* table=malloc(sizeof(MyTable));
if (table == NULL) ModelicaError(

 "Not enough memory");
 // read table from file and store
 // all data in *table

return (void*) table;
};

void closeMyTable(void* object) {
 MyTable* table = (MyTable*) object;

if (object == NULL) return;
 free(table->array);
 free(table);
}

double interpolateMyTable(void* object,
 double u) {
 MyTable* table = (MyTable*) object;

double y;
 // Interpolate using "*table" data
return y;

};

The external object interface allows, for example,
convenient implementations of
• user-defined table data structures,
• access to property databases,
• sparse matrix handling with specially defined

data structures to store sparse matrices,
• hardware interfaces, since the constructor and

destructor are called exactly once, even in case

of error, so that the resources of the hardware
are initialized and freed correctly in all
situations (once the hardware is initialized, i.e.,
the Modelica object constructed, it is
guaranteed that the destructor is called exactly
once for this object when the object, i.e., the
hardware, is no longer needed or when an error
occurs).

11. Graphical Appearance
The graphical appearance of Modelica object
diagrams has been defined informally up to
Modelica version 1.4 in the respective tutorial. In
Modelica 2, the graphical appearance is formally
defined in the Modelica specification with several
improvements, especially based on the new
enumeration features. In this section the most
important properties are sketched. Note, that all
graphical information is defined with the
annotation(...) language element and annotations
are defined to have no effect on the result of a
simulation. Therefore, annotations can be ignored
when generating simulation code.

A graphical representation of a class consists of
two abstraction layers, icon layer and diagram
layer. The icon representation visualizes the
component by hiding hierarchical details. The
hierarchical decomposition is described in the
diagram layer showing icons of sub-components.

Icon and diagram layer are described by different
coordinate systems which means that the shape and
size of the two layers are independent from each
other. This is different to previous versions of
Modelica where only one coordinate system is
defined for both layers. As a result, in Modelica 2
it is easier to arrive at nice looking drawings,
because connectors may have different sizes in the
icon and diagram layer and because a resizing of
the diagram or the icon layer does not influence the
size of the corresponding other layer. All size
information, e.g., the size of icons and diagrams,
the thickness of a line or the size of a font, is
defined with the predefined type DrawingUnit:

 type DrawingUnit =
 Real(final unit="mm");

The interpretation of "unit" in "mm" is with respect
to printer output in natural size (not zoomed).
Therefore, a rectangle with width=20
DrawingUnits, height = 10 DrawingUnits and line
thickness of 0.5 DrawingUnits will be output as a

New Features in Modelica 2.0 M. Otter, H. Olsson

Modelica 2002, March 18−19, 2002 7 − 12 The Modelica Association

rectangle with 20 mm width, 10 mm height and 0.5
mm line thickness on a printer. The representation
on screen is not formally defined. It is typically a
direct mapping of "mm" to "pixels", e.g., 1 mm in
"natural size" is typically mapped to 4 pixels. On
high resolution screens, this mapping may be
different.

The properties of graphical objects are mostly
defined with enumerations, e.g.,

type LinePattern = enumeration(
 None, Solid, Dash, Dot,
 DashDot, DashDotDot);

Colors are defined as RGB values

type Color=Integer[3](min=0,max=255)

There is a set of predefined graphical primitives -
Line, Polygon, Rectangle, Ellipse, Text, Bitmap -
which may have graphical properties such as
lineColor, fillColor, linePattern, fillPattern,
borderPattern, lineThickness. For Text primitives,
the font name and the font size can be defined. All
graphical primitives are placed by defining the
placement of the corresponding object coordinate
system together with additional attributes to scale,
rotate, flip the object.

Note: a Modelica tool is free to define and use
other graphical attributes, in addition to those
defined in the Modelica specification. The only
requirement is that any tool must be able to save
files with all attributes intact, including those that
are not used. To ensure this, annotations shall be
represented with constructs according to the
Modelica grammar.

12. Outlook
We have this far described the status of Modelica
2.0. Some minor extensions have not been
mentioned, such as the "smooth" operator and the
"elseif" clause of if-expressions. In the near future
we can also expect the Modelica 2.0 libraries, and
in particular the blocks library, redesigned as
described above. In addition a ModelicaFunctions
library with matrix operations (linear algebra) will
be made available and the new rules for variable
number of input and output arguments will make it
possible to provide one function easily usable both
by experts and novices.

The ModelicaFunctions can also be used
interactively, as well as other functions and we

expect more use of Modelica scripts and
potentially a formal definition of such scripts, and
API-functions to access model properties from
scripts. Other free libraries are also under
development, e.g., for 1-dim. heat transfer and for
3-dim. vehicle dynamics.

From the language point of view some areas where
improvements are needed is already clear, e.g.,
enumerations (as described above), impulses
(eliminating the need for the reinit-operator [5]),
heterogeneous arrays and PDEs (automatic
discretization). More advanced use of the language
and construction of large libraries and models will
probably help in discovering areas where the
specification can be made clearer and where
further enhancement of the language is needed to
better support the growing number of users of
Modelica.

Bibliography
[1] Dymola, Dynasim AB, Lund, Sweden, version

5.0, http://www.dynasim.se.

[2] Mattsson S.E., Elmqvist H., and Olsson H.:
Means to Control the Selection of States in
Modelica (white paper of Dynasim), Nov.
2001.

[3] Mattsson S.E., Elmqvist H., Otter M., and
Olsson H.: Initialization of Hybrid
Differential-Algebraic Equations. Modelica
2002, Oberpfaffenhofen, pp. 9-15, March 18.-
19., 2002.

[4] Mattsson S.E., Olsson H. and Elmqvist H:
Dynamic Selection of States in Dymola.
Modelica'2000, Oct. 2000.

[5] Mattsson S.E., Olsson H. and Elmqvist H:
Varying structure Hybrid DAE (white paper
of Dynasim), Jun. 2001.

Mattsson S.E., Elmqvist H., Otter M., and Olsson H. Initialization of Hybrid Differential−Algebraic Eq...

The Modelica Association 9 Modelica 2002, March 18−19, 2002

��������������	�
	��
���	��

�������������
����	���������
��	��������	�

����	����	����������	�������	�� �������	������	!���������	����	!������
���������	
���
��

���������� !�!!���"!����#���������������"�����������

�
������

$"����%��&� �"���������� "���!
�����'
�'��%"����
%��
!"��� �%�!���'���������%"�����"����
�!"�������" �����"�
���%�������"
���������$"����%���"������
%����
���
����"��"���������(���"�����������(���"�������� ��%���"
����'��%"������������
���!"����������������������������
���� ��)���������� ���������������"�����*"�"�����
%"������������
����������������(���"��
����������
���"��
������'"����������������
���������
���'��������
����"��
	�����"����%"������������%��������"��������������
�����������
���"!���������������%������ �"��������������
���
���!"���������������������������������"����%"��������
��
���"����������������
���"����%��"����	��"����!���
�����
���� "�����������"����������� ����%"���"�������������(��
�����������������*�����
�"����� � ������%���������
�+ �����������������'
�'��%"����
%����������
�������
�"����������%"�������"�������$"����%�,��"����
���'
�'��������������"�������!��+��������� "���!
�
��������(���"��%"�����"����"������!�����

��	������������

	�������%��"�������%�������"���������������"��������
������*���������������������"���"!������"�����!"�
�+�� ��������%����%����������� "����"������
���"%�������-�����������'������
����"������������������
�"������������(���

."�����"����������!!�����������
���"�����/����������
� �%��!"������0���1��2����3�����������������������������
!�����"����'����������������
����4"��������"��
!��+������������ �%�!���'���������%"�����"��������������'
���������������������������5�������%���������"
�������
�"������������������������� ����'����������
����� �%�!���
������1�6������������%"�����"���"�'������������������
���"!
��%��%
�������
�"����%���������"����'��2����3�1�6�

����������������������"�����������"�"������������������
��������%��������������
�����"�� �%�!����������%"�����"��
���������"!�����������������

5��7��
����&66&��$"����%��&��������������89:��*������
���'
�'��%"����
%��� ������!��+������ �%�!�%���"��"!
��������%"�����"������������������%"���%���"�
��"��"!
��!!�%
�����"�)�����������������(���"�� �"������"%%
����'
������
�������� ��%���"����$"����%��&� �"�������
���������%�������'���� �%�!�%���"��"!�������������(���"�
"!����������!!�����������'�����%���
���"���

���"���8;�&:��
 "���������������'
�'��%"����
%���"!
$"����%��&��/����������"��������"�������
����
����%
�
 "���!"����������(���"���/+ �����%���!�"�����
������
� ��%���"�����%�
���'�%�"������������%���"" �����
�����"������%� �"��������"�������������������"�
�
!!�%������*����
����%����"�����������"!�����"��������"
�"�����������'�������"�)������� �"�������<"�����"��
���"�����
����������"��%�����������������(���"�
 �"���������'����������������%�7�%"������!"���"�������
�
� �"�������/+ �����%������%���������������� �"�%����
�"����"�
�����������������$"��"���������� �%���
���������"!�������������(���"�� �"��������"������"����"
'�������'�"��������
����'
����%����������
��������(���"�� �"������
����"
���"���"��������� "����

*���� � ������%�������������'
�'��%"����
%����"�� �%�!�
��������%"�����"��������+�� ����!"������
��'������'�����

��	"�����

�!"�������" �����"�����%�������"
���������$"����%�
�"������� �%���������
����"�����������(���"�������� ��%�
�"�����'��%"������������
���!"���������������� ���������
�����"������
���'������ ���������"�����������������
�	
2=3�����������
)������������
	2=3����������� �����
���
���"�����'�����%������������*�����������(���"��
���
������
���"���������'"����������������
����(����
���'����
���
����"��

	�����"����%"������������%��������"��������������
�����������
���"!���������������%������ �"�����������"
����>

;�� ���������
���!"�����������
&�� 5���������
���"�����������������'"������

."��%����������������!�����!"%
��"��������������(���"��"!
%"����
"
������� �"��������%�
��������������"��
��!!����%��������������� ������"��"!��������������
���"!
%"����
"
������������������������%����������������	��"
����������� �%�����
����!"������
��'��"!������%��
���
�
���'���������(���"���	�������������������� �����"������
���%
����'�
���%"����
"
������� �"�����������!���
��������%
������%���������������� �"������

Initialization of Hybrid Differential−Algebraic Eq... Mattsson S.E., Elmqvist H., Otter M., and Olsson H.

Modelica 2002, March 18−19, 2002 10 The Modelica Association

��	#���������	�� �	$��
�� �

���������	
���������
�����������

?�������������'��
��� ���"!��������������������
��������
���"���'�� �%�!�%���"��"!������������
��!"��������������

��������	�
	����
���
���������������������
��
��������	�
	�������

*������
��!"������������������� ����������+ �����"��

*�����������"���"�����
""�����������
�������	��"�����%���
���������������
��"!������������
��������
��2!�+���1
�
��	3��"����
������� "��������������"����"��"���
�"����������'�����%��"" ��"�������������������������
���
������"��������������
�����������2!�+���1��
�	3��."�
%"������������ ���������������������
���!�+��������
��!�
����
�	��"������������	����������!�
���!�����

."����%"����
"
���������������������%"����
%�

��������	�
	���������������������

�� ���������������"������������(���"����
���"�

�������

*�
������� �"����

������������������������������
����������������������
��
���������	�
	���������������������

�	���
��
�
����������������

��������!"��"���'��"�
��"�������������(���"�

������������
�����������
����������
��
�������������������������
�

������������������������
�

���������	
���������
�����������

	��"�����������������������%��"��������
��	��
����
���������
��
���
����������������"������
���"������
����'����������������
�����"��������������������(���"�
 ������*�����
���"�����������'�����������������������
��%��"�����������������
�����'�����%�%"���������
�����������������������
���"!��������������� "������
�������������������5������"�����"�����"�
��������%��
���
�����������������%��"���

����
�������

*"�� �%�!��
���%��������

�
�
����	���
��
�
����������

	��"��������%����+�� �����

�������������������
����������������� ��	���!"	�	��
����������������� �������
��������

�
�
����	���
��
�
���	���!"	�	������
���
����������
������
������������
����������
���
�
��

5!����� �������������������������
�	�������+��������
��������(����������������������%�
��������"����� �%�!���
������������(���"����
���"�

�
�
����	���
��
�
����������

5!����� �������������������������
��	���
��!�+�������
�	
�������������������������(���"����
���"�

�
�
����	���
��
��������

5!��"�������������������!�+��������
��	�����������������"
����������
���"��

*���� �"�%�����"
���������"�������"���+6��"�������
�+ �����"���-����+6������ ����������+ �����"������
� �%�!�%���"����"���%������"����'�������"�������

�������������������
����������������� �������
����������������� ��	���!"	�	��
���������	�
	������
������������������������

���������������������	���!"	�	���

�
�
����	���
��
�
���	���!"	�	������
���
����������
���
�
��

����
����
������

�
���"�����!��+�������������!����'���������(���"�
��
���"������$"����%��&�������� "��������"�!"��
����
�"���'���������������%"�����"��>�."���+�� �������
���%��!����������%������������
�����"%�������"���������
���%���!�������%����������"%������������������
��!
�
��������(���"���%���������"� �"�������������������"%�������
������������������
��!"����������������"���������"����������
	������������"�(��"��*��������������������+�
���"!��������
��!�����

Mattsson S.E., Elmqvist H., Otter M., and Olsson H. Initialization of Hybrid Differential−Algebraic Eq...

The Modelica Association 11 Modelica 2002, March 18−19, 2002

��������������������
�������

4"���������������%"�����"��������������!"���
%"����
"
������� �"����@

."�����"����������!!�����������
���"�����/����������
� �%��!"������0���1��2����3�����
�������2�3�������"���
%"�����"������������������"������"�����������&A���2�3
��
���"���!"������&A���2�3�
���"�����2��3����
��0��2��3�

*������
���"������"���%"� ��+�!"�����������"!
��!!�����������'�����%���
���"�����	/�

����1��2��0�����������3

�������2�3���������������� �����'���!!�������������2�3
������'�����%������������������2�3�1����2�3�B����2�3�
4�������%���"������������������������������2�3
������"����%"�����"����2��3���������������"������"�������
���&A���2�3B���2�3���
���"���!"������������
�����"!

���"�������0��2��3���2��3���2��3>

�
�

�
�
�

�
�

���������

���������
�

����

����

3232322

3232322

���

���
�

�

*�������"���������������	/� �"����������������'���
����+��	/� �"�������� ����'�����������
�����"!
%"����
"
������������������������������2�3�

5�����������!!�%
���!"����
����"!������'���"�����"�!�'
��
"
���"���������������%"�����"���������"����������
�� �%�������!������������������'��������+��	�����������"�
���"��� ��!"�����������+����
%��"����������%��������
�����������*�
������"����������������"�������������
�����������5!������������""��������������%"�����"���
���"���"
�
���������"�������'������%����'�������"!
����������
���"���"��!�+������������
���!�"�����%���������
��
���"����
���������"����"�����������
������%�������
���������'�!�+���1��
��	�

5!���������%"�����"�������������'�����"��������
�
�"����%���!�
�������%��"��"!���������%"�����"����*��
� �"�%������"�����%��%"����
"
������������������
���%��������������
���������������������������
����%����
����
����'�������!�+���������
����"��
�	��"�'����
���
%�
����������� "������������(���"�� �"������	
�����'����!"����'���"
���������
���"!��
%��������%��"�
%������"��������

��������������������������������
��

*��������������
������"'
��"!��������"������������"�
���������������'�����C����"
����������%�
�������
%"����
"
���������������<"�������%�
��������%"����
"
�
��������������������'��%��������������
��������
!�+��1�
�	������������������
������'������������������'
 ��������������"!�%"
������!�
��%������%����������
���
���"
����"��� ����������+ �����"��

-����������'�����������!�"���%�� ������"���'��������
��������'��!�������'�������������������"��!!�%��������"
��������'���!������������
%�
���� ���������

������������������������ �

	��"�)���������'�����%� �"���������������������
�"�
��"�����
���'����
����"�����
����%����	/��"����
�������"�'����������""�������"�
��"���	��	/��"�������
���
�����"������������%"��������� "���������������������"
%��%
����������� "������"�'��������D�%�"�����
�������'��
�
!!�%���������������� ��������
���'������+�����%��"!��
7�%"��������������"�)���'
����������������"%�������)
��!������"�
��"��

*�����������(���"�����������
%������������� ��%�
��"��
�
�������������"����
������������%"���%���"�
��"����
"���������*����������"�'
���������"�������%�
������
������+����
�����������������������
���!"�����

���"����

	������� ����+�� ����%"��������� ������ ���
�
������
!�+������'�����

��

�

�

�
�

�

�	

����
	�;>��	� ������ ���
�
��

*��� "����"��"!����� ���
�
��%������'�������� "���
%""����������5���"�
%�������'���� ������������(��"������
���� ���
�
��������'��'��"������������������� "����"��
*����"����%������'�������

���������������#���$
%��
���������������&�����
���������������'�����
�����()���*�

�	���
��

���()�����*�
&�
���*������&�#�'���� �()���

	��
����"����������������"�� �%�!�������������
%"�����"�����E���������%""�����������!�������

Initialization of Hybrid Differential−Algebraic Eq... Mattsson S.E., Elmqvist H., Otter M., and Olsson H.

Modelica 2002, March 18−19, 2002 12 The Modelica Association

�����'��� �()���
!����'�+���()���

5!������!���

�����!��	�
	��������������������

���� ���
�
�������������������"��("����� "����"��
4"�������������������"��"��("����� "����"����������

�����'���������'

*"�����%���� ��!����%��!"���� "����������
��!"��+����
%�����!���

��������	�
	���'��

5���������������� �"�������'
�������
��!"���
����%��
�"�������"�������!�"���*����������" �!
����!�������
 "��������"�
��"��!"��+����%�
����������%�"�����"�������
������'�������"�
��"��

."��������'��� ���������������������
���'����'����
�������� "����"�����%�
��������'�"���
����%���'�&�
'��������������E��������� "����"���	��"����������������
���
��%������
�����"�����%�����������������"�
��"���4"��
%����%����������"�'������ �%�����"�
��"���� �����"!�%"
���
"������� �����������
����!"����������"���������������
"!��������
����"���5!��"����������
�����'�����(��"����
����

��	%��� ����	������

C���������������� �%�����'��������
���������"���
���"
'����!�����"����
���"��"������������%���������!"����
���
����"���$"����%��&����"����"��� ������������
����"
���'������� ��%��������������"!����������������
���"!����
����������

��%�������� ������ ���
�
���������
������������"
��
������"�� �%�!�������������� "����"����

��������	�
	����
,����������������
�����!��	�
	����
-����������������

*���������������������!�%�����"�� �%�!���������'���"!����
 ���
�
���"����6�F��*"�� �%�!����������� ����������
���������%��%
������!�"��������������%"�����"������
��!���������

���������������'����������������

��%�������������������
���!�+�����������!�
����
�	�!"�
%"������������ �����������"���������!�+�����������!�
��
�
��	�

*����������%��"!� �������������$"����%���������������
��������%"��������
���'����
����"���*��� "�����������"����
���� ������������
���"��� ����"�����������������
���"!

������� �������2%"����
"
�)�����"�����%����3����������
�"����"����"�����������������%��

*����!���
������������
��!
��� ��%���"����5�����"��
 "���!
���� ��������(���"���"!��"������	������+�� ���
%"������������"����"!����������������"���5������"��
 �����������������'�������������%���	��
����������
�"
���������"������
����������������������"���������
'����� "��������� ���"��������������������" ������'
 "�����5�����D
����"��+�����!�"������������"���"����'����
�������$"����%����������������������

�;��	����� ���������C6��"�� �%�!������ "���
����� ���"��
�&������!�+��1�
��	�!"�� �����������
�9��	����������������
���"����%��"��������A��1�C6�

5�� "�������������������%"��"�� ��%��%���"�� �%�!�
��������%"�����"�����������������������
�����!!����������
"!��"����"�������%�
���'������������"�������� �%�!�
�������������������" ������'�%"�����"������������"!
�%������������%����� "��������� ���"��

5���"���%����� ����������������� �"������"
������"!��
$"����%���"�������������%�
������
��������������
!�"��!����"�� ������������
�������������
�����!�"���
�����������������
���'���������(���"�>

�����������������.��������������
�����������������*��������������
���������

�
�
����	���
��
���.�*����
���"� �/�	��0� �	
	�	0��
�	���
��
���
���������.��� �*����

��	��������	���	&�
���	$��
�� �

*������'
�'��%"����
%���!"��� �%�!���'��������
%"�����"���!"�����%����������������������!"�����
%"����
"
����������������>����������
��������������
��
���"���������'"�������

?�������������'��
��� ���"!�������5���'����
""��������
�����'���������������
������������"���'�� �%�!�%���"��"!��
���������
��!"���������������

."�����%�����������������%������"��

������ ����	�
	������������������������
1 	�#�
����	�
	������������������������

�� �������������"������������(���"����
���"��

���������������
�����������

Mattsson S.E., Elmqvist H., Otter M., and Olsson H. Initialization of Hybrid Differential−Algebraic Eq...

The Modelica Association 13 Modelica 2002, March 18−19, 2002

*��������������������%���������������������!��"����"��'��
��������������
��21��2��B	33���
�������
)���
��"!���21
�2��)
	��
�"���

!�������
���������������"�����

."��������������(���"�� �"���������������� �%�����������%
�
����!"�� �	��%��
����� �����'���������"������
���'
���
����"���� �	��%��
������"�����%�������������
%"�����"����%"�����
�	���
���'���������(���"�����
��
���"���"!��� �	��%��
�������"�����%������
���'
��������(���"����!����������
�23�" ����"���+ ��%������������
���

�����2
�
�
������+� ��	�� ���34�����
�����

��
������

������������ �	��%��
���������������������(���"�
 �"������� ��%��������1��
	2�3�!"������������!�����������
�������������%�
��������������"�����
������
���"���
���'
���
����"������������ �	�)%��
�������"���%�����

����
��	
����������"�����
5��%����������
���"��������������(���"�� �"�������������
�����!�������
�����"!��"�
��"����������!������
�����"!
��
���"�������
���"���������������������������
���'
��������(���"���/+�� ��������%"���"�����������������
!��%��"���"�����������������%������"������)("����
	��
���!"���+�� �����%��������� ��������*��������
������ "����"������������������������"�
��"���"!�������
��������������(���"�������"
'������� "����"����"
�����
%"�
����!�"����������(���"���5��������������"��"������
"���"�����
�����%��"!�������������(����"� �%��"���"!����
��!�������
�����"!��"�
��"����5������������%"����
"
�
�������
���"�����������"��!�����
���'���������(���"����
"������"�������������
���
���"�
��"���/+�� ��>

��!���
��
�
�
���������
�������������&��)�+)�
�+	�
��	�+�
����������
�������������	� ��
��+)�
�+	�
��	�+�

!���� ���
���������"�����

	�����������"�����"������������������������(���"�
 �"������"�%��%���!������������ "�������� ������'����
 �"��������"�!"
����
���"���� ����������� �%���"����
����%��%������� ���������5���'����
""��������������'
������%���������������%��"!��������������) "����

	�����%������!"������
���%"����
"
�)����� �"�����
���"���"
�
������"�����'�"�������%����"!�"���
� �%�!���� �"�������5��%����"!�
������ �%�!���
 �"���������"����������
�"����%���!�
�������%��"��"!
��������%"�����"���

��������������������
�������

���%���������������������� ��>�/��������%���������������
�����������������%"�����"�����%�
����2��)
	�
���"��������
�"����!������/+�� ��>

�����������������	������
�����+
�	�������5��	�
	����������������
����������	�
	����������������
�	���
��
�������	�&��6�	������
�����5���

����
������
��
���������������

�
���'���������(���"��������!"������� �	�)%��
��
��%"�����%���������!�����������
������"����������
����'���������
��������� �	�)%��
�������"
'��������
���
�������%"����
"
�� ����"!������"�����*����!"��������"
��
���������"����!��
	2
3��"
����"��������������!��������
�������������
���������
���%������"��

�������"������������!�
����
�����"����������������� �	�)
%��
��������
	2
3�����"��
����(�����������"���������������
���
��!"��
�������� �"�������
��	���������������
�����
���
����"�����%�
�������!������%%����"!�
�%"�
����
���
���� �	�)%��
��������!���������
����
����(������"����
��
���"�������������� �	�)%��
��������������������������
�
���������
����

���%����������������"
��!"�����"��������"� �"������������
���
���!"���������%����������������$"����%��&�"���
���
������"�� �%�!�������������
���"!����%��������������
���%����!�
��%���������
����"�����
����������������
��!�
������
���������
����

!�	�'� $��(��������������	�

��������	�����������

��"��!"
������������"�������(������� ��� ����
%"���"�������������%�����C5�%"���"������������%
�����

"

�
����#�5����������
�������'������+ ��%����

���������������7�����8���
�����91�+� 	
����
�(�
�&�	�
�

���������������8�����
���0"�&(���	�&�0�

���������������
����0
���
� +��� (5	0�
�������������������������������	�
	����

�����������������������������	�
	����

�������������5���������������	�
	����

�	���
��
���9�� 	�&����

�������������5�

���/��+
�	��91�+� 	
����

�������&(������8�������
�����������������8��8���
��������
���5���7��������
��������
��
������

Initialization of Hybrid Differential−Algebraic Eq... Mattsson S.E., Elmqvist H., Otter M., and Olsson H.

Modelica 2002, March 18−19, 2002 14 The Modelica Association

*����"����� �%�!�����������������������
���!"������������
�+ ��%������*��������%��
�������"������������
��������(���"���
���������� ��%�����

������������������
5��������������5�

*�����������(���"�� �"����������
�

������������
�	�
	��������
�������������
�	�
	�������
����5������5
�	�
	��������
��������������������������
5��������������5����������

���������������5����������

"

�
����#�5����������
�������'������+ ��%������������
%"���"�������
���"�������
�����
���'���������(���"���5����
���?�������;���
������ �	��%��
�������������

���"�&����+��
�	�� ������
�� 	��
�	���
��

�������������5�

�����2
�
�
��������&(�����8��4�����
������������������8��8���
��������
���5����7��������
��������
��
������

5����������������� �	��%��
���� �������

���������������8��8���
��������
5����7��������
��������

���������������(���"�� �"���������%����%"���

������������
�	�
	��������
�������������
�	�
	�������
�����5�����5
�	�
	��������
���������������������8��8���
��������
�5���������7��������
��������
�
��������������5�

"

�
����#�	��?�������&��
����������%"�����"�����!����
�������������
���"��

����������������

�������������5�

�����&�� � #���+��
�	�� ������ ���
�� 	��
�	���
��

�������������5�
�����2� �	���������&(������8"�4�����
�����������������8��8���
��������
���5����7��������
��������
��
������

�
�
����	���
��
������������
����5�������

�������"�����!"��"���'���
���"����
���'���������(���"�

�����������
�	�
	��������
�����������
����5������

��������������������8��8���
�������
5���������7��������
�������

���������������5�

"

�
����#����������������������(���"�

	��
�����������������������"������������������������."�
%"����
"
��������������+������������������������������
���������(��"G��	
2+3��1�6G�-�����!"���������%�����������
+�������������
	2+�3�1�+�G��������������%��
�����������
�%������
���'���������(���"�

�������������������	�
	����

����������������

�������������5�

�����&�� � #���+��
�	�� ������ �:�
�� 	��
�	���
��
���9�� 	�&����

�������������5�

���/��+
�	��91/�+� 	
����

�����2� �	���������&(������8��4�����
�����������������8��8�������
����
���5���7������������
����
��
������

�
�
����	���
��

�����������
�������������

*�����������(���"�� �"�������%"���

����������

���'� ��
��!�	�&�����;5�	�� ��� �)�
����5 7 �* ����������������5���
������������
��������������������8��8�������
���
5���������7��������
�������

��������������5�

�"����'������������"!���
���"����������"

�����������
������������
��
5�����������
��
������������
���7
�������������

$�	#����������

*���� � ����������%�������������
���������"���������
���'
�'��%"����
%���"!�$"����%��&����%"�������"������
$"����%�H��"��������'
�'��������������"�������!��+����
���� "���!
����������(���"��%"�����"����"������!�����

���"����
 "����$"����%�H����������"!�� �%�!���'
��������%"�����"����*"��
 "�����������������"�
��
��������(���"������"�������
����������"��%��������
��������(���"�� �"���������'����������������%�7�%"�����
!"���"���������
� �"�������$"��"���������� �%���
���������"!�������������(���"�� �"��������"������"����"

Mattsson S.E., Elmqvist H., Otter M., and Olsson H. Initialization of Hybrid Differential−Algebraic Eq...

The Modelica Association 15 Modelica 2002, March 18−19, 2002

'�������'�"��������
����'
����%����������
��������(���"�� �"������
����"
���"���"��������� "����

#�$�����
�������
*�����"���������� ������
 "������������/
�" ���
E"������"��
�����%"����%��5�*);II);;IJI�����
��������	
�
���������5�!"�����"���"%������
*�%��"�"'��������� �"D�%�����������K����)����
���
����"��!"������'��"!��
���) ����%���������K�

%�)�
�������

8;:����
�L%���4��/�����������/��$�����"���4������"�>
�������������������
�������
���	����
���	
������������C�"%�����'��"!��$"����%��&66&��$"����%�
�"�� �'�>���� >00����$"����%��"�'�

8&:����"����������
���	����
��������������������
	
���
��������������� >00��������������

89:�$"����%�����������	�����
���������	����
��
�����
�����
�������������	�����
������
��
�����
���
������
?����"��&�6��$"����%���"�� �'�>
��� >00����$"����%��"�'�

Modelica 2002, March 18−19, 2002 16 The Modelica Association

The Modelica Association 17 Modelica 2002, March 18−19, 2002

Session 2

Applications and Tools

Modelica 2002, March 18−19, 2002 18 The Modelica Association

Tiller M., Tobler W.E., Ming Kuang Evaluating Engine Contributions to HEV ...

The Modelica Association 19 Modelica 2002, March 18−19, 2002

Evaluating Engine Contributions to HEV Driveline
Vibrations

Michael Tiller, William E. Tobler and Ming Kuang
Ford Motor Company

Abstract
In order to comply with increasing consumer and
regulatory demand for improved fuel economy and
lower emissions, Ford Motor Company is developing a
Hybrid Electric Vehicle (HEV) version of the Escape
sport utility vehicle for production in 2003. Since
HEVs typically have several different operating modes
(e.g. electric launch, active neutral, regenerative
braking), an important concern is the fact that each of
these modes and the transitions between them lead to
minimal driver perceived vibrations. In order to
understand how the design and control of an HEV
influences what is "felt" by the driver, we need to build
models that accurately reproduce the dynamic response
of the powertrain. In this way, the response for a given
mechanical configuration and/or controller design can
be evaluated.

A model targeted at prediction of driver perceived
vibration was developed and validated against
experimental data. However, one unexpected result of
this work was to demonstrate that we could take the
dynamic model used to reproduce the behavior
described previously and, by using some advanced
Modelica features, derive a second model that predicts
the system efficiency of the transmission without having
to create an entirely new model for that purpose. The
system efficiency model was also validated against
experimental data and showed very good agreement.
The result is that rather than spending time creating and
maintaining two different models (one for dynamic
response and one for system efficiency) we were able to
build one on the foundation of the other. Furthermore,
we determined it was possible to generate a single
model that could describe both types (i.e. dynamic and
steady-state) of responses by merely changing the
values of a few model parameters.

Introduction
The idea of using computer-aided methods to evaluate
powertrain and vehicle NVH (i.e. noise, vibration and
harshness) is not new [1,2]. Furthermore, the use of
Modelica to model automotive systems is increasing
[3,4,5,6,7]. However, the contribution that the internal
combustion engine makes as a "forcing function" to a
powertrain system is not typically examined in detail
since the steady state operation of the engine is well
understood and sufficient for most applications. For
HEVs though, the engine starts and stops frequently,
both with the vehicle in motion and at rest, and this

makes a significant contribution to vibration perceived
by the driver.

In order to understand the effects of powertrain design
and control on driver perceived vibrations, a detailed
thermodynamic model of an Atkinson cycle internal
combustion engine was developed and integrated with a
detailed model of a hybrid electric transmission. The
computational model was then validated against
experimental data and showed very close agreement.
With this validated dynamic model of the powertrain,
we analyzed the effect that changes in the mechanical
design of the powertrain had on the natural frequencies
of the vehicle, examined the effect that engine control
parameters (e.g. spark timing and valve timing) had on
powertrain response and created realistic Simulink plant
models which could be used to test different control
strategies.

Physical Models
The focus of paper is on modeling the physical response
of the powertrain. Issues about control system design or
strategy are larger issues beyond the scope of this paper.
Nevertheless, a good physical model of the powertrain
can provide useful insights for both the hardware and
control system designers.

In particular, we are interested in predicting the
sensitivity of the powertrain response with respect to
component design parameters and actuator commands.
To preserve the effects of design parameters, it is
generally necessary to provide design-oriented models
built from first-principles based component models
rather than models derived from empirical relationships
or experimental data.

Our discussion of modeling efforts will start with some
general modeling issues and then present details of the
engine, transmission and vehicle models used in this
work.

Control Signals
Both the engine and transmission subsystems contain
components that require control signal inputs (e.g. spark
timing and motor torque). One interesting problem that
arises when actuator and sensor models are included is
the need to communicate these control signals into and
out of the physical model hierarchy. The difficulty is in
managing the propagation of these signals especially in
the context of replaceable components.

Evaluating Engine Contributions to HEV ... Tiller M., Tobler W.E., Ming Kuang

Modelica 2002, March 18−19, 2002 20 The Modelica Association

For example, we may develop an HEV model that
includes an engine with certain control signals (e.g.
spark timing and injector timing). At some later point,
we may wish to create a variation of that model by
simply extending the original model and replacing the
engine with different engine model. The difficulty
comes when the new engine happens to have a different
set of control inputs (e.g. cam phasing). In order to
propagate these new signals, this could require the
model developer to add a whole new set of connectors
up and down the model hierarchy.

To avoid this situation, we use something in our
Modelica models that we call the SignalBus idiom.
In this approach, all the signals associated with each
subsystem are grouped onto a "master" bus (e.g.
eng_control_bus) at the top-level of the model.
The SignalBus idiom is useful because the
component models only need to be aware of the specific
signals they require and not all signals on the master
bus.

connector SignalBus
annotation(…);

end SignalBus;

model FuelInjector
outer ControlBus eng_control_bus;

 // …
protected
 connector ControlBus

extends SignalBus;
 Ford.Types.Degree inj_start;
 Ford.Types.Degree inj_stop;
 end ControlBus;
end FuelInjector;

model FullVehicle
inner EngineMaster eng_control_bus;

 Engine eng "has fuel injectors";
protected

connector EngineMaster
extends SignalBus;

 Ford.Types.Degree inj_start;
 Ford.Types.Degree inj_stop;
 Ford.Types.Degree spark_adv;

end EngineMaster;
end FullVehicle;

Figure 1: Example of SignalBus Idiom

To implement the SignalBus idiom, we define an
empty connector with a specific graphical
annotation. Although not strictly necessary, it makes
the bus connectors very easy to identify in diagrams.
Next, inside each component requiring control signals
(e.g. a fuel injector), we declare a specific bus type for
that component (preferably in a protected section
to clearly indicate that this definition is for internal use).
The bus definition should include only the signals
required by the component. This bus can then be

instantiated with the outer qualifier. The name of the
instance should be that of the master bus where the
signals ultimately reside. At the top-level, the master
bus type must contain (at least) the union of all
subsystem component buses and an inner instance
must be declared. An example of the definitions and
declarations required is shown in Figure 1.

The SignalBus idiom has the following advantages
over signals. First, it avoids the necessity to place
connectors at each level in the hierarchy. This is
important because every change in control signals can
potentially change the set of connectors and
connections, a situation that becomes difficult to
maintain. In addition, because the outer bus only has
to be a subtype of the matching inner bus, the
component models are only required to declare the
signals they are interested in. This avoids dealing with
complex combinatorial possibilities that result when all
signals are included in a single connector definition.
One disadvantage with SignalBus definitions is that
responsibility for assigning the control signals is not
clearly specified by the definition. Instead, this requires
some discipline and understanding of the idiom.

Trying to decide on the best logical grouping for the
signals could be an involved task. Fortunately, there are
developing internal corporate standards or identifying
and grouping control signals and the SignalBus
idiom fits nicely into these emerging standards.

Reaction Torques
One limitation of the current rotational mechanics
library in the Modelica Standard Library is the fact that
it neglects reaction torques on rotational components.
For example, consider the IdealGear model
definition shown in Figure 2. The problem with the
IdealGear model is that it contains the equation:

0=+ baR ττ
which, in general, results in the torques not summing to
zero for this component. Since the torques represent the
flow of angular momentum, angular momentum is not
conserved.

within Modelica.Mechanics.Rotational;
model IdealGear "without inertia"

parameter Real ratio "Gear ratio";
 Interfaces.Flange_a flange_a;
 Interfaces.Flange_b flange_b;
equation
 flange_a.phi=ratio*flange_b.phi;
 0=ratio*flange_a.tau+flange_b.tau;
end IdealGear;

Figure 2: Standard IdealGear Model

While for many applications the models in the Modelica
Standard Library are sufficient, it is necessary to include
an additional flange in applications where the entire

Tiller M., Tobler W.E., Ming Kuang Evaluating Engine Contributions to HEV ...

The Modelica Association 21 Modelica 2002, March 18−19, 2002

geartrain assembly has the potential to rotate. For our
application, we are interested in the motion of the
transmission housing and engine block and as a result,
we must include a special flange on many of our
component models (e.g. electric motors, spur gears,
crank-slider mechanisms) to account for the reaction
torque which ultimately causes vibrations in the
powertrain casing. In most cases, it is necessary to
formulate the reaction torques by considering
conservation of momentum and conservation of energy.

Engine Modeling
One of the key features of the models developed for this
application is the ability to predict the torque generated
by the engine during startup and shutdown. In order to
predict this torque, it is necessary to model some of the
detailed thermodynamic processes of the engine (e.g.
breathing, compression, combustion). Fortunately, we
had already developed, prior to this application, a
library of thermodynamic components for the purpose
of studying engine behavior [6,8,9].

Figure 3: Combustion Chamber Processes

The engine model uses the same geometry and valve
timing as the intended production engine to ensure that
the predicted torque fluctuations have the same
characteristics as the actual engine. To accomplish this,
the engine model was developed such that it could
reproduce effects due to throttle position, spark timing,
cam phasing, valve lift profiles, engine geometry and
injection timing during both startup and shutdown. This
involves modeling the behavior of manifold filling and
emptying, variable valve timing mechanisms,
combustion and the application of cranking torque.
Several of these behaviors are represented in the
combustion chamber schematic shown in Figure 3.

Transmission Modeling
Using rotational components that account for the
necessary reaction torques, construction of transmission
models is straightforward. Unlike our previous
transmission models which included hydraulic
subsystems [4], the only complex behavior in the hybrid
transmission is related to frictional elements and these
can all be captured using the components in the
Modelica Standard Library. In other words, no complex
models had to be developed in order to build a
reasonable model of the transmission.

To accurately predict the behavior of the hybrid
transmission, several effects must be considered. First,
a non-linear spring is connected to the input shaft of the
transmission to isolate the transmission from the high-
frequency torque fluctuations produced by the engine.
In addition, the differential on the output side of the
transmission includes a single backlash used to
represent the backlash distributed throughout the
transmission.

Vehicle Modeling
The vehicle response model is quite simple and neglects
effects due to tire and suspension compliance.
Currently, we treat the vehicle as a single mass
connected by a kinematic tire model. The only real
detail of the vehicle model is in the modeling of the
front halfshafts (our current model handles only the
front wheel drive configuration of the powertrain)
which are modeled as non-symmetric compliances
connecting the transmission to the wheels. In the future,
we plan on refining our model to include suspension,
tire and driveline details so that we are able to predict
driver seat accelerations due to powertrain vibrations. It
has been shown previously [4] that such large and
complex models can be expressed in Modelica and
simulated using Dymola.

Analyses

Dynamic Response
The dynamic response of the powertrain is due to the
various inertias (e.g. gears, shafts, flywheel) and
compliances (e.g. halfshafts and engine mounts)
distributed throughout the system. The compliances are
all modeled as linear with the exception of the isolation
element on the input shaft of the transmission which is
modeled as a piecewise linear spring. In addition to the
inertias and the compliances there are several non-linear
elements. While the transmission includes several
frictional elements, they are not involved during start
stop operation. Finally, as previously mentioned, all
backlash in the transmission is lumped at the differential
on the output shaft.
The dynamic response of the transmission can be
modeled in Dymola and as we shall see later in the
'Validation' section, the results show close agreement

Evaluating Engine Contributions to HEV ... Tiller M., Tobler W.E., Ming Kuang

Modelica 2002, March 18−19, 2002 22 The Modelica Association

with experimental results. Because of the simplicity of
our current vehicle model, the results we focus on are
the halfshaft torque trajectories. However, interpreting
the time domain results by inspection of the trajectories
is not a very good way of establishing the "quality" of
the startup or shutdown operation. Instead, we use a
signal processing algorithm which reduces the time
domain trajectories down to a scalar value. Using this
information, we can then generate plots of the startup
and shutdown quality as a function of spark timing, cam
phasing, etc. While we are not in a position to discuss
the results of such analyses, they have proved quite
useful in identifying what factors contribute to
powertrain vibrations.

Steady-State Response
One of the unexpected results of this work was to
demonstrate that additional types of analyses could be
performed using the model initially developed for
studying dynamic powertrain response. Once we had
established our ability to predict dynamic response of
the powertrain, we were asked whether we could apply
our model to understanding some experimental
efficiency data taken on a powertrain dynamometer.
The experimental results had shown what appeared to
be anomalous data points during the testing and the
question was whether the model could explain these
anomalies.

To study the problem, we went back to our dynamic
response model and made all the geartrains in the
transmission replaceable. We then created a new
transmission model for studying steady-state efficiency
issues by extending our dynamic model and redeclaring
all the geartrains so that steady-state efficiency data for
each geartrain could be provided to the model. In other
words, we took our original dynamic model and
redeclared all the gears to include more detailed gear
models necessary for studying steady-state efficiency.

In addition to redeclaring some of the components,
several additional modifications were required.
However, none of these modifications required changes
to the original model but could instead be accomplished
via the modification semantics in Modelica and by the
addition of some new components. The first
modification was to add some slight parasitic losses for
some of the frictional elements. These losses could be
introduced through modifications to the parameters in
the original model. The other big change for the steady-
state response was to eliminate the compliances since
they only play a role in the dynamic response of the
powertrain.

Thankfully, eliminating the compliances did not require
crude methods like making the stiffness of the elements
extremely large. This would not have eliminated the
dynamics but would have just shifted the natural
frequencies until they were extremely high. Instead, we
employed a technique which is quite easy in Modelica.

We created the RigidBypass model shown in Figure
4. Placing an instance of this model in parallel with all
our compliances allowed us, just by changing the value
of the rigid parameter, to eliminate completely all
compliance in the model.

Another important difference between the dynamic and
steady-state response models is how they were used.
The dynamic response model was used in the context of
a vehicle simulation where the vehicle moves in
response to the output torque of the transmission. On
the other hand, the steady-state response model was
used to reproduce the results of experiments conducted
on a powertrain dynamometer where the speeds of
various elements were fixed. To analyze our model we
had to place the transmission on a virtual powertrain
dynamometer. Once again, the experimental and model
results showed good agreement.

model RigidBypass
import Modelica.Mechanics.Rotational;
parameter Boolean rigid;

 Rotational.Interfaces.Flange_a a;
 Rotational.Interfaces.Flange_b b;
equation
if rigid then

 a.tau + b.tau = 0;
 a.phi = b.phi;
else

 a.tau = 0;
 b.tau = 0;
end if;

end RigidBypass;

Figure 4: RigidBypass Model

Frequency response
Another type of analysis that we could do quite easily
with these models was to study the frequency response
of the powertrain. With this capability, we could then
study the effect that different design and control
changes had on the poles of the system.

P o l e - Z e r o M a p

R e a l A x i s

Im
a

g
 A

x
is

- 4 5 - 4 0 - 3 5 - 3 0 - 2 5 - 2 0 - 1 5 - 1 0 -5 0
- 1 5 0

- 1 0 0

- 5 0

0

5 0

1 0 0

1 5 0

Figure 5: Design Dependence of Poles

To perform this analysis we used the "Linearize" and
scripting functionality in Dymola [10] to generate a

Tiller M., Tobler W.E., Ming Kuang Evaluating Engine Contributions to HEV ...

The Modelica Association 23 Modelica 2002, March 18−19, 2002

linear time invariant system of equations for several
different sets of design parameters. To do this properly,
we needed to find a state where the backlash was taken
up and the engine isolation spring was in the appropriate
behavioral regime. We could then use the "ltiviewer"
functionality in MATLAB [11] to visualize the poles
and zeros and to study how the poles moved in response
to changes in hardware or controller design. Figure 5
shows one example of how the poles are visualized.

Validation

Dynamic Response
To validate the dynamic response of the powertrain, we
used experimental data collected from vehicle tests
conducted on our test track. The experiments involved
starting the engine and looking at the resulting engine
speed and halfshaft torque trajectories. The tests
themselves were conducted with a closed loop
controller. For our validation, we extracted the actuator
signals used in the test and applied them in an open loop
fashion to our model. The vehicle testing consisted of
27 different experiments involving 9 different controller
strategies.

Figure 6 shows a comparison between the engine speed
measured during the testing (dotted green line) and what
the model predicts (blue line) based on the same
actuator commands. The effects of the first few
compression strokes can be seen as distinct bumps in
the engine speed profiles.

2 . 5 3 3 . 5
0

5 0 0

1 0 0 0

1 5 0 0

E
n

g
.

S
p

e
e

d
 [

R
P

M
]

M o d e l

E x p e r i m e n t

1 5 . 8 1 6 1 6 . 2 1 6 . 4
- 5 0 0

0

5 0 0

1 0 0 0

2 8 . 8 2 9 2 9 . 2 2 9 . 4
- 5 0 0

0

5 0 0

1 0 0 0

1 . 8 2 2 . 2 2 . 4 2 . 6
0

5 0 0

1 0 0 0

1 5 0 0

1 5 . 4 1 5 . 6 1 5 . 8 1 6 1 6 . 2
- 5 0 0

0

5 0 0

1 0 0 0

1 5 0 0

2 8 . 6 2 8 . 8 2 9 2 9 . 2
0

5 0 0

1 0 0 0

1 5 0 0

2 . 4 2 . 6 2 . 8 3
0

5 0 0

1 0 0 0

1 5 0 0

E
n

g
.

S
p

e
e

d
 [

R
P

M
]

T i m e [s e c]

1 5 . 4 1 5 . 6 1 5 . 8 1 6
0

5 0 0

1 0 0 0

1 5 0 0

T i m e [s e c]

2 8 . 6 2 8 . 8 2 9
0

5 0 0

1 0 0 0

T i m e [s e c]

E
n

g
.

S
p

e
e

d
 [

R
P

M
]

S imulat ion vs. Experiment

Figure 6: Validation of Dynamic Engine Response

Similarly, Figure 7 shows a comparison (during the
same experiments) of the halfshaft torque predicted by
the model compared to the halfshaft torque measured in
the experiment. The halfshaft torque results are
sensitive to the initial crankshaft position and the initial
gap in the backlash.

2 . 2 2 . 4 2 . 6 2 . 8 3 3 . 2
- 4 0 0

- 2 0 0

0

2 0 0

T
o

rq
u

e
 [

N
.m

]

1 5 . 8 1 6 1 6 . 2 1 6 . 4 1 6 . 6
- 3 0 0

- 2 0 0

- 1 0 0

0

1 0 0

Hal fshaft Torque Comparison

2 8 . 8 2 9 2 9 . 2 2 9 . 4 2 9 . 6
- 4 0 0

- 2 0 0

0

2 0 0

2 2 . 2 2 . 4 2 . 6
- 4 0 0

- 2 0 0

0

2 0 0

T
o

rq
u

e
 [

N
.m

]

1 5 . 4 1 5 . 6 1 5 . 8 1 6 1 6 . 2

- 3 0 0

- 2 0 0

- 1 0 0

0

1 0 0

2 8 . 5 2 9 2 9 . 5
- 3 0 0

- 2 0 0

- 1 0 0

0

1 0 0

2 . 2 2 . 4 2 . 6 2 . 8

- 3 0 0

- 2 0 0

- 1 0 0

0

1 0 0

T
o

rq
u

e
 [

N
.m

]

T i m e [s e c]

1 5 . 4 1 5 . 6 1 5 . 8 1 6
- 3 0 0

- 2 0 0

- 1 0 0

0

1 0 0

T i m e [s e c]

2 8 . 6 2 8 . 8 2 9
- 4 0 0

- 2 0 0

0

2 0 0

T i m e [s e c]

Figure 7: Validation of Dynamic Driveline Response

Steady-State Response
The steady-state response of the transmission was also
validated by comparison to experimental data.
However, the steady-state response is based on
powertrain dynamometer data. Again, we saw good
agreement between our model and the experimental data
taken over a range of different operating conditions.
Figure 8 shows a comparison between the experimental
data (black bars) compared with the model predicted
efficiency (red stars). The important thing to note in
this data is how well the model predicts the
conspicuously low efficiency present in some of the
tests.

Figure 8: Validation of Steady-State Efficiency

Conclusions
There are several important points to be made about this
modeling project. The models described in this paper
were constructed from data about the individual
components that appear in the model. Whenever such
data was available, we used it. The only exception was
a slight modification to the crankshaft inertia to
demonstrate better agreement in engine speed
trajectories. For component data that is not easily
obtained or measured (e.g. damping ratios), we started
by using "rule of thumb" numbers (which showed
reasonable agreement) and then we made some small

Evaluating Engine Contributions to HEV ... Tiller M., Tobler W.E., Ming Kuang

Modelica 2002, March 18−19, 2002 24 The Modelica Association

adjustments, within reasonable limits, to calibrate those
parameters so that we could achieve the agreement
shown in the validation figures.

Another important point to make is the flexibility and
reusability that is inherent in Modelica models. This is
evidenced by our ability to do component level and
powertrain level validation studies, the flexibility of
using the models in different contexts (i.e. with different
causalities) and the ability to reuse the dynamic models
to reproduce steady-state response characteristics. This
flexibility combined with the efficient code generation
and solution methods in Dymola ensured that the model
development and analysis process was able to provide
accurate answers in a timely manner.

References
1. M. C. Tsangarides, W. E. Tobler and C. R.

Heermann, "Interactive Computer Simulation
of Drivetrain Dynamics", SAE 850978,
Surface Vehicle Noise and Vibration
Conference Proceedings.

2. M. C. Tsangarides and W. E. Tobler,
"Dynamic Behavior of a Torque Converter
with Centrifugal Bypass Clutch", SAE 850461,
Surface Vehicle Noise and Vibration
Conference Proceedings.

3. M. Otter, M. Dempsey and C. Schlegel,
"Package PowerTrain. A Modelica library for
modeling and simulation of vehicle power
trains", Modelica Workshop 2000 Proceedings,
pp. 23-32.

4. M. Tiller, P. Bowles, H. Elmqvist, D. Brück, S.
E. Mattson, A. Möller, H. Olsson and M. Otter,
"Detailed Vehicle Powertrain Modeling in
Modelica", Modelica Workshop 2000
Proceedings, pp. 169-178.

5. M. Tiller, "Introduction to Physical Modeling
with Modelica", Kluwer Academic Publishers,
ISBN 0-7923-7367-7

6. C. Newman, J. Batteh and M. Tiller, "Spark-
Ignited Engine Cycle Simulation in Modelica",
Second International Modelica Conference
Proceedings.

7. C. Puchalsky, T. Megli, M. Tiller, E. Curtis, N.
Trask, Y. Wang, "Modelica Applications for
Camless Valvetrain Development", Second
International Modelica Conference
Proceedings.

8. H. Tummescheit, M. Tiller, "Modellierung von
Ottomotoren", Objektorientierte Modellierung
Physikalischer, Teil 17.

9. M. Tiller, H. Tummescheit, C. Davis, N.
Trigui, "Powertrain Modeling with Modelica",
ASME 2000 Congress Proceedings.

10. H. Elmqvist, D. Brück, S. E. Mattsson, H.
Olsson and M. Otter, "Dymola User's Guide,
version 4.2a", Dynasim AB, Sweden

11. "MATLAB Release 12" (documentation), The
MathWorks, Inc., Natick, MA.

Clauß C., Beater P. Multidomain Systems: Electronic, Hydraulic, and Mechanical Subsystems ...

The Modelica Association 25 Modelica 2002, March 18−19, 2002

Multidomain Systems: Electronic, Hydraulic, and

 Mechanical Subsystems of an Universal Testing Machine

Modeled with Modelica

Christoph Clauß

Christoph.Clauss@eas.iis.fhg.de
Fraunhofer-Institut für Integrierte Schaltungen, Außenstelle Entwurfsautomatisierung

Zeunerstraße 38, 01069 Dresden, Germany

Peter Beater

Beater@mailso.uni-paderborn.de
Universität-GH Paderborn, Abt. Soest

Lübecker Ring 2, 59494 Soest, Germany

Abstract

The Simulation of hydraulic or electronic systems has
been state of the art for a long time. For both of these
domains there exist highly specialized simulation pro-
grams which can be regarded as a kind of industrial
standards. Often problems arise if different domains of
technology occur within one system and very detailed
models are needed.

As an example a universal testing machine is presented
which consists of hydraulic, mechanical, and electronic
component systems. Each component is modeled fully
detailed using the Modelica language [1]. Without
coupling of simulators the whole simulation model can
be investigated by one tool.

1 Introduction

The engineer of today is used to powerful simulation
tools. Within the last fourty years these tools mutated
from simple solvers of differential equations to compu-
ter-aided design software for technical systems. Tools
like HSPICE in electronics, ADAMS in mechanics, or
HOPSAN in Hydraulics are highly specified to meet
the needs of the discipline. These tools “know“ the do-
main-intern pecularities. Often the models and the
simulation algorithms are closely related. Therefore,
these tools are very advatageous in simulation, model-
ling, and postprocessing.

Often problems arise if technical systems cover more
than one established discipline, e.g. in microsystems
engineering. The two fundamental ways out are cou-
pling of simulators, and compact modeling for one
simulator.

From the very beginning the Modelica language is de-
signed for covering several technical disciplines [2],
[3], [4]. Complex systems can be modeled with one

language to get one model. The further processing
within the Dymola simulator results in one methemati-
cal model, typically a differential algebraic equation,
which is solved by one simulation core. The challenge
of the Modelica approach is to show that its efficiency
is not much less than the efficiency of domain specific
tools. To offer evidence of this is surely a long process.
In this paper the multidomain example of a universal
testing machine is presented. It demonstrates that the
unified multidiscipline simulation tool Modelica/Dy-
mola meets the challenge quite well.

At first the physical device is presented with emphasiz-
ing the hydraulic and electronic parts. The Modelica
model is shortly described, and simulation results are
discussed. It is shown that numerical problems could
be solved, and the performance can be accepted.

2 The Universal Testing Machine

Fig. 1 shows the universal testing machine. It is a sim-
ple mechanical construction of a one-sided working
Plunger cylinder and a hydraulic unit on the left side in
the picture. The hydraulic unit consists of a small AC
motor, a variable displacement pump, and a pressure
limiting valve.

Multidomain Systems: Electronic, Hydraulic, and Mechanical Subsystems ... Clauß C., Beater P.

Modelica 2002, March 18−19, 2002 26 The Modelica Association

This kind of machines is used for tensile tests of a rod
to detemine e.g. the tensile strength, which is a material
property. The resulting quasi-static stress-strain dia-
gram describes how the material reacts under a
continuously increasing load. Often the load is neces-
sary to be regarded not as static but as periodic. In these
cases the testing method has to be modified to get pul-
sating forces. A simple modification is like this: Within
the hydraulic circuit an electro-hydraulic proportional
valve of high quality is inluded as a by-pass to the cyl-
inder. This valve is controlled using a sine-wave
generator as reference input and a PI-controller. The
machine is described in more detail in [5].

The task of the simulation is the investigation of the
modifications before they are aplied. E.g. the character-
istic parameters of the valve and the electronic
controller have to be determined.

3 The Hydraulic and Mechanical
Parts

After preliminary work using the analogue computer in
the fifties the simulation of hydraulic systems became
important in the eighties. Graphical user interfaces
were added in the nineties [6]. Using Modelica and its
libraries it is easy to model hydraulic or mechanical
systems [7]. The user needs not absolutely know the
details of component modeling. If nevertheless details
are essential the source code of the models is available.

Using HyLib models the hydraulic circuit according to
fig. 2 could be modeled. Since the pump is driven via a
V belt transmission parts of the standard Modelica me-
chanics library are used to built the model according to
fig. 3. A further mechanical component is the model of
the specimen which is a linear spring.

To enable dynamic testing an electro-hydraulic valve is
used as a by-pass to the cylinder. In more detail the hy-
draulic and mechanical parts are described in [8], [5].

4 The Electronic Part

Since 1975 SPICE [9] is available for the simulation of
electronic and especially for microelectronic circuits.
Later on, powerful circuit simulators with graphical
and textual input possibilities were designed on SPICE.
For electronic devices very comprehensive models are
available which sometimes are based on semiconduc-
tor technology parameters.

In the electrical analog Modelica library [10] the most
often used electrical components are collected which
are easy to understand and of a wide interest. Although
the SPICE semiconductor devices are still missing it is
possible to model rather complicated electrical circuits.

Figure 1: Universal testing machine

Figure 2: Hydraulic circuit of the testing machine

Figure 3: Model of oil source

Clauß C., Beater P. Multidomain Systems: Electronic, Hydraulic, and Mechanical Subsystems ...

The Modelica Association 27 Modelica 2002, March 18−19, 2002

The electronic part of the testing machine is a PID-con-
trolling device [11], which amplifies (proportional),
integrates, and differentiates the input signal. The cir-
cuit scheme can be seen in fig. 4.

By chosing the resistances and capacitances according
to

the controlling parameters P, I, and D can be adjusted.

The operational amplifier was modeled on different ab-
stract levels. On the transistor level the well-known
µA741 [12] was used which is modeled using bipolar
transistors (14 NPN, 7 PNP) of the Modelica standard
library.

The numbers of the values of currents in the electronic
part are orders of magnitude smaller than the numbers
of values in the hydraulic part. Small capacitances in
the transistors cause very short transient responses.
Therefore the mathematical model becomes stiff,
which is a challenge for the simulation system.

The bipolar transistors are modelled in the most simple
way according to the Ebers-Moll-approach [13], [14].
The circuit structure (fig. 5) shows the components

which are nonlinear ones. Since the currents of the non-
linear sources depend on the diode currents the
transistors are modelled using a behavioural descrip-
tion instead of a structural one. Both the diodes and the
capacitors use exponential growing functions. Because
of numerical reasons these functions are linearized, if
their results grow extremely.

The characteristic of an NPN transistor is shown in
fig. 6. The collector current is growing exponentially if
the base-emitter-voltage exceeds a certain value. In de-
tail the characteristic depends on 16 parameters which
are explained in the Modelica Standard Library.

5 The Modelica Model

The simulation model of the controlled universal test-
ing machine is shown in fig. 7. The mechanical and
electronic models are from the Modelica Standard Li-
brary [1], the hydraulic models from the HyLib [7].

Unfortunately, the µA741 operates in a very small volt-
age range. Otherwise it runs into saturation. To avoid
saturation effects, both the input signal and the output
signal of the controller are transformed using the Gain
model of the Modelica standard blocks library. The

R=1

R1

R=1

R2

C=1

Cd

C=1

Ci

Gnd2

Amplifier

Vin
Vout

Gnd1 Gnd3

Figure 4: PID circuit

P
R2

R1

CD

CI

-------+= I
1

CIR1

------------= D CDR2=, ,

Vout PVin I V
� in

td D
td

dVin+ +=

Figure 5: Ebers-Moll transport model

Figure 6: NPN characteristic

Multidomain Systems: Electronic, Hydraulic, and Mechanical Subsystems ... Clauß C., Beater P.

Modelica 2002, March 18−19, 2002 28 The Modelica Association

Gain model simply multiplies the signal by a constant
factor. The input signal is multiplied by 4.0e-7, the out-
put signal by 0.1.

The electronic library uses the pin definition:
 connector Pin
 SIunits.Voltage v;
 flow SIunits.Current i ;
 end Pin;

For the block library the port definition is (the OutPort
definition is quite similar):
 connector InPort
 parameter Integer n=1;
 replaceable type SignalType=Real;
 input SignalType signal[n];
 end InPort;

When electronics is coupled with block library ele-
ments these connector definitions hit each other. Since
the voltage carries the information which is relevant for
the signal processing the voltage is mapped on the sig-
nal value. This is simply done using the elements
SignalVoltage, which converts an InPort signal value
into an electrical voltage, and the VoltageSensor, which
does it vice versa.

6 Results

With Dymola version 4.1a [15] the model of the univer-
sal testing machine was composed graphically,
analyzed, translated into executable code, and
simulated.

The simulations started at the quiescent state (all volt-
ages are zero, the hydraulic pressures are equal to the
environment pressure) at time zero and finished after

10 seconds in the steady state. Several simulations with
parameter variations were necessary. As a result the
nominal valve value and parameters of the controller
could be chosen. Both the maximum excitation fre-
quency and the maximum force reachable could be
calculated. Measurements which were done afterwards
at the real machine confirmed this choice of parame-
ters. In the following pictures the behaviour of some
variables is shown.

Figure 7: Object diagram of the complete simulation model

Figure 8: Force acting on the specimen

Figure 9: Valve input signal

Clauß C., Beater P. Multidomain Systems: Electronic, Hydraulic, and Mechanical Subsystems ...

The Modelica Association 29 Modelica 2002, March 18−19, 2002

At first the Dymola tool establishes the total differen-
tial algebraic system. A symbolic calculation step
reduces the number of variables/equations before the
integation starts.

In the following considerations the model without elec-
tronics but with a PI-controller of the block library is
used for comparisons. It will be called block model,
whereas the detailed model described above will be
called detailed model.

The following table compares the number of variables/
equations before and after the symbolic reduction.

Characteristical are the very different ranges of the var-
iables. This is illustrated by the above shown pictures
fig. 8 to fig. 11.

The eigenvalues of the linearized system differ excep-
tionally: the smallest is about -4.7361e+11, the largest
about -1.9441e-5. Therefore, the system is extremely
stiff.

The CPU time needed depends on the tolerance of the
numerical solver. If the tolerance is 1.e-7 and 1000 out-
put intervals are specified then on a Pentium III (533
MHz) it takes the translation and linking 23 s, and the
simulation 232 s. Most of the simulation time is used
for leaving the quiescent state. If the stop time is 20 s
the CPU time needed is only 4 s higher.

Important for an effective simulation is the optimal
choice of the tolerance of the numerical solver. In the
following table the statistic is compared at different tol-
erances for a stop time of 10 seconds and 1000 output
intervals, regarding the number of successful steps, the
number of F-evaluations, and the number of step
events:

If the tolerance is 1.e-5 the simulation time progress is
very small. This table shows that the performance
slows down if small tolerances are used. But it also
slows down if tolerances are too large. Therefore, an
optimal tolerance exists which is at about 1.e-6. In con-
trast with this behaviour at the block model the
computational work for the block model does not in-
crease if the tolerance becomes larger.

Consequently, the CPU times depend on the tolerance
chosen. If the optimal tolereance 1.e-6 is used the CPU
time of the total model is as high as the CPU time of the
block model at the same tolerance. With other toleranc-
es the CPU time of the total model is of course higher.

These results show that in multidomain examples also
the difficulties of each domain come together and react
together. This point of view will have to be investigated
more thoroughly.

Number of variables/equations

before reduction after reduction

detailed model 1031 487

block model 309 137

Figure 10: Pressure in the chamber

Figure 11: Base current into transistor q5

Number of

Tolerance succ. steps F-evaluations state events

1.0e-5 - - -

5.0e-6 5561 253025 104

1.0e-6 6160 215790 106

1.0e-7 9821 266447 516

2.0e-8 16774 390555 145

1.2e-8 26368 938770 1509

Multidomain Systems: Electronic, Hydraulic, and Mechanical Subsystems ... Clauß C., Beater P.

Modelica 2002, March 18−19, 2002 30 The Modelica Association

7 Conclusion

A rather complicated multidomain example could be
modeled and simulated in an easy way without simu-
lator coupling. Within reasonable computing times
several problems of design specifications could be
solved. More than thousands of variables can be han-
dled. Both extremly stiffness and very different ranges
of variables are possible.

To encourage more detailled and more easy modeling
the following improvements are suggested:
• Further physical components with multidomain

aspects should be offered in the Modelica standard
library

• For electronic devices the support of SPICE
netlists and SPICE models is necessary

To get more insight in the multidomain simulation with
regard to both modeling and numerical aspects much
more complex examples are desirable.

8 Acknowledgements

The Soest part of this work was supported by the Min-
isterium für Schule, Wissenschaft und Forschung of
Nordrhein-Westfalen, Germany, under grant Interdiszi-
plinäres Praktikum in Ingenieurstudiengängen.
The FhG part of this research was funded by the Deut-
sche Forschungsgemeinschaft (DFG) within the SFB
358 Automated System Design.

9 References

[1] Modelica Language Specification 1.4.
www.Modelica.org

[2] Elmqvist, H.: A Structured Model Language
for Large Continuous Systems. PhD-Thesis
Lund Institute of Technology, Lund, Sweden,
1978

[3] Larsson, M.: ObjectStab - A Modelica Library
for Power System Stability Studies. Lund,
Modelica Workshop 2000, 13-22

[4] Tummescheidt, H.: Development of a Modelica
Base Library for Modeling of Thermo-hydrau-
lic Systems, Lund, Modelica Workshop 2000,
41-52

[5] Beater, P.: Modeling and Didital Simulation of
Hyudraulic Systems in Design and Engineering
Education using Modelica and HyLib. Lund,
Modelica Workshop 2000, 33-40

[6] Beater, P.: Über 4 Jahrzehnte Simulation in der
Hydraulik. O+P Ölhydraulik und Pneumatik 43
(1999)2, 107-111

[7] HyLib. Library of Hyfraulic Components.
www.Hylib.com

[8] Beater, P.: Entwurf hydraulischer Maschinen -
Modellbildung, Stabilitätsanalyse und Simula-
tion hydrostatischer Antriebe und Steuerun-
gen. Berlin, Heidelberg, NewYork, Springer-
Verlag, 1999

[9] Johnson, B.; Quarles, T.; Newton, A.R.; Peder-
son, D.O.; Sangiovanni-Vincentelli, A.:SPICE3
Version 3e, User’s Manual., Univ. of Califor-
nia, Berkeley, Ca., 94720, 1991

[10] Clauß, Chr.; Leitner, Th.;Schneider, A.;
Schwarz, P.: Modelling of electronic circuits
with Modelica. Lund, Modelica Workshop
2000, 3-11

[11] Tietze, U.; Schenk, Ch.: Halbleiter-Schaltung-
selektronik. Berlin, Heidelberg, New York,
Springer-Verlag, 1980

[12] Herpy, M.: Analoge integrierte Schaltungen.
Akadémiai Kiadó. Budapest 1976

[13] Ebers, J.J.; Moll, J.L.: Proc. IRE 42 (1954)
1761-1772

[14] Horneber, E.-H.: Simulation elektrischer
Schaltungen auf dem Rechner. Berlin, Heidel-
berg, New York, Tokyo, Springer-Verlag 1985

[15] Dymola: www.Dynasim.se

Tummescheit H., Eborn J. Chemical Reaction Modeling with ThermoFluid/MF and MultiFlash

The Modelica Association 31 Modelica 2002, March 18−19, 2002

Chemical Reaction Modeling with
ThermoFluid/MF and MultiFlash

Hubertus Tummescheit† and Jonas Eborn‡

†Department of Automatic Control
Lund University, Sweden
hubertus@control.lth.se

‡United Technologies Research Center
East Hartford, Connecticut, USA

EbornJP@utrc.utc.com

Abstract

The free Modelica library THERMOFLUID (see [2]
and [11]) was developed for simulation of thermo-
hydraulic applications, both for single-species appli-
cations like the water-steam cycle in a thermal power
plant and for multi-species applications with gas mix-
tures. It has demonstrated its flexibility for model-
ing thermodynamic and process applications in a va-
riety of industrial and academic projects, see [10], [3]
and [7]. This article describes how support for chemi-
cal reactions and membrane diffusion has been added
to THERMOFLUID, thus expanding the area of pos-
sible applications to include reacting flows, chemi-
cal batch reactors, catalytic converters, etc. Another
crucial part of the modeling work has to be spent on
getting physical property data of sufficient accuracy
and with acceptable computational complexity for en-
gineering purposes into the model. This has been
adressed in the development of a commercial inter-
face to the industry-standard physical property pack-
age MultiFlash. The new Modelica library THER-
MOFLUID/MF provides the modeler with two tool-
boxes. Firstly, a low-level Modelica function interface
to MultiFlash. MultiFlash consists of a core of physi-
cal property calculation routines and a basic database
of the most comman chemical components and a num-
ber of add-on property databases. The interface gives
access to multi-component, multi-phase property cal-
culations including gas, several liquid and condensed
phases, wax formations and hydrates. Secondly, a
high-level Modelica model library which is fully in-
tegrated with the THERMOFLUID library and imple-
ments robust and efficient dynamical models for the
most common process engineering equipment. In ad-
dition, reliable crossing functions for detecting phase
boundaries in multi-phase, multi-component mixtures

have been implemented for the first time in a high-
level modeling language. The crossing functions make
it possible to simulate processes correctly even at off-
design operating points and under start-up conditions.
A flash volume may in such cases be filled with only
liquid or only gas. Crossing functions for phase transi-
tions ensure high performance simulation even in these
cases.

1 Flexible handling of chemical reac-
tions

In standard chemical textbooks, reactions are treated
as source terms in component concentration balances:

dci

dt
� cin

i
� cout

i
�

ri (1)

where ri are the component reaction rates, given by
a kinetic expression. In a more general way, we can
include the reaction terms in the component mass bal-
ance and total energy balance

dMi

dt
� ṁin

i
� ṁout

i
�

rZi � MWi (2)

dU
dt

� q̇in � q̇out � nc

∑
i � 1

rZi � H f
i (3)

where rZ are reaction rates in moles/s, q̇ is convective
heat flow, ṁ mass flow and Hf is component enthalpy
of formation.

1.1 ThermoFluid balance equations

In THERMOFLUID, the general balance equa-
tions are implemented in the package Base-
Classes.Balances. The basic balance equations
should not be modified by the average user and thus

Chemical Reaction Modeling with ThermoFluid/MF and MultiFlash Tummescheit H., Eborn J.

Modelica 2002, March 18−19, 2002 32 The Modelica Association

Figure 1: Schematic of the HeatAndMassObject with
heat interaction and reaction objects (no diffusion con-
nector present).

need to be general enough to handle all cases from an
isolated gas volume to a reactor with added mass- and
heat transfer laws. The model structure has to provide
the option to add any kind of heat- and mass transfer
interaction with the control volume later, as an add-on
component. The basic balance equation of a control
volume with two connectors is implemented as

dM_x = a.mdot_x + b.mdot_x + rM;
dU = a.q_conv + b.q_conv + Q_s;

This means that rM and Q_s, corresponding to the
source terms in (3) should be unspecified in the gen-
eral base class, and then specified at a later stage when
the balance class is reused in the model of a specific
component. When there are no reactions or heat inter-
action with the volume there is no need for any source
terms. In this case the model should provide a default
value of zero production.

1.2 The HeatAndMassObject, a gateway to
the balances

The contradiction of leaving the option open to spec-
ify production terms but not having to add a default
value of zero can be handled with open flow connec-
tors. In Modelica, all quantities which are flows are
marked with the flow-prefix. Flow variables obey
the zero-sum rule (Kirchhoffs’ current law) and have
in unconnected connectors a zero default value. Since
these connectors should be internal to the volume,

they need to be attached to an object inside the vol-
ume model. This is the HeatAndMassObject,see
Figure 1, which acts as a gateway between the bal-
ance equations and possible heat- and mass transfer
objects. External connectors can also be connected to
the HeatAndMassObject.

Interfaces

The HeatAndMassObject interact with other ob-
jects through a number of different connectors. The
currently implemented connectors include the Heat-
Flow connector for pure heat interaction (conduc-
tion/radiation), the ChemFlow connector for chemi-
cal reactions, both kinetic and equilibrium, and a con-
nector for membrane diffusion.

connector HeatFlow
parameter Integer n;
Temperature[n] T;
flow Power[n] q;

end HeatFlow;

connector ChemFlow
parameter Integer n, nc;
parameter String MediumType;
Temperature[n] T;
Pressure[n] p;
Concentration[n,nc] conc;
flow MolarFlowRate[n,nc] rZ;
flow Power[n] q;

end ChemFlow

The diffusion connector is similar to the ChemFlow
connector but has mass flow rate instead of molar flow
rate since this is standard for diffusion.
The flow semantics of Modelica for the molar flow rZ
and the heat flow q make sure that all contributions
to the mass- and energy balances are correctly taken
into account, no matter whether there are zero, one
or many connections to the HeatAndMassObject, see
Figure 1. Inside the HeatAndMassObject the con-
tributions from the different connectors are summed
up and transferred to the balance equations in the vol-
ume.

1.3 Objects for encapsulating reactions

To be able to drag and drop reaction models into a vol-
ume model (a reactor), they are encapsulated in reac-
tion objects. As shown in the code example below, the
Basic reaction inherits interfaces and basic parame-
ters from the reaction BaseObject.

Tummescheit H., Eborn J. Chemical Reaction Modeling with ThermoFluid/MF and MultiFlash

The Modelica Association 33 Modelica 2002, March 18−19, 2002

package Reactions

partial model BaseObject
parameter Integer n, nc, nr;
MolarReactionRate[n,nr] reacRate;
Enthalpy[nc] compHf;
parameter StoichiometricNumber[nr,nc]

stoich=zeros(nr,nc);
equation

for i in 1:n loop
r.rZ[i,:] =

transpose(stoich)*reacRate[i,:];
end for;

end BaseObject;

model Basic "Simple Arrhenius reaction"
extends BaseObject;
parameter Rate[nr] A0;
parameter Real[nr] b;
parameter MolarInternalEnergy[nr] Ea;
Concentration[n,nc] conc;

equation
for i in 1:n loop

reacRate[i,:] = ...;
r.q[i] = -compHf*r.rZ[i,:];

end for;
end Basic;

end Reactions;

The reaction rates are calculated from standard Arrhe-
nius expressions using the concentrations and the pa-
rameters. To use the reaction component, like in the
kinetic reaction in Figure 1, the user simply needs to
specify the parameters. The stoichiometry matrix is
constructed as shown in Table 1 and the heat of forma-
tion parameters are added from the medium model.
To construct models of other types of reactions the re-
action BaseObject can be reused. The customized
reaction model needs to give expressions for the reac-
tion rates, either by adding equations or by calling a
rate function. In this way packages of reactions can be

H � O2 � OH � O
OH � O � H � O2

O � H2 � OH � H
H2O � H � H2 � OH
H2 � OH � H2O � H
H2O � O � 2 OH
2 H � Ar � H2 � Ar
2 O � Ar � O2 � Ar

�
O2 H2 H2O O H OH Ar ������������

�

� 1 0 0 1 � 1 1 0
1 0 0 � 1 1 � 1 0
0 � 1 0 � 1 1 1 0
0 1 � 1 0 � 1 1 0
0 � 1 1 0 1 � 1 0
0 0 � 1 � 1 0 2 0
0 1 0 0 � 2 0 0
1 0 0 � 2 0 0 0

	 ����������
�

Table 1: Reactions included in the H2 O2 reaction sys-
tem and the corresponding stoichiometric matrix.

Figure 2: Schematic of example system with H2–O2

reaction.

built and reactions can graphically be added to stan-
dard reactor models.

1.4 Example, combustion of hydrogen

As an example, we consider the combustion of hydro-
gen and oxygen into water. In a simple setting, see
Figure 2, the system consists of a reservoir supplying
the reactants, a reactor volume and a sink for the prod-
uct flow. A heat source is added to provide the heat
necessary to ignite the mixture.
The complete set of sub-reactions for this process in-
volves a large number (
 40) of very fast reactions,
see [12]. Here we only consider the 8 main reactions,
involving the components � O2, H2, H2O, O, H, OH,
Ar � . Argon is included as an inert gas. The included
reactions are listed in Table 1. The corresponding sto-
ichiometry matrix and reaction rate parameters have
been coded into a Basic reaction object inside the
GasCV reaction vessel.
The result plots show clearly that the reactions are ex-
tremely fast once they started. They saturate when
all H2 is burned up and the flow through the volume
reaches steady state. The mass flows in Figure 3 show
a violent explosion when the mixture ignites. After the

0 1 2 3 4 5

x 10
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time [s]

M
as

sf
lo

w
 [k

g/
s]

outflow
inflow

Figure 3: Mass flows into and out of the control vol-
ume during the ignition phase

Chemical Reaction Modeling with ThermoFluid/MF and MultiFlash Tummescheit H., Eborn J.

Modelica 2002, March 18−19, 2002 34 The Modelica Association

0 1 2 3 4 5

x 10
−3

0

0.5

1

Time [s]

M
ol

ef
ra

ct
io

n
[1

]

mole fraction of H2

mole fraction of O2

mole fraction of H20

Figure 4: Molar fractions of the principal reactants and
products

initial ignition, a steady inflow of premixed gases leads
to a steady combustion with plenty of surplus oxygen.
The speed of the reactions makes the system very stiff.
The whole simulation shown in Figures 4-3 spans only
a few milliseconds.

2 The MultiFlash interface

MultiFlash is the generic name for a physical prop-
erty software from Infochem Ltd. It is a comprehen-
sive system that calculates the thermophysical proper-
ties of pure substances and mixtures and carries out
phase and chemical equilibrium calculations for fluid
and solid phases. MultiFlash consists of several soft-
ware modules: databases with the raw property data,
access software to the databases and different mod-
ules for pure component property calculation, mix-
ture models for thermodynamic properties and trans-
port properties, handling of binary interaction parame-
ters and phase and chemical equilibrium calculations.
A number of process simulators, e. g., gPROMS from
PSE, uses an interface to MultiFlash for the calculation
of physical properties. For use in a dynamic simulation
program typically only a small fraction of the Multi-
Flash functions are needed. The current interface is
kept as simple as possible, with all necessary interac-
tion with the property database encapsulated into one
medium property object. The interface has been tested
with both Dymola by Dynasim AB [4] and MathMod-
elica by MathCore AB [6].

2.1 The low-level interface

The low-level interface between Modelica models and
the MultiFlash modules, which are accessible via a

Win32 Dynamic Link Library (dll) under Windows,
consists of the standard Modelica foreign function in-
terface for the C-language. This means that all calls
to MultiFlash routines are provided exactly as docu-
mented in the MultiFlash programmers guide, includ-
ing identical variable names. There are two minor,
but necessary exceptions. Modelica does not allow to
overwrite inputs with outputs in the calling of func-
tions. This is common practice in Fortran numerical
routines and in MultiFlash this is exclusively used to
provide estimates of the solutions in the input vari-
ables. In the Modelica interface, the estimated solu-
tions are provided as additional input arguments to the
function and the original MultiFlash variables are kept
as outputs. The second exception is the handling of er-
ror message strings. The handling of errors and warn-
ings is done in the C wrapper functions. Diagnostic
messages are written to the simulation log. A flag with
the number of errors is returned in the Modelica func-
tion call for error trapping purposes.

2.2 Computational efficiency

Simulation time is an important issue and the inter-
face library uses all available methods to make func-
tion calls computationally efficient. A simple rule is
to get as many physical properties as possible from
one call to MultiFlash. All essential medium prop-
erties needed for the default dynamic model are avail-
able in one property record which is calculated with
one single function call to MultiFlash. The dynamic
state model and other ThermoFluid models need ev-
erything in this standard property record, so it is com-
putationally not efficient to slim down this function
call. Boolean flags to the MultiFlash routines are used
to ensure that only the medium properties of interest
are calculated. High level functions that return only
a single property have not been implemented in order
to close the door on unnecessarily slow models. How-
ever, all low-level MultiFlash functions are available
and thus single function calls to obtain properties can
be used if it is desired.

Providing good estimates of the solution makes a big
difference in the solution time for any nonlinear sys-
tem of equations, especially for phase equilibrium cal-
culations. It is obvious that for continuous, dynamic
simulation the result from the last time step usually
provides such an estimate. Internal caching of the last
solution in the same control volume is therefore im-
plemented in the THERMOFLUID/MF MultiFlash in-
terface.

Tummescheit H., Eborn J. Chemical Reaction Modeling with ThermoFluid/MF and MultiFlash

The Modelica Association 35 Modelica 2002, March 18−19, 2002

2.3 Using MultiFlash with ThermoFluid/MF

Setting up a model that uses MultiFlash properties is
currently done through the MultiFlash windows user
interface. The user selects the wanted components by
querying the available MultiFlash databases. For com-
plex systems, the MultiFlash stream facility is used to
define different component streams to be used in dif-
ferent parts of the system. The global stream which
has to be defined first contains the union of the com-
ponents in all streams. If necessary, the thermody-
namic models can be changed from the default sug-
gested by MultiFlash through the graphical user inter-
face. All standard equations-of-state (EOS) models,
e. g., Redlich-Kwong-Soave or Peng-Robinson, can be
used with a selection of mixing rules. Binary inter-
action parameters can be entered if needed. Trans-
port property models are selected independently of the
EOS models. The problem setup is saved in an mfl-
file which is then read and parsed during initialization.
The file name is the main parameter to the medium
models in the THERMOFLUID/MF library. Problem
setup files are read from the current directory or from
a repository, where all problem setup definitions can
be managed in a centralized way.

2.4 Dynamic state equations

The most efficient method of combining the dynamic
states and the physical property calculation is to
choose the dynamic states of the model such that they
are inputs to the physical property calculation routines.
That avoids the solution of non-linear equation sys-
tems during simulation. Otherwise, inputs to the prop-
erty functions have to be computed from outputs of
that functions through a non-linear equation system.
This happens when the outputs are dynamic states or
time-invariant parameters, like the volume in a closed
vessel. If the property functions are computationally
expensive relative to the rest of the model, the saving
in computation time by using a model which is ex-
plicit in the states is significant. When this can not be
achieved, as is the case with the MultiFlash routines, it
is still preferable to get non-linear equation systems of
the lowest possible dimension. Due to the MF call-
ing structure with pressure p, temperature T and N
(mole amounts) as inputs and total volume V as out-
put a special state model has been defined. It is incor-
porated in the free THERMOFLUID library and can be
used interchangeably with the simple ideal gas models
in the free THERMOFLUID library and the commer-
cial MultiFlash property models. The state model uses

temperature T and mole amounts N as dynamic states,
while p can be regarded as an algebraic variable that
contains state information. For the standard case of a
constant volume control volume, the pressure is solved
for iteratively to ensure that the total volume is kept
constant, Vfixed

� V � p � . This is the only non-linear
equation system in the model for single phase calcu-
lations. The dynamic state model is derived from the
standard text-book form of an energy and mass bal-
ances. In block matrix notation, the inner energy and
mole amount balance can be recast into temperature
and moles as dynamic states as follows (boldface for
vectors and matrices, sizes follow from dimension of
N, the number of components in the mixture.):��

Nt

Ut

Vt

�� � ��
I 0 0

dU
dN

 T � V dU

dT

 N � V dU
dV

 N � T

0 0 1

�� � �
Nt

Tt

Vt

��
(4)

The subscript t is used for the time derivative, N stands
for mole amounts, U for total inner energy. The in-
verse of the jacobian is used to make this model ex-
plicit in the mole vector, the temperature and the vol-
ume as dynamic states:

 � 1

�
1

dU
dT

 N � V

��
I 0 0

�

dU
dN

 T � V �

dU
dT

 N � V �

dU
dV

 N � T

0 0 1

��
(5)

The structure of the jacobian inverse reveals that only
the equation for the inner energy is transformed into
one for the temperature. The mole balance equations
remain unchanged from (4).
The partial derivatives occuring in the transformed dy-
namic and initial equations can be calculated from
derivatives that are returned by MultiFlash by setting
the appropriate flags. However, the derivatives must be
transformed using thermodynamic determinants since
MultiFlash returns derivatives at constant pressure and
the THERMOFLUID balances are derived at constant
volume. As an example we pick the derivative of to-
tal enthalpy w. r. t. temperature (all derivatives are at
constant composition):

∂H
∂T

����
V

�
∂H
∂T

����
p

�

∂H
∂V

����
T

�
∂H
∂T

����
p

� � ∂H � ∂p � T
∂V � ∂p � T � (6)

All derivatives on the right hand side of the equation
are returned by standard MultiFlash property calls.

Chemical Reaction Modeling with ThermoFluid/MF and MultiFlash Tummescheit H., Eborn J.

Modelica 2002, March 18−19, 2002 36 The Modelica Association

2.5 Initialization

In the Modelica 2.0 specification and Dymola version
4.2 the possibility to separate the equations for steady
state initialization from the dynamic states was intro-
duced. Due to that separation, a control volume can
now easily be initialized at steady state pressure, even
when the pressure is not a dynamic state. In complex
flow sheets, the calculation of an initial steady state is
usually numerically much more challenging than the
subsequent dynamic simulation. A helpful way around
that problem is to use a suitable “pseudo steady state”
instead which avoids harsh initial transients. One pos-
sibility to do so is to use steady state initialization only
for the states with relatively fast eigenvalues. Setting
the pressure gradient to zero, but supplying initial es-
timates for temperature and composition is one such
suitable choice of a “pseudo steady state”. The fast
modes of the system (pressure and, if a dynamic mo-
mentum balance is used, mass flows) are initialized in
steady state, while the much slower modes of tempera-
ture and composition are set by a non-steady state ini-
tial guess. The pressure gradient becomes:

dp
dt

� dp
dT

�
�
�
�
N

dT
dt

� n

∑
i � 1

dp
dNi

�
�
�
�
T

dNi

dt
� 0 � (7)

This equation together with given initial composition
and temperature is much easier to solve than a full
steady state, especially for large networks, but the ini-
tial transients due to errors in the initial guesses are
orders of magnitude smaller than the ones obtained
from non steady state pressures. The new initialization
method has been implemented for all state models in
the THERMOFLUID and THERMOFLUID/MF libraries
and has improved the handling of model initializa-
tion considerably. Before implementation of the im-
proved initialization, computation time for small prob-
lems was dominated by the time to simulate past the
initial transients. With that obstacle removed, typi-
cal simulation times for small systems are an order of
magnitude faster than before.
This initialization is the default setup when the THER-
MOFLUID/MF high-level models are used. The initial
state is defined by given temperature and mass frac-
tions and an initial pressure estimate. The initializa-
tion then solves for the mole amount states.

2.6 Debugging

In order to improve feedback and error messages for
debugging, an identifier for each control volume is
allocated during the initialization of the model. The

identifier is passed to the wrapper functions calling the
MultiFlash property routines. Using the unique con-
trol volume identifier, it is possible to connect error-
and warning messages from the MultiFlash routines to
the location in the flow sheet where the error occured,
e. g., if a temperature rises above the range of validity
of the property function. All error and warning mes-
sages from MultiFlash are written to the Dymola sim-
ulation log. Information about the version, the config-
uration, the number and composition of streams etc. is
also included in the log.

2.7 ThermoFluid/MF high level models

Modeling of process engineering problems can not
be cast into fixed, unchangeable model library com-
ponents as for example multibody systems. Instead
flexibility is needed to have basic building blocks tak-
ing care of the standard parts of any dynamic model.
These basic models need to be easy to adapt to a spe-
cific problem. A large part of the physical property
calculations is identical for all modeling problems.
The THERMOFLUID/MF library provides such basic
models and building blocks for control volume models
based on MultiFlash properties. Extensions are sim-
ple to add by using elements of the THERMOFLUID

or THERMOFLUID/MF libraries. Some examples of
lumped and distributed models demonstrate how to
build components and larger systems from the build-
ing blocks in the library. A mixture which is typical for
fuel cell reformer systems is used to demonstrate how
the minmimal physical property model is used and also
how to add transport properties. Transport properties
are not included in the THERMOFLUID library except
for water, but MultiFlash includes several models for
viscosity, thermal conductivity and surface tension for
pure components and mixtures.

Figure 5: Example models from the library.

Tummescheit H., Eborn J. Chemical Reaction Modeling with ThermoFluid/MF and MultiFlash

The Modelica Association 37 Modelica 2002, March 18−19, 2002

The number of high level models in the THER-
MOFLUID/MF library is fairly small, because most
standard models can be used from the THERMOFLUID

library. The only base models that are different
are control volume models. For flash models new
flash control volumes are introduced. They determine
which phase is flowing in or out at a connector from
the position of the flow connector and the liquid level
in the volume. Tray models for destillation columns
will be added later.

2 4 6 8 10 12
Time

0.05

0.06

0.07

0.08

L
iq

ui
d

Ph
as

e
Fr

ac
tio

n

2 4 6 8 10 12
Time

350

355

360

365

370

T
em

pe
ra

tu
re

Figure 6: Change of temperature and liquid phase frac-
tion in a water-ehtanol mix during a pressure transient.

The simulation result from the depressurization of
a flash volume filled with a water-ethanol mixture
in thermodynamic equilibrium of the two phases is
shown in Figure 6. A ramp from 1 bar to 0 � 5 bars
is imposed on the volume which has a feed flow of
constant composition. The jump in the liquid phase
fraction at the start and end of the transient is due to
the changing in- and outflow phase fractions.
Using MultiFlash properties with the THER-
MOFLUID/MF library is very simple and requires
only few steps of setup:

� Define the components, phases and models to be
used in the MultiFlash user interface and save the
result in a model setup file.

� Define a THERMOFLUID-compatible property
model, following the examples in the THER-
MOFLUID/MF library.

� Use that property model in a suitble control vol-
ume model from the THERMOFLUID/MF library.

3 Crossing Functions for multi-
component multi-phase mixtures

In Modelica, crossing functions are usually automat-
ically generated from all equations that contain state-
ments which indicate that a function f � x � is discontin-
uous at a certain point x0. For example, in the follow-
ing equation:

phase = if h < hliq or h > hvap or p > pcrit then 1 else 2;

three crossing functions are introduced to monitor the
states of the boolean conditions. This is necessary be-
cause numerical integration routines assume continu-
ity of their right-hand side functions. This assumption
is violated in most if-clauses. This can not be auto-
mated for external functions that are discontinuous at
a point x0. Thus crossing functions have to be pro-
vided by the user in order to make the simulator de-
tect the discontinuity. These crossing functions have to
be consistent with the actual discontinuities, otherwise
they will not work. In the context of phase equilib-
rium calculations for multi-component fluid mixtures
this means that a unique function of composition, pres-
sure and temperature � N � p � T � must be returned from
the phase equilibrium calculations which has a sign
change at the point where a new phase is formed or one
phase ceases to exist. At a phase boundary thermo-
dynamic variables have discontinuous first derivatives
or are discontinuous by itself, like the heat capacity
at constant volume cv. For a mixture with n compo-
nents the crossing function is a function ℜ

�
n � 1 � � � ℜ.

It calculates a measure for the distance to the phase
boundary surface which is in ℜn.

3.1 Deviation index

Collaboration with Infochem Ltd. [5] brought forth
an implementation of such a function to increase ef-
ficiency and reliability of phase equilibrium calcula-
tions in dynamic simulations. It is available in the
latest release of MultiFlash, version 3.1. This is the
first time that a multi-phase property package has been
equiped with this feature, which is indispensable for
being able to reliably simulate the formation or dis-
appearance of phases in a control volume with high

Chemical Reaction Modeling with ThermoFluid/MF and MultiFlash Tummescheit H., Eborn J.

Modelica 2002, March 18−19, 2002 38 The Modelica Association

quality integrators with event detection and error con-
trol. Infochem calls the new function the deviation
index. The calculation of the deviation index is nu-
merically much more efficient than other possibilities
to determine the number of phases at a given � N � p � T �
during dynamic simulation. Geometrically, the devia-
tion index can be interpreted as a normalized length of
the normal vector from the current point in the space
spanned by composition, pressure and temperature to
the n-dimensional tangent hyperplane to the phase sep-
aration surface. The tangent plane is also known as
Gibbs' tangent plane. It has been used for stability
analysis in phase equilibrium calculations before, see
[8], [9] and [1]. The new feature is to assign a value to
the distance from the hyperplane which allows a solver
using interpolation to exactly locate the point in time
when the simulation trajectory in the N � p � T - space
will pass through the hyperplane. At equilibrium, the
Gibbs energy of the system is at a minimum. This
condition may be expressed as the equality of fugac-
ities for each component in all phases or equivalently
([1]) as

ln � Ki j �
�

ln � Fi j � � ln � Firi � � 0 i � 1 � � nc; j � 1 � � np

(8)
where nc is the number of components, np is the num-
ber of phases, Ki j is the K-value for component i in
phase j, Fi j is the fugacity coefficent for component i
in phase j and ri is the the reference phase for compo-
nent i. The K-values are defined as

Ki j
� yi j

yiri

(9)

where yi j is the mole fraction of component i in phase
j. In the vicinity of the phase split surface, the left
hand side of (8) gives the value of the desired crossing
function, the deviation index.
Furthermore, the function needs to reliably calculate
the properties used in equation (8) of a phase which
is unstable at the current � N � p � T � . Considering for
simplicity single component mixtures and the calcu-
lation of thermodynamic properties for a phase which
is unstable inside the 2-phase dome (i. e., superheated
liquid or subcooled vapour), it becomes clear that the
numerical computation is only possible to the limit of
the so called spinoidal lines. For simple cubic EOS
the spinoidal lines are defined by the connection lines
of the maxima and minima of the theorectical isother-
mes inside the two-phase dome. An implementation
thus has to guard against erroneous results far from
the phase boundary.

4 Conclusions

The inclusion of reaction calculations and the inter-
face to the physical property database MultiFlash into
the THERMOFLUID library opens new possibilities of
modeling process systems and combustion processes
which up to now have been blocked by the large ini-
tial investment in modeling work to set up the physical
property calculation.
The general reaction, diffusion and heat transfer object
provides a clean and unified way of encapsulating sub-
models for heat and mass transfer. Base classes never
need to be changed no matter how many connections
to the control volume exist. Standard reactions can be
stored in component libraries and used with any re-
actor model that has a compatible medium property
model. Membrane diffusion uses the same mechanism
to couple into the standard dynamical equations.
The THERMOFLUID/MF library provides two sets of
models: low level models which are one-to-one wrap-
pers to the MultiFlash physical property routines and
high level base models for multi-component liquid-gas
two phase models. Care has been taken to make the
time consuming VLE-calculations as efficient as pos-
sible and at the same time numerically robust.
Crossing functions for multi-phase, multi-component
mixtures have been implemented in collaboration with
Infochem Ltd. They allow a numerically robust detec-
tion of the formation of new phases in a multi phase
mixture.

References

[1] J. F. Counsell, R. A. S. Moorwood, and
R. Szczepanski. Caclulating Multiphase Equilib-
ria. In Proceedings of the Conference on Vapour-
Liquid Equilibria, Aston, 1990.

[2] Jonas Eborn. On Model Libraries for Thermo-
hydraulic Applications. PhD thesis, Department
of Automatic Control, Lund Institute of Technol-
ogy, Lund, Sweden, March 2001.

[3] Rüdiger Franke. Formulation of dynamic opti-
mization problems using modelica. In Martin Ot-
ter, Hilding Elmqvist, and Peter Fritzson, editors,
Proceedings of the International Modelica Con-
ference 2002. Modelica Association and DLR,
March 2002.

[4] http://www.dynasim.se.

[5] http://www.infochemuk.com.

Tummescheit H., Eborn J. Chemical Reaction Modeling with ThermoFluid/MF and MultiFlash

The Modelica Association 39 Modelica 2002, March 18−19, 2002

[6] http://www.mathcore.com.

[7] Jakob Munch Jensen and Hubertus
Tummescheit. Moving Boundary Models
for Dynamic Simulations of Two-Phase Flows.
In Martin Otter, Hilding Elmqvist, and Peter
Fritzson, editors, Proceedings of the Interna-
tional Modelica Conference 2002. Modelica
Association and DLR, March 2002.

[8] M. L. Michelsen. The isothermal flash problem.
I. Stability analysis. Fluid Phase Equilibria, 9:1–
19, 1982.

[9] M. L. Michelsen. The isothermal flash problem.
II. Phase-split calculation. Fluid Phase Equilib-
ria, 9:21–40, 1982.

[10] Torge Pfafferot and G. Schmitz. Numerische
Simulation von CO2-Kühlprozessen mit Model-
ica. In DKV-Tagungsbericht 2001, volume IV 28.
Jahrgang. DKV, Stuttgart, 2001.

[11] Hubertus Tummescheit, Jonas Eborn, and Falko
Wagner. Development of a Modelica base li-
brary for modeling of thermo-hydraulic systems.
In Modelica 2000 Workshop Proceedings, pages
41–51, Lund, October 2000. Modelica Associa-
tion.

[12] Stephen R. Turns. An Introduction to Combus-
tion. McGraw Hill International Editions, 1993.

Modelica 2002, March 18−19, 2002 40 The Modelica Association

Fritzson P., Gunnarsson J., Jirstrand M. MathModelica − An Extensible Modeling and Simulation Environment ...

The Modelica Association 41 Modelica 2002, March 18−19, 2002

MathModelica
 An Extensible Modeling and Simulation Environment
with Integrated Graphics and Literate Programming

(Abridged Version∗)

Peter Fritzson1, Johan Gunnarsson2, Mats Jirstrand2

1) PELAB, Programming Environment Laboratory, Department of Computer and Information
Science, Linköping University, SE-581 83, Linköping, Sweden

petfr@ida.liu.se
2) MathCore AB, Wallenbergs gata 4, SE-583 35 Linköping, Sweden

{johan,mats}@mathcore.se

∗ The complete version of the paper can be found at http://www.mathcore.com and http://www.ida.liu.se/~pelab/modelica/

Abstract

MathModelica is an integrated interactive development
environment for advanced system modeling and simulation.
The environment integrates Modelica-based modeling and
simulation with graphic design, advanced scripting
facilities, integration of program code, test cases, graphics,
documentation, mathematical type setting, and symbolic
formula manipulation provided via Mathematica. The user
interface consists of a graphical Model Editor and
Notebooks. The Model Editor is a graphical user interface
in which models can be assembled using components from
a number of standard libraries representing different
physical domains or disciplines, such as electrical,
mechanics, block-diagram and multi-body systems.
Notebooks are interactive documents that combine
technical computations with text, graphics, tables, code,
and other elements. The accessible MathModelica internal
form allows the user to extend the system with new
functionality, as well as performing queries on the model
representation and write scripts for automatic model
generation. Furthermore, extensibility of syntax and
semantics provides additional flexibility in adapting to
unforeseen user needs.

1 Background

Traditionally, simulation and accompanying activities
[Fritzson-92a] have been expressed using heterogeneous
media and tools, with a mixture of manual and computer-
supported activities:
• A simulation model is traditionally designed on paper

using traditional mathematical notation.
• Simulation programs are written in a low-level

programming language and stored on text files.
• Input and output data, if stored at all, are saved in

proprietary formats needed for particular applications
and numerical libraries.

• Documentation is written on paper or in separate files
that are not integrated with the program files.

• The graphical results are printed on paper or saved
using proprietary formats.

When the result of the research and experiments, such as a
scientific paper, is written, the user normally gathers
together input data, algorithms, output data and its

visualizations as well as notes and descriptions. One of the
major problems in simulation development environments is
that gathering and maintaining correct versions of all these
components from various files and formats is difficult and
error-prone.

Our vision of a solution to this set of problems is to
provide integrated computer-supported modeling and
simulation environments that enable the user to work
effectively and flexibly with simulations. Users would then be
able to prepare and run simulations as well as investigate
simulation results. Several auxiliary activities accompany
simulation experiments: requirements are specified, models are
designed, documentation is associated with appropriate places
in the models, input and output data as well as possible
constraints on such data are documented and stored together
with the simulation model. The user should be able to
reproduce experimental results. Therefore input data and parts
of output data as well as the experimenter's notes should be
stored for future analysis.

1.1 Integrated Interactive Programming
Environments

An integrated interactive modeling and simulation
environment is a special case of programming environments
with applications in modeling and simulation. Thus, it should
fulfill the requirements both from general integrated
environments and from the application area of modeling and
simulation mentioned in the previous section.

The main idea of an integrated programming environment
in general is that a number of programming support functions
should be available within the same tool in a well- integrated
way. These means that the functions should operate on the
same data and program representations, exchange information
when necessary, resulting in an environment that is both
powerful and easy to use. An environment is interactive and
incremental if it gives quick feedback, e.g. without
recomputing everything from scratch, and maintains a dialogue
with the user, including preserving the state of previous
interactions with the user. Interactive environments are
typically both more productive and more fun to use.

There are many things that one wants a programming
environment to do for the programmer, particularly if it is
interactive. What functionality should be included?
Comprehensive software development environments are

MathModelica − An Extensible Modeling and Simulation Environment ... Fritzson P., Gunnarsson J., Jirstrand M.

Modelica 2002, March 18−19, 2002 42 The Modelica Association

expected to provide support for the major development
phases, such as:
• requirements analysis,
• design,
• implementation,
• maintenance.

A programming environment can be somewhat more
restrictive and need not necessarily support early phases
such as requirements analysis, but it is an advantage if such
facilities are also included. The main point is to provide as
much computer support as possible for different aspects of
software development, to free the developer from mundane
tasks so that more time and effort can be spent on the
essential issues. The fo llowing is a partial list of integrated
programming environment facilities, some of which are
already mentioned in [Sandewall-78], that should be
provided for the programmer:
• Administration and configuration management of

program modules and classes, and different versions
of these.

• Administration and maintenance of test examples and
their correct results.

• Administration and maintenance of formal or informal
documentation of program parts, and automatic
generation of documentation from programs.

• Support for a given programming methodology, e.g.
top-down or bottom-up. For example, if a top-down
approach should be encouraged, it is natural for the
interactive environment to maintain successive
composition steps and mutual references between
those.

• Support for the interactive session. For example,
previous interactions should be saved in an
appropriate way so that the user can refer to previous
commands or results, go back and edit those, and
possibly re-execute.

• Enhanced editing support, performed by an editor that
knows about the syntactic structure of the language. It
is an advantage if the system allows editing of the
program in different views. For example, editing of
the overall system structure can be done in the
graphical view, whereas editing of detailed properties
can be done in the textual view.

• Cross-referencing and query facilities, to help the user
understand interdependences between parts of large
systems.

• Flexibility and extensibility, e.g. mechanisms to
extend the syntax and semantics of the programming
language representation and the functionality built into
the environment.

• Accessible internal representation of programs. This is
often a prerequisite to the extensibility requirement.
An accessible internal representation means that there
is a well-defined representation of programs that are
represented in data structures of the programming
language itself, so that user-written programs may
inspect the structure and generate new programs. This
property is also known as the principle of program-
data equivalence.

1.2 Vision of Integrated Interactive
Environment for Modeling and
Simulation.

Our vision for the MathModelica integrated interactive
environment is to fulfill essentially all the requirements for
general integrated interactive environments combined with the
specific needs for modeling and simulation environments, e.g.:
• Specification of requirements, expressed as

documentation and/or mathematics;
• Design of the mathematical model;
• symbolic transformations of the mathematical model;
• A uniform general language for model design,

mathematics, and transformations;
• Automatic generation of efficient simulation code;
• Execution of simulations;
• Evaluation and documentation of numerical experiments;
• Graphical presentation.

The design and vision of MathModelica is to a large extent
based on our earlier experience in research and development of
integrated incremental programming environments, e.g. the
DICE system [Fritzson-83] and the ObjectMath environment
[Fritzson-92b,Fritzson-95], and many years of intensive use of
advanced integrated interactive environments such as the
InterLisp system [Sandewall-78], [Teitelman-69,Teitelman-
74], and Mathematica [Wolfram-88,Wolfram-97]. The
InterLisp system was actually one of the first really powerful
integrated environments, and still beats most current
programming environments in terms of powerful facilities
available to the programmer. It was also the first environment
that used graphical window systems in an effective way
[Teitelman77], e.g. before the Smalltalk environment
[Goldberg 89] and the Macintosh window system appeared.

Mathematica is a more recently developed integrated
interactive programming environment with many similarities
to InterLisp, containing comprehensive programming and
documentation facilities, accessible intermediate representation
with program-data equivalence, graphics, and support for
mathematics and computer algebra. Mathematica is more
developed than InterLisp in several areas, e.g. syntax,
documentation, and pattern-matching, but less developed in
programming support facilities.

1.3 Mathematica and Modelica
It turns out that the Mathematica is an integrated programming
environment that fulfils many of our requirements. However, it
lacks object-oriented modeling and structuring facilities as
well as generation of efficient simulation code needed for
effective modeling and simulation of large systems. These
modeling and simulation facilities are provided by the object-
oriented modeling language Modelica [MA-02a,MA-02b],
[Tiller-01], [Elmqvist-99], [Fritzson-98].

Our solution to the problem of a comprehensive modeling
and simulation environment is to combine Mathematica and
Modelica into an integrated interactive environment called
MathModelica. This environment provides an internal
representation of Modelica that builds on and extends the
standard Mathematica representation, which makes it a well
integrated with the rest of the Mathematica system.

The realization of the general goal of a uniform general
language for model design, mathematics, and symbolic
transformations is based on an integration of the two languages
Mathematica and Modelica. Mathematica provides
representation of mathematics and facilities for programming
symbolic transformations, whereas Modelica provides

Fritzson P., Gunnarsson J., Jirstrand M. MathModelica − An Extensible Modeling and Simulation Environment ...

The Modelica Association 43 Modelica 2002, March 18−19, 2002

language elements and structuring facilities for object-
oriented component based modeling, including a strong
type system for efficient code and engineering safety.
However, this language integration is not yet realized to its
full potential in the current release of MathModelica, even
though the current level of integration provides many
impressive capabilities.

The current MathModelica system builds on
experience from the design of the ObjectMath [Fritzson-
92b,Fritzson-95] modeling language and environment,
early prototypes [Fritzson-98b], [Jirstrand-99], as well as
on results from object-oriented modeling languages and
systems such as Dymola [Elmqvist-78,Elmqvist-96] and
Omola [Mattsson-93], [Andersson-94], which together
with ObjectMath and a few other object-oriented modeling
languages, have provided the basis for the design of
Modelica.

ObjectMath was originally designed as an object-
oriented extension of Mathematica augmented with
efficient code generation and a graphic class browser. The
ObjectMath effort was initiated 1989 and concluded in the
fall of 1996 when the Modelica Design Group was started,
later renamed to Modelica Association. At that time,
instead of developing a fifth version of ObjectMath, we
decided to join forces with the originators of a number of
other object-oriented mathematical modeling languages in
creating the Modelica language, with the ambition of
eventually making it an international standard. In many
ways the MathModelica product can be seen as a logical
successor to the ObjectMath research prototype.

2 The MathModelica Integrated
Interactive Environment.

The MathModelica system consists of three major
subsystems that are used during different phases of the
modeling and simulation process, as depicted in

Figure 1 below:
MathModelica

Modeling and Simulation

NotebooksSimulation
Center

Model
Editor

Environment 3D Graphics
 and CAD

Figure 1. The MathModelica system architecture.

These subsystems are the following:
• The graphic Model Editor used for design of models

from library components.
• The interactive Notebook facility, for literate

programming, documentation, running simulations,
scripting, graphics, and symbolic mathematics with
Mathematica.

• The Simulation center, for specifying parameters,
running simulations and plotting curves.

Additionally, MathModelica is loosely coupled to two
optional subsystems for 3D graphics visualization and
automatic translation of CAD models to Modelica. [Bunus-
00], [Engelson-99]. [Engelson-00]. In order to provide the
best possible facilities available on the market for the user,
MathModelica integrates and extends several professional
software products that are included in the three subsystems.
For example, the model editor is a customization and
extension of the diagram and visualization tool Visio

[Visio] from Microsoft, the simulation center includes
simulation algorithms from Dynasim [Elmqvist-96], and the
Notebook facility includes the technical computing system
Mathematica [Wolfram-97] from Wolfram Research.

A key aspect of MathModelica is that the modeling and
simulation is done within an environment that also provides a
variety of technical computations. This can be utilized both in
a preprocessing stage in the development of models for
subsystems as well as for postprocessing of simulation results
such as signal processing and further analysis of simulated
data.

2.1 Graphic Model Editor.

The MathModelica Model Editor is a graphical user interface
for model diagram construction by "drag-and-drop" of model
classes from the Modelica Standard Library or from user
defined component libraries, visually represented as graphic
icons in the editor. A screen shot of the Model Editor is shown
in Figure 2. In the left part of the window three library
packages have been opened, visually represented as
overlapping windows containing graphic icons. The user can
drag models from these windows (called stencils in Visio
terminology) and drop them on the drawing area in the middle
of the tool.

The Model Editor is an extension of the Microsoft Visio
software for diagram design and schematics. This means that
the user has access not only to a well developed and user
friendly graph drawing application, but also to a vast array of
professional design features to make graphical representations
of developed models visually attractive. Since Modelica
classes often represent physical objects it is of great value to
have a sufficiently rich graphical description of these classes.

The Model Editor can be viewed as a user interface for
graphical programming in Modelica. Its basic functionality
consists of selection of components from libraries, connection
of components in model diagrams, and entering parameter
values for different components

For large and complex models it is important to be able to
intuitively navigate quickly through component hierarchies.
The Model Editor supports such navigation in several ways. A
model diagram can be browsed and zoomed. The Model Editor
is well integrated with Notebooks. A model diagram stored in a
notebook is a tree-structured graphical representation of the
Modelica code of the model, which can be converted into
textual form by a command.

2.2 Simulation Center.

The simulation center is a subsystem for running simulations,
setting initial values and model parameters, plot results, etc.
These facilities are accessible via a graphic user interface
accessible through the simulation window, e.g. see Figure 3
below. However, remember that it is also possible to run
simulations from the textual user interface available in the
notebooks. The simulation window consists of five areas or
subwindows with different functionality:
• The uppermost part of the simulation window is a control

panel for starting and running simulations. It contains two
fields for setting start and stop time for simulation,
followed by Build, Run Simulation, Plot,
and Stop buttons.

• The left subwindow in the middle section shows a tree-
structure view of the model selected and compiled for
simulation, including all its submodels and variables.
Here, variables can be selected for plotting.

MathModelica − An Extensible Modeling and Simulation Environment ... Fritzson P., Gunnarsson J., Jirstrand M.

Modelica 2002, March 18−19, 2002 44 The Modelica Association

• The center subwindow is used for diagrams of plotted variables.

Figure 2. The Graphic Model Editor showing an electrical motor with the Inertia parameter J modified.

• The right subwindow in the middle section contains
the legend for the plotted diagram, i.e. the names of
the plotted variables.

• The subwindow at the bottom is divided into three
sections: Parameters, Variables, and
Messages, of which only one at a time is visible.
The Parameters section, shown in Figure 3,
allows changing parameter values, whereas the
Variables section allows modifying intial (start)
values, and the Message section to view possible
messages from the simulation process.

If a model parameter or initial value has been changed, it
is possible to rerun the simulation without rebuilding the
executable code if no parameter influencing the equation
structure has been changed. Such parameters are
sometimes called structural parameters.

2.3 Interactive Notebooks with Literate
Programming.

In addition to purely graphical programming of models using
the Model Editor MathModelica also provides a text based
programming environment for building textual models using
Modelica. This is done using Notebooks, which is documents
that may contain technical computations, text, and graphics.
Hence, these documents are suitable to be used both as
simulation scripting tools, model documentation and storage,
model analysis and control system design, etc. In fact, this
article is written as such a notebook and in the live version the
examples can be run interactively. A sample notebooks is
shown in Figure 4.

Figure 3. The Simulate window with plots of the signals Inertia1.flange_a.tau and Inertia1.w .

Fritzson P., Gunnarsson J., Jirstrand M. MathModelica − An Extensible Modeling and Simulation Environment ...

The Modelica Association 45 Modelica 2002, March 18−19, 2002

Figure 4. Examples of MathModelica notebooks..

The MathModelica Notebook facility is actually an
interactive WYSIWYG (What-You-See-Is-What-You-Get)
realization of Literate Programming, a form of programming
where programs are integrated with documentation in the
same document, originally proposed in [Knuth-84]. A
noninteractive prototype implementations of Literate
Programming in combination with the document processing
system LaTex has been realized [Knuth-94]. However,
MathModelica is one of very few interactive WYSIWYG
systems so far realized for Literate Programming, and to our
knowledge the only one yet for Literate Programming in
Modeling.

Integrating Mathematica with MathModelica does not
only give access to the Notebook interface but also to
thousands of available functions and many application
packages, as well as the ability of communicating with other
programs and import and export of different data formats.
These capabilities make MathModelica more of a complete
workbench for the innovative engineer than just a modeling
and simulation tool. Once a model has been developed there
is often a need for further analysis such as linearization,
sensitivity analysis, transfer functions computations, control
system design, parametric studies, Monte Carlo simulations,
etc.

In fact, the combination of the ability of making user
defined libraries of reusable components in Modelica and the
Notebook concept of living technical documents provides an
integrated approach to model and documentation
management for the evolution of models of large systems

2.3.1 Tree Structured Hierarchical Document
Representation.

Traditional documents, e.g. books and reports, essentially
always have a hierarchical structure. They are divided into
sections, subsections, paragraphs, etc. Both the document
itself and its sections usually have headings as labels for
easier navigation. This kind of structure is also reflected in
MathModelica notebooks. Every notebook corresponds to
one document (one file) and contains a tree structure of cells.
A cell can have different kinds of contents, and can even

contain other cells. The notebook hierarchy of cells thus
reflects the hierarchy of sections and subsections in a
traditional document.

Figure 5. The package Mypackage in a notebook

In the MathModelica system, Modelica packages including
documentation and test cases are primarily stored as
notebooks, e.g. as in Figure 4. Those cells that contain
Modelica model classes intended to be used from other
models, e.g. library components or certain application
models, should be marked as exports cells. This means that
when the notebook is saved, such cells are automatically
exported into a Modelica package file in the standard
Modelica textual representation (.mo file) that can be
processed by any Modelica compiler and imported into other
models. For example, when saving the notebook
MyPackage.nb of Figure 5, a file MyPackage.mo
would be created with the following contents:

package MyPackage
model class3

 ...
end class3;
model class2 ...
model class1 ...
package MySubPackage
model class1

 ...
end class1;

end MySubPackage;
end MyPackage;

2.3.2 Program Cells, Documentation Cells, and
Graphic Cells.

A notebook cell can include other cells and/or arbitrary text
or graphics. In particular a cell can include a code fragment
or a graph with computational results.

The contents of cells can for example be one of the
following forms:
• Model classes and parts of models, i.e. formal

descriptions that can be used for verification,
compilation and execution of simulation models.

• Mathematical formulas in the traditional mathematical
two dimensional syntax.

• Text/documentation, e.g. used as comments to
executable formal model specifications.

MathModelica − An Extensible Modeling and Simulation Environment ... Fritzson P., Gunnarsson J., Jirstrand M.

Modelica 2002, March 18−19, 2002 46 The Modelica Association

• Dialogue forms for specification and modification of
input data.

• Result tables. The results can be automatically
represented in (live) tables, which can even be
automatically updated after recomputation.

• Graphical result representation, e.g. with 2D vector and
raster graphics as well as 3D vector and surface
graphics.

• 2D structure graphs, that for example are used for
various model structure visualizations such as
connection diagrams and data structure diagrams.

A number of examples of these different forms of cells are
available throughout this paper.

2.3.3 Mathematics with 2D-syntax, Greek
letters, and Equations

MathModelica uses the syntactic facilities of Mathematica to
allow writing formulas in the standard mathematical notation
well-known, e.g. from textbooks in mathematics and physics.
Certain parts of the Mathematica language syntax are
however a bit unusual compared to many common
programming languages. The reason for this design choice is
to make it possible to use traditional mathematical syntax.
The following three syntactic features are unusual:
• Implied multiplication is allowed, i.e. a space between

two expressions, e.g. x and f(x), means
multiplication just as in mathematics. A multiplication
operator * can be used if desired, but is optional.

• Square brackets are used around the arguments at
function calls. Round parentheses are only used for
grouping of expressions. The exception is
Traditional Form, see below.

• Support for two-dimensional mathematical syntactic
notation such as integrals, division bars, square roots,
matrices, etc.

The reason for the unusual choice of square brackets around
function arguments is that the implied multiplication makes
the interpretation of round parenthesis ambiguous. For
example, f(x+1) can be interpreted either as a function call
to f with the argument x+1, or f multiplied by (x+1).
The integral in the cell below contains examples of both
implied multiplication and two-dimensional integral syntax.
The cell style is called MathModelica input form (called
standard form in Mathematica) and is used for mathematics
and Modelica code in Mathematica syntax:

‡ x f@xD
1 + x2 + x3

 �x

There is also a purely textual input form using a linear
sequence of characters. This is for example used for entering
Modelica models in the standard Modelica syntax, and is
currently the only cell format in MathModelica that can
interpret standard Modelica syntax. However, all
mathematics can also be represented in this syntax. The
above example in this textual format appears as follows:

Integrate[(x*f[x])/(1 + x^2 + x^3), x]

Finally, there is also a cell format called traditionalform
which is very close to traditional mathematical syntax,
avoiding the square brackets. The above-mentioned syntactic
ambiguities can be avoided if the formula is first entered
using one of the above input forms, and then converted to
traditional form.

‡ x f HxL
x3 � x2 � 1

�� x

The MathModelica environment allows easy conversion
between these forms using keyboard or menu commands.
Below we show a small example of a Modelica model class
SimpleDAE represented in the Mathematica style syntax of
Modelica that allows greek characters and two dimensional
syntax. The apostrophe (') is used for the derivatives just as
in traditional mathematics, corresponding to the Modelica
der() operator.

ModelASimpleDAE,
Real β1;

Real x2;

EquationA
β1'

1 + Hβ1'L2 +
sin@x2'D
1 + Hβ1'L2 + β1 x2+ β1 � 1;

sin@β1'D −
x2'

1 + Hβ1'L2 − 2 β1 x2+ β1 � 0;

EE
We simulate the model for ten seconds by giving a
Simulate command:

Simulate[SimpleDAE,{t,0,10}];

We use the command PlotSimulation for plotting the
solutions for the two state variables, which of course both are
functions of time, here denoted by t in Mathematica syntax:

PlotSimulation@8β1@tD, x2@tD<, 8t, 0, 10<D;

2 4 6 8 10
t

0.1

0.2

0.3

0.4

0.5

0.6

x2 t

β1 t

2.4 Environment and Language
Extensibility

Programming environments need to be flexible to adapt to
changing user needs. Without flexibility, a programming tool
will become too hard to use for practical needs, and stopped
to be used. Adaptability and flexibility is especially
important for integrated environments, since they need to
interact with a number of external tools and data formats,
contain many different functions, and usually need to add
new ones.

There are two major ways to extend a programming
environment
• Extension of functionality, e.g. through user-defined

commands, user-extensible menus, and a scripting
languages for programmability.

• Extension of language and notation, e.g. by facilities to
add new syntactic constructs and new notation, or
extend the meaning of existing ones.

Fritzson P., Gunnarsson J., Jirstrand M. MathModelica − An Extensible Modeling and Simulation Environment ...

The Modelica Association 47 Modelica 2002, March 18−19, 2002

Mathematica has been designed from the start to be an
inherently extensible environment, which is what is used in
MathModelica. Almost anything can be redefined, extended,
or added.

2.4.1 Scripting for Extension of Functionality

An interactive scripting language is a common way of
providing extensibility of flexibility in functionality. The
MathModelica environment primarily uses the Mathematica
language and its interpreter as a scripting language, as can be
seen from a number of examples in this paper. Another
possibility would be to use the Modelica language itself as a
scripting language, e.g. by providing an interpreter for the
algorithmic and expression parts of the language. This can
easily be realized in MathModelica since the intermediate
form has been designed to be compatible with Mathematica,
and we already have Modelica input cells: just use Modelica
input cells also for commands, which are sent to the
Mathematica interpreter instead of the simulator.

2.4.2 Extensible Syntax and Semantics

As was already apparent in the section on mathematical
syntax, MathModelica provides a Mathematica- like input
syntax for Modelica in addition to the usual Modelica syntax.
One reason is to give support for mathematical notation, as
explained previously. Another reason is to provide user
extensible syntax.

This is easy since syntactic constructs in Mathematica
apart from the operators use a simple prefix syntax: a
keyword followed by square brackets surrounding the
contents of the construct, i.e. the same syntax as for function
calls. If there is a need to add a new construct no changes are
needed in the parser, and no reserved words need to be
added. Just define a Mathematica function to do the desired
symbolic or numeric processing.

The other major class of syntactic constructs are
operators. There are special facilities in Mathematica to add
new operators by defining their priority, operator syntax, and
internal representation. It is also possible to extend the
meaning of existing operators like +, *, -, etc.

2.4.3 Mathematica vs Modelica syntax.

In order to to show the difference between the standard
Modelica textual syntax and the extensible Mathematica-like
syntax, we first show a simple model in a Modelica-style
input cell:

model secondordersystem
Real x(start=0);
Real xdot(start=0);
parameter Real a=1;

equation
 xdot=der(x);

der(xdot)+a*der(x)+x=1;
end secondordersystem;

The same model in the Mathematica- like Modelica
syntax appears below. Note the use of the simple prefix
syntax: a keyword followed by square brackets surrounding
the contents of the construct. All reserved words, predefined
functions, and types in MathModelica start with an upper-
case letter just as in Mathematica. Equation equality is
represented by the == operators since = is the assignment
operator in Mathematica. The derivative operator is the
mathematical apostrophe (') notation rather than der(). The

semicolon (;) is a sequencing operator to group more than
one declaration, statement, or expression together.

Model[secondordersystem,
Real x[{Start == 0}];
Real xdot[{Start == 0}];
Parameter Real a == 1;

Equation[
 xdot == x';
 xdot' + a*x' + x == 1
]
]

3 Application Examples

This section gives a number of application examples of the
use of the Mathmodelica environment. The intent is to
demonstrate the power of integration and interactivity - the
interplay between the object-oriented modeling and
simulation capabilities of Modelica integrated with the
powerful scripting facilities of Mathematica within
MathModelica. This includes the representation of
simulation results as 1D and 2D interpolating functions of
time being combined with arithmetic operations and
functions in expressions, advanced plotting facilities, and
computational capabilities such as design optimization,
fourier analysis, and solution of time-dependent PDEs. For
the PDEs see the long version of the paper.

3.1 Advanced Plotting and Interpolating
Functions

This section illustrates the flexible usage of simulation
results represented as interpolating functions, both for further
computations that may include simulation results in
expressions, and for both simple and advanced plotting. The
simple bouncing ball model below from [MA-02a] is used in
the simulation and plotting examples.

3.1.1 Interpolating Function Representation of
Simulation Results

The following simulation of the above BouncingBall
model is done for a short time period using very few points:

res1=Simulate[BouncingBall,{t,0,0.5},
NumberOfIntervals->10]

<SimulationData: BouncingBall: 2002-2-26
10:48:10 : {0., 0.5} : 15 data points : 1
events : 7 variables>
{c, g, height, radius, velocity, height'
velocity'}

The results returned by Simulate are represented by an
access descriptor or handle. Some of the contents of such
descriptor is shown as the result of the above call to
Simulate. At this stage the simulation data is stored on
disk and referenced by res1 which acts as a handle to the
simulation data. When one of the variables from the last
simulation is referenced, e.g. height, radius, etc., the
data for that variable is loaded into the system in an load-by-
need manner, and represented as an
InterPolatingFunction.

MathModelica − An Extensible Modeling and Simulation Environment ... Fritzson P., Gunnarsson J., Jirstrand M.

Modelica 2002, March 18−19, 2002 48 The Modelica Association

3.1.2 PlotSimulation

First we simulate the bouncing ball for eight seconds and
store the results in the variable res1 for subsequent use in
the plotting examples.

res1=Simulate[BouncingBall,{t,0,8}];

The command PlotSimulation is used for simple
standard plots. If nothing else is specified, i.e. by the optional
SimulationResult parameter, the command refers to
the results from the last simulation.

Plotting several arbitrary functions can be done using a list of
function expressions instead of a single expression:

PlotSimulationA9height@tD +
è
3,

Abs@velocity@tDD=, 8t, 0, 8<E;

2 4 6 8
t

1

2

3

4

Abs@velocity@tDD

è!!!!
3 +height@tD

Figure 6. Plotting arbitrary functions in the same diagram.

3.1.3 ParametricPlotSimulation

Parametric plots can be done using
 ParametricPlotSimulation.

ParametricPlotSimulation@
8height@tD, velocity@tD<,
8t, 0, 8<D;

0.2 0.4 0.6 0.8

-4

-2

2

4

Figure 7. A parametric plot.

3.1.4 ParametricPlotSimulation3D

In this example we are going to use the Rossler attractor to
show the ParametricPlotSimula-tion3D command.
The Rossler attractor is named after Otto Rossler from his
work in chemical kinetics. The system is described by three
coupled non-linear differential equations:

zx
dt
dz

yx
dt

dy

xy
dt

dx

)(?ß

a

−+=

+=

−−=

Here ßa, and ? are constants. The attractor never forms
limit circles nor does it ever reach a steady state. The model
is shown in Mathematica syntax, enabling the use of greek
characters:

Model@Rossler, "Rossler attractor",

Parameter Real α � 0.2;

Parameter Real β � 0.2;

Parameter Real γ � 8;

Real x@8Start � 1<D;
Real y@8Start � 3<D;
Real z@8Start � 0<D;
Equation@
x' � −y − z;

y' � x + α y;

z' � β + x z − γ z

D
D
The model is simulated using different initial values.
Changing these can considerably influence the appearance of
the attractor.

Simulate@Rossler, 8t, 0, 40<,
InitialValues → 8x � 2, y � 2.5, z � 0<,
NumberOfIntervals → 1000D;

The Rossler attractor is easy to plot using
ParametricPlotSimulation3D:

ParametricPlotSimulation3D@
8x@tD, y@tD, z@tD<,
8t, 0, 40<,
AxesLabel → 8X, Y, Z<D;

-10
0

10

X

-10

0

10Y

0

10

20

30

40

Z

-10

0

10Y

Figure 8. 3-D parametric plot of curve with many data points
from the Rossler attractor simulation.

3.2 Design Optimization
This is an example of how the powerful scripting language of
MathModelica can be utilized to solve non-trivial
optimization problems that contain dynamic simulations.

Fritzson P., Gunnarsson J., Jirstrand M. MathModelica − An Extensible Modeling and Simulation Environment ...

The Modelica Association 49 Modelica 2002, March 18−19, 2002

First we will define a Modelica model of a linear actuator
with spring damped stopping and then a first order system.
Using MathModelica scripting we will then find a damping
for the translational spring-damper such that the step
response is as "close" as possible to the step response from a
first order system.

Consider the following model of a linear actuator with a
spring damped connection to an anchoring point:

SlidingMass1 SpringDamper1 Fixed1IdealGearR2T1

Inertia1

SpringDamper2

Inertia2

tau

Torque1 Step1

Figure 9. A LinearActuator model containing a spring
damped connection to an achoring point.

Assume that we have some freedom in choosing the damping
in the translational spring-damper. A number of simulation
runs show what kind of behavior we have for different values
of the dampingparameter d. The Mathematica Table[]
function is used in Simulate[] to collect the results into
an array res. This array then contains the results from
simulations of LinearActuator with a damping of 2 to
14 with a step size of 2, i.e. seven simulations are performed.

res = Table@Simulate@LinearActuator,
8t, 0, 4<,
ParameterValues →

8SpringDamper1.d � s<D,
8s, 2, 15, 2<D;

PlotSimulation@SlidingMass1.s@tD,
8t, 0, 4<,
SimulationResult → res,

Legend → FalseD;

1 2 3 4

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 10. Plots of step responses from seven simulations of
the linear actuator with different camping coefficients.

Now assume that we would like to choose the damping d so
that the resulting system behaves as closely as possible to a
certain first order system response.,

We simulate for different values of d and interpolate the
result

fpre = Interpolation@res2D;
Plot@fpre@aD, 8a, 2, 10<D;

4 6 8 10

0.00015

0.0002

0.00025

0.0003

Figure 11. Plot of the error function for finding a minimum
deviation from the desired step response.

The minimizing value of a can be computed using
FindMinimum:

FindMinimum@fpre@sD, 8s, 4<D
80.0000832564 , 8s → 5.28642 <<

3.3 Fourier Analysis of Simulation Data
Consider a weak axis excited by a torque pulse train. The
axis is modeled by three segments joined by two torsion
springs. The following diagram is imported from the
MathModelica Model Editor where the model was defined.

tau

Torque1 Inertia1 Spring1 Inertia2 Spring2 Inertia3Pulse1

Figure 12. A WeakAxis model excited by a torque pulse
train.

We simulate the model during 200 seconds:

Simulate@WeakAxis , 8t, 0, 200<D;
The plot of the angular velocity of the rightmost axis
segment appears as follows:

PlotSimulation@8Inertia3.w@tD,
Torque1.τ@tD<, 8t, 0, 200<D;

50 100 150 200
t

0.5

1

1.5

HTorque1.τL@tD
HInertia3.wL@tD

Figure 13. Plot of the angular velocity of the rightmost axis
segment of the WeakAxis model.

Now, let us sample the interpolated function Inertia3.w
using a sample frequency of 4Hz, and put the result into an
array using the Mathematica Table array constructor:

MathModelica − An Extensible Modeling and Simulation Environment ... Fritzson P., Gunnarsson J., Jirstrand M.

Modelica 2002, March 18−19, 2002 50 The Modelica Association

data1 = Table@Inertia3.w@tD,
8t, 0, 200, .25<D;

Compute the absolute values of the discrete Fourier
transform of data1 with the mean removed:

fdata1 = Abs@Fourier@data1−

MeanValue@data1DDD;
Plot the 80 first points of the data.

ListPlot@fdata1@@Range@80DDD,
PlotStyle → 8Red, PointSize@0.015D<D;

20 40 60 80

2

4

6

8

10

Figure 14. Plot of the data points of the Fourier transformed
angular velocity.

It can be shown that the frequencies of the eigenmodes of the
system is given by the imaginary parts of the eigenvalues of
the following matrix (c1 and c2 are the spring constants)

1

2 π
 EigenvaluesA

i

k

0 1 0 0 0 0
−c1 0 −c1 0 0 0
0 0 0 1 0 0

−c1 0 −c1 − c2 0 −c2 0
0 0 0 0 0 1
0 0 −c2 0 −c2 0

y

{

ê.

8c1 → 0.7, c2 → 1<E êê Chop

80.256077 	, −0.256077 	,

0.143343 	, −0.143343 	, 0, 0<
These values, 0.256077, 0.143344, fit very well with the
peaks in the above diagram.

4 Using the Symbolic Internal
Representation

In order to satisfy the requirement of a well integrated
environment and language, the new MathModelica internal
representation was designed with a Mathematica compatible
version of the syntax. Note that the Mathematica version of
the syntax has the same internal abstract syntax tree
representation and the same semantics as Modelica, but
different concrete syntax. Which syntax to use, the standard
Modelica textual syntax, or the Mathematica-style syntax for
Modelica is however largely a matter of taste.

The fact that the Modelica abstract syntax tree
representation is compatible with the Mathematica standard
representation means that a number of symbolic operations
such as simplifying model equations, performing Laplace
transformations, and performing queries on code as well as
automatically constructing new code is available to the user.
The capability of automatically generating new code is
especially useful in the area of model diagnosis, where there
is often a need for generating a number of erroneous models
for diagnosis based on corresponding fault scenarios.

4.1 Mathematica Compatible Internal Form

An inherent property of Mathematica is that models or code
is normally not written as free formatted text. Instead,
Mathematica expressions (also called terms) are used,
internally represented as abstract syntax trees. These can be
conveniently written in a tree- like prefix form, or entered
using standard mathematical notation. Every term is a
number, an identifier, or a form such as:

[]ntermtermhead ,,1 K

For example, an expression: a+b is represented as
Plus[a,b] in prefix form, also called FullForm
syntax. A while loop is represented as the term
While[test,body].

In order to satisfy the requirement of a well integrated
environment, we designed the new MathModelica internal
representation with a Mathematica compatible version of the
syntax. Note that MathModelica has the same abstract syntax
trees and the same semantics as Modelica, but different
concrete syntax. This means that essentially the same
language constructs are written differently, as illustrated
below.

The Mathematica language syntax uses some special
operators, see below, and arbitrary arithmetic expressions
composed from terms.

ntermterm ;;1 K //sequencing operator

{ }ntermterm ;;1 K //array/list constructor

21 termterm //Implied multiplication by space
 instead of *

21 termterm == // Equation equality

Internally the MathModelica system uses the
MathModelicaFullForm format. This format is the
abstract syntax of the MathModelica language where all the
elements of the language have been defined to be easy to
extract and compare for the functions operating on the
MathModelica language representation, as well as achieving
a high degree of compatibility with both Modelica and
Mathematica.

The following is a simple constant declaration:

model Arr
constant Real

unitarr[2,2] = {{1,0},{0,1}}
"2D Identity";

end Arr;

This definition is stored internally in the
MathModelicaFullForm format which can be retrieved
by calling the function GetDefinition which returns the
internal abstract syntax tree representation of the model:

ff2 = GetDefinition@Arr,
Format → MathModelicaFullFormD

The tree is wrapped into the node Hold[] to prevent
symbolic evaluation of the model representation while we
are manipulating it. All nodes are shown in prefix form
excepts the array/list nodes shown as {...} instead of the
prefix form List[...] for arrays.

Fritzson P., Gunnarsson J., Jirstrand M. MathModelica − An Extensible Modeling and Simulation Environment ...

The Modelica Association 51 Modelica 2002, March 18−19, 2002

Hold@SetType@Arr,
TYPE@Model@Declaration

@TYPE@Real, 82, 2<, 8Constant<, 8<D,
VariableComponent@unitarr,
ValueBinding@881, 0<, 80, 1<<D,
8<, 8<, NullD
D;
"2D Identity"

D, 8<, 8<, 8<
D, 8<, Null, Null

D
D
A declaration of a variable such as unitarr is represented
by the Declaration node in the abstract syntax. This
node has two arguments: the type and the variable instance.
The type is represented by the TYPE node which stores the
name, array dimension, type attributes (Constant) and
type modifications (which is empty in this case). The
instance argument contains a VariableComponent
including the name of the variable, the initialization
(ValueBinding), at the end the comment string that is
associated with the variable.

There are several goals behind the design of the
MathModelicaFullForm format, which are fulfilled in
the current system:

• Abstract syntax. The format systematically sorts out the
different constructs in the language making the
navigation of types and code easier.

• Preserving the syntactic structure of both Modelica and
Mathematica code. This means that the mapping from
Modelica to MathModelica-FullForm format
should be injective, e.g. the source code can be recreated
from the intermediate form, and that transformations
from Modelica via MathModelicaFullForm into
Mathematica style Modelica form should be reversible.

• Explicit semantic structure. The format has reserved
fixed attribute positions for certain kinds of semantic
information, to simplify semantic analysis and queries.
There is also a canonical subset of the format which is
even simpler for semantic analysis, but does not always
recreate exactly the same source code since the same
declaration often can be stated in several ways.

• Symbol table and type representation format. The
MathModelicaFullForm format should be possible
to use in the symbol table, e.g. to represent types. Types
are represented by anonymous type expressions such as
the TYPE node in the above example. Anonymous
means that the type representation is separate from the
entity having the type.

• Internal standard.
 The MathModelicaFullForm format should be

used by all the components in the MathModelica
system.

4.2 Extracting and Simplifying Model
Equations

This section will illustrate a few user-accessible symbolic
operations on equations, such as obtaining the system of
equations and the set of variables from a Modelica model,
and symbolically simplifying this system of equations with
the intention of performing symbolic Laplace transformation.

4.2.1 Definition and Simulation of Model1

The example class Model1 has been drawn in the graphic
model editor and imported into the notebook below:

R = % R

Resistor1
L=%L

Inductor1

Ground1

k=%k

EMF1

%na
me=
% V

ConstantVoltage1
c=%c

Spring1
J=%J

Inertia1
J=%J

Inertia2

Fi
gure 15. Connection diagram of Model1.

We simulate the model, smooth the result, and make a plot.

res0 = Simulate@Model1, 8t, 0, 25<,
ParameterValues → 8Resistor1.R � 0.9<D;

res1 = SmoothInterpolation@res0D;
The plot is parametric where we plot the Resistor1
current against its derivative for both the original result and
the smoothed version:

ParametricPlotSimulation@
8HResistor1.iL@tD,
HResistor1.iL'@tD<, 8t, 0, 25<,
SimulationResult → 8res0, res1<D;

-0.2 0.2 0.4 0.6
-0.2

0.2

0.4

0.6

0.8

1

Figure 16. Parametric plots of the Resistor1 current against
its derivative, both original and smoothed.

4.2.2 Some Symbolic Computations

Now, flatten Model1 and extract the model equations and
the model variables as lists, and compute the lengths of these
lists:

eqn = GetFlatEquations@Model1D;
Length@eqnD
48

Length@GetFlatVariables@Model1DD
49

There is one equation less than the number of variables.
Therefore, add an equation for zero torque on the right flange
to the equation system:

eqn = Append@eqn,
Inertia2.flange� b.tau � 0D;

We would like to simplify the equations by eliminating the
connector variables before further symbolic processing. First
obtain the connector variables from the flattened model:

MathModelica − An Extensible Modeling and Simulation Environment ... Fritzson P., Gunnarsson J., Jirstrand M.

Modelica 2002, March 18−19, 2002 52 The Modelica Association

connvars = GetFlatConnectionVariables

@Model1D
8Resistor1 . p . v, Resistor1 . p . i,

Resistor1.n . v, Resistor1 . n . i,

...,

Inertia2.flange� a . tau<
Use the Eliminate function for symbolic elimination of
some variables from the system of equations.

eqn2 = Eliminate@eqn, connvarsD
der@Inertia1 . phiD == Inertia1 . w &

der@Inertia1 . wD == Inertia1 . a &&

... ...

Inertia2.flange� b . tau == 0 &

derH−1L@EMF1 . wD == Inertia2 . phi −

Spring1.phi� rel

4.3 Symbolic Laplace Transformation.
We would now like to perform a Laplace transformation of
the symbolic equation system obtained in the previous
section. This can be done by the application of two

transformation rules: [] [] sbbder
s
a

ader →→− _,_)1(.

Note that)1(−der is the inverse of taking a derivative, i.e. an
integration operation. Note also that the second rule contains
an implied multiplication.

eq3 = eqn2 ê. 9derH−1L@a_D →
a

s
, der@b_D → s b=

s HInertia1 . phiL == Inertia1 . w &

s HInertia1 . wL == Inertia1 . a &&

... ...

EMF1 . w

s
== Inertia2 . phi − Spring1 . phi� rel

Introduce short names for the model parameter to obtain a
more concise symbolic notation:

shortnames =

8Resistor1 . R → R, Inductor1.L → L,

EMF1.k → k, Inertia1 . J → J1,

Spring1.c → c1, Spring1 . phi� rel0 → 0,

Inertia2.J → J2<;
Derive the relation between Inertia2.w and the input
voltage

eq4 =

Eliminate@eq3,
Complement@
GetFlatNonConnectionVariables@Model1D,
8Inertia2.w<DD ê. shortnames

Hk c1 HConstantVoltage1 . VL �

k2 c1HInertia2 . wL +

... ...

R s3 J1 J2 HInertia2 . wL +

L s4 J1 J2 HInertia2 . wLL && s ≠ 0

The transfer function H is obtained by symbolically solving
for Inertia2.w in the equation system eq4, and using the
obtained solution on a form Inertia2.w -> expr to
eliminate Inertia2.w, thus obtaining H :

H@s_D = FirstA Inertia2.w

ConstantVoltage1 . V
ê.

Solve@eq4, Inertia2 . wDE
Hk c1Lê Hk2 c1 +R s c1 J1 +L s2 c1 J1+

k2 s2 J2 + R s c1 J2 + L s2 c1 J2 +

R s3 J1 J2+ L s4 J1 J2L
4.4 Queries and Automatic Generation of

Models
This example of advanced scripting shows how the easily
accessible internal representation in the form of abstract
syntax trees can be used for automatic generation of models.
The CircuitTemplateFn is a function returning a
symbolic representation of a model. This function has two
formal pattern parameters where the second one specifies an
internal structure. The first parameter is name_, which
matches symbolic names. The underscore in name_ is not
part of the parameter identifier itself, it is just a short form of
the syntax name:_, which means that name will match
any item.

The second pattern parameter is the list
{type1_,type2_,type3_}, internally containing the
three pattern parameters type1_, type2_, type3_.
This second parameter will therefore only match lists of
length 3, thereby binding the pattern variables type1,
type2, and type3 to the three type names presumably
occurring in the list at pattern matching. For example,
matching {type1_,type2_,type3_} against the list
{Capacitor, Conductor, Resistor} will bind
the variable type1 to Capacitor, type2 to
Conductor, and type3 to Resistor.

CircuitTemplateFn@name_,
8type1_, type2_, type3_<D := H
Model@name,
type1 a;

type2 b;

type3 c;

Modelica.Electrical.Analog.Basic.Ground g;

Equation@
Connect@g.p, a.pD;
Connect@a.n, b.pD;
Connect@b.p, c.pD;
Connect@b.n, g.pD;
Connect@c.n, g.pD

D
DL

The aim of this exercise is to automatically generate models
based on this template for all combinations of the types that
extend the type OnePort in the library package
Modelica.Electrical.Analog.Basic.

First we need to extract all the types that extends the
type OnePort in the library package
Modelica.Electrical.Analog.Basic. This is done
by performing a query operation on the internal form using
the Select function which has two arguments: the list to be
searched, and a predicate function returning true or false.

Fritzson P., Gunnarsson J., Jirstrand M. MathModelica − An Extensible Modeling and Simulation Environment ...

The Modelica Association 53 Modelica 2002, March 18−19, 2002

Only the elements for which the predicate is true are
returned. In this case the query is performed on the list of
model names in the package
Modelica.Electrical.Analog.Basic. This list is
returned by the function ListModelNames.

First we call GetDefinition below to load the
Modelica.Eletrical.Analog.Basic package into
the internal symbol table:

GetDefinition@Modelica.Electrical.Analog.BasicD;
Then we perform the actual query:

types=Select[
 ListModelNames[
 Modelica.Electrical.Analog.Basic
],
 Function[
 modelName,
 Not[
 FreeQ[
 GetDefinition[

 modelName,
 Format->MathModelicaFullForm
],
 HoldPattern[
 Extends[
 TYPE[Modelica.Electrical.
 Analog.Interfaces.
 OnePort,{},{},{}
]]]]]]]

8Modelica.Electrical.Analog.Basic.Inductor,
Modelica.Electrical.Analog.Basic.Capacitor,

Modelica.Electrical.Analog.Basic.Conductor,

Modelica.Electrical.Analog.Basic.Resistor<
All 64 three-type combinations, e.g.
{Inductor,Inductor,Inductor},
{Inductor,Inductor,Capacitor}, etc., their
prefixes not shown for brevity, of these 4 types are computed
by taking a generalized outer product of the three types lists,
which is flattened.

typecombinations =

Flatten@Outer
@List, types, types, typesD,

2D;
Length@typecombinationsD
64

 We generate a list of 64 synthetic model names by
concatenating the string "foo" with numbers, using the
Mathematica string concatenation operation "<>":

names = Table@ToExpression@
"foo" <> ToString@iDD, 8i, 64<D

8 foo1, foo2, foo3, foo4, foo5, foo6,

foo7, foo8, foo9, foo10, foo11, foo12,

...

foo55, foo56, foo57, foo58, foo59, foo60,

foo61, foo62, foo63, foo64 <
Here all 64 test models are created by the call to
MapThread which applies CircuitTemplateFn to
each combination.

MapThread@CircuitTemplateFn,
8names, typecombinations<D;

We retrieve the definition one of the automatically generated
models, foo53, and unparse it from its internal
representation to the Modelica textual form:

GetDefinition@foo53, Format → ModelicaFormD
model foo53
 Modelica.Electrical.Analog.

 Basic.Resistor a;
 Modelica.Electrical.Analog.
 Basic.Capacitor b;
 Modelica.Electrical.Analog.
 Basic.Inductor c;
 Modelica.Electrical.Analog.
 Basic.Ground g;
equation
connect(g.p,a.p);
connect(a.n,b.p);
connect(b.p,c.p);
connect(b.n,g.p);
connect(c.n,g.p);

end foo53;

5 Conclusion

This paper has presented a number of important issues
concerning integrated interactive programming
environments, especially with respect to the MathModelica
environment for object-oriented modeling and simulation.
We have especially emphasized environment properties such
as integration and extensibility.

One of the current strong trends in software systems is
the gradual unification of documents and software.
Everything will eventually be integrated into a uniform,
perhaps XML-based, representation. The integration of
documents, model code, graphics, etc. in the MathModelica
environment is one strong example of this trend.

Another important aspect is extensibility. Experience
has shown that tools with built-in extensibility mechanisms
can cope with unforeseen user needs to a great extent, and
therefore often have a substantially longer effective usage
lifetime.

The MathModelica system is currently one of the best
existing examples of advanced integrated extensible
environments. However, as most systems, it is not perfect.
There are still a number of possible future improvements in
the system including enhanced programmability and
extensibility.

Acknowledgements

We would like to thank Peter Bunus for inspiration and great
help in MicroSoft Word formating and conversion from
notebook format when preparing this paper, and Dan
Costello for Word advice. Acknowledgements to the
following individuals for contributions the design and
implementation of the MathModelica system: Andreas
Karström, Pontus Lidman, Henrik Johansson, Yelena
Turetskaya, Mikael Adlers, Peter Aronsson, Vadim
Engelsson, and to Jan Brugård and Andreas Idebrant for
contributions to the MathModelica documentation including
a number of the examples used in this paper. Thanks to
Kristina Swenningsson for creating a nice working
athmosphere at MathCore AB. Acknowledgements also to
the members of the Modelica Association for creating the

MathModelica − An Extensible Modeling and Simulation Environment ... Fritzson P., Gunnarsson J., Jirstrand M.

Modelica 2002, March 18−19, 2002 54 The Modelica Association

Modelica language, and to EU under the RealSim project for
supporting part of the development of MathModelica.

References

 [Andersson-94] Mats Andersson. Object-Oriented Modeling
and Simulation of Hybrid Systems. Ph.D. thesis, Department of
Automatic Control, Lund Institute of Technology, Lund,
Sweden, 1994.

 [Bunus-00] Peter Bunus, Vadim Engelson, Peter Fritzson.
Mechanical Models Translation and Simulation in Modelica. In
Proceedings of Modelica Workshop 2000. Lund University,
Lund, Sweden, Oct 24-26, 2000.

[Elmqvist-78] Hilding Elmqvist. A Structured Model Language
for Large Continuous Systems. PhD thesis, Department of
Automatic Control, Lund Institute of Technology, Lund,
Sweden.

[Elmqvist-96] Hilding Elmqvist, Dag Bruck, Martin Otter.
Dymola - User's Manual. Dynasim AB, Research Park Ideon,
Lund, 1996.

[Elmqvist-99] Hilding Elmqvist, Sven-Erik Mattsson and Martin
Otter. Modelica - A Language for Physical System Modeling,
Visualization and Interaction. In Proceedings of the 1999 IEEE
Symposium on Computer-Aided Control System Design, Hawaii,
Aug. 22-27, 1999.

[Engelson-99] Vadim Engelson, Håkan Larsson, Peter Fritzson.
1999. A Design, Simulation and Visualization Environment for
Object-Oriented Mechanical and Multi-Domain Models in
Modelica. In Proceedings of the IEEE International Conference
on Information Visualization, pp 188-193, London, July 14-16,
1999.

[Engelson-00] Vadim Engelson. Tools for Design, Interactive
Simulation, and Visualization of Object-Oriented Models in
Scientific Computing. Ph.D. Thesis, Dept. of Computer and
Information Science, Linköping University, Linköping, Sweden.
2000.

 [Fritzson-83] Peter Fritzson. Symbolic Debugging through
Incremental Compilation in an Integrated Environment. The
Journal of Systems and Software, 3, 285-294, (1983).

[Fritzson-92a] Peter Fritzson, Dag Fritzson. The Need or High-
Level Programming Support in Scientific Computing - Applied
to Mechanical Analysis. Computers and Structures, Vol. 45, No.
2, pp. 387-295, 1992.

[Fritzson-92b]Peter Fritzson, Lars Viklund, Johan Herber, Dag
Fritzson: Industrial Application of Object-Oriented
Mathematical Modeling and Computer Algebra in Mechanical
Analysis, In Proc. of TOOLS EUROPE'92, Dortmund,
Germany, March 30 - April 2, 1992. Published by Prentice Hall.

[Fritzson-95] Peter Fritzson, Lars Viklund, Dag Fritzson, Johan
Herber. High Level Mathematical Modeling and Programming
in Scientific Computing. IEEE Software, pp. 77-87, July 1995.

[Fritzson-98] Peter Fritzson and Vadim Engelson. Modelica - A
Unified Object-Oriented Language for System Modeling and
Simulation. In Proceedings of the 12th European Conference on
Object-Oriented Programming, ECOOP'98 , Brussels, Belgium,
July 20-24, 1998.

[Fritzson-98b] Peter Fritzson, Vadim Engelson, Johan
Gunnarsson. An Integrated Modelica Environment for
Modeling, Documentation and Simulation. In Proceedings of
Summer Computer Simulation Conference '98, Reno, Nevada,
USA, July 19-22, 1998.

[Goldberg-89] Adele Goldberg and David Robson, Smalltalk -
80, The Language. Addison-Wesley, 1989

[Jirstrand-99] Mats Jirstrand, Johan Gunnarsson, and Peter
Fritzson. MathModelica - a new modeling and simulation
environment for Modelica. In Proceedings of the Third
International Mathematica Symposium, IMS’99, Linz, Austria,
Aug, (1999).

[Knuth-84] Donald E. Knuth. Literate Programming. The
Computer Journal, NO27(2) (May): 97-111. (1984)

[Knuth-94] Donald E. Knuth, Silvio Levy. The Cweb System of
Structured Documentation /Version 3.0. Addison-Wesley Pub
Co; 1994.

[MA-02a] Modelica Association. Modelica - A Unified Object-
Oriented Language for Physical Systems Modeling - Tutorial
and Design Rationale Version 2.0, March 2002.

[MA-02b] Modelica Association. Modelica - A Unified Object-
Oriented Language for Physical Systems Modeling - Language
Specification Version 2.0, February 2002.

[Mattsson-93] Sven-Erik Mattsson, Mats Andersson, and Karl-
Johan Åström. Object-oriented modelling and simulation. In
Linkens, Ed., CAD for Control Systems, chapter 2, pp. 31-69.
Marcel Dekker Inc, New York, 1993.

 [Otter-95] Martin Otter. Objektorientierte Modellierung
mechatronischer Systeme am Beispiel geregelter Roboter,
Dissertation, Fortshrittberichte VDI, Reihe 20, Nr 147. 1995.

[Otter-96] Martin Otter, Hilding Elmqvist, Francois E. Cellier.
Modeling of Multibody Systems with the Object-oriented
Modeling Language Dymola. Nonlinear Dynamics, 9:91-112,
Kluwer Academic Publishers. 1996.

 [Saldamli-01] Levon Saldamli, Peter Fritzson. A Modelica-
Based Language for Object-Oriented Modeling with Partial
Differential Equations. In Proceedings of the 4th International
EuroSim Congress, Delft, the Netherlands, June 26-29, 2001.

[Sandewall-78] Erik Sandewall. Programming in an Interactive
Environment: the "LISP" Experience. Computing Surveys, Vol.
10, No. 1, March 1978.

[Teitelman-69] Warren Teitelman. Toward a Programming
Laboratory. In Proc. of First Int. Jt. Conf. on Artificial
Intelligence, 1969.

[Teitelman-74] Warren Teitelman. INTERLISP Reference
Manual. Xerox Palo Alto Research Center, Palo Alto, CA, 1974.

[Teitelman-77] Teite lman, W. A display oriented programmer's
assistant. Computer, 39--50. (1977, August 22--25)

[Tiller-01] Michael M. Tiller. Introduction to Physical Modeling
with Modelica. Kluwer Academic Publishers, 2001.

[Visio] http://www.microsoft.com/office/visio/

[Wolfram-88] Stephen Wolfram. Mathematica System for Doing
Mathematics by Computer. Addison-Wesley, 1988.

[Wolfram-97] Stephen Wolfram. The Mathematica Book ,
Wolfram Media, 1997.

Brück D., Elmqvist H., Mattsson S.E., Olsson H., Dymola for Multi−Engineering Modeling and Simulation

The Modelica Association 55 − 1 Modelica 2002, March 18−19, 2002

Dymola for Multi-Engineering Modeling and Simulation

Dag Brück, Hilding Elmqvist, Sven Erik Mattsson and Hans Olsson
Dynasim AB, Research Park Ideon, SE-223 70 Lund, Sweden

E-mail: info@dynasim.se

Abstract
Dymola is an integrated environment for developing
models in the Modelica language. The growing use of
Dymola has over time increased the demands on the
development environment. Requests for extension and
redesign originate from two sources: the need to
simplify the use of Dymola to better support new and
inexperienced users, and the need to better support
“power users” which model extremely large and
complex systems.

Key areas in the development of Dymola are: a
simplified and more coherent graphical user interface,
browsing facilities for navigating large and complex
systems, new experiment facilities for managing
complex simulation tasks, distributed (parallel)
simulation, and integrated version control to help
manage model libraries and complete models.

The paper describes the extensively redesigned
Dymola 5, with an emphasis on new features compared
to Dymola 4.

Introduction
Dymola is an integrated environment for developing
models in the Modelica language [Modelica
Association, 2002; Tiller, 2001], and a simulation
environment for performing experiments. It is used
since several years within major companies for
complex simulations. For example, Dymola has been
used to simulate detailed models of complete vehicles
including engine, transmission and chassis [Tiller et al.,
2000].

Dymola uses hierarchical object-oriented modeling to
describe, in increasing detail, the systems, subsystems
and components of a model. Reuse of modeling
knowledge is a key issue, and is supported by use of
libraries containing model classes and by the use of
inheritance. Physical couplings are modeled by
defining physical connectors and graphically
connecting submodels.

Model libraries are available for electronics, rotational,
translational and 3D mechanics, thermodynamics,
hydraulics and control systems. The libraries range
from basic components to more specialized domains

such as the power train library. Predefined libraries can
be expanded with user-written model libraries.

The growing use of Dymola has over time increased
the demands on the development environment.
Requests for extension and redesign originate from two
sources:

• The need to simplify the use of Dymola to better
support new users and inexperienced users. This is of
particular importance when Dymola is used for
teaching.

• The need to better support “power users” which
model extremely large and complex systems. In this
case, the user needs significant support from the
environment to handle very large amounts of
information, to document complex systems, and to
verify results. The development of large component
libraries is a collaborative effort involving several
people, which requires adequate tool support. Also,
different software packages are used which underlines
the need for information exchange.

Key areas in the development of Dymola are:

• Simplified graphical user interface. In addition to
better structuring, the use of modern GUI elements
(help facilities, dockable windows etc.) makes it easier
to use the program.

• Browsing facilities for navigating large and complex
systems. This includes class browsers for navigating
component libraries and a new model browser for
navigating complex models.

• New experiment facilities for managing complex
simulation tasks. They handle multiple parameter sets,
models of different complexity, and tools for validating
models.

• Distributed simulation on several computers,
allowing parallel simulation for tasks such as
optimization.

• Integrated version control to help manage model
libraries and complete models. The user needs support
for version control to store/retrieve models and
associated data, to compare versions of a model, plus
mechanisms for documenting the evolution of models.

Dymola for Multi−Engineering Modeling and Simulation Brück D., Elmqvist H., Mattsson S.E., Olsson H.,

Modelica 2002, March 18−19, 2002 55 − 2 The Modelica Association

Editor

Symbolic Kernel

Experimentation

Plot and Animation

Reporting

External Graphics
(vector, bitmap)

CAD (DXF, STL,
topology, properties)

Model ParametersExperimental Data

Simulink
MATLAB

Model doc. and
Experiment log (HTML,

VRML, PNG, …)

xPC

dSPACE

HIL

Modelica

C Functions

LAPACK

Scripting

Distributed
Simulation

Optimization

Modelica
Libraries

User Models

M
o

d
el

in
g

S
im

u
la

tio
n

V
is

u
al

iz
at

io
n

an
d

 A
na

ly
si

s D
ym

ol
a

P
ro

gr
am

Figure 1. The Dymola architecture.

Dymola architecture
Dymola is an integrated environment for modeling and
simulation. Figure 1 describes the architecture and
connectivity of Dymola 5.

At the modeling level, models are composed from
library components (from the Modelica standard
library, other free libraries, commercial and proprietary
libraries), as well as models developed by the user.
Models are either composed of other, more primitive,
components, or described by equations at the lowest
level. The equation-based nature of Modelica is
essential for enabling truly reusable libraries.
Measurement data and model parameters cover
additional model aspects.

Detailed model knowledge can be imported from CAD
packages. Examples of such information are mass and
inertia of 3D mechanical bodies, and the topology of a
multibody system (bodies and joints). Graphical
properties may be described in DXF and STL format.
The icons of model components are defined either by
drawing shapes in Dymola, or by importing graphics
from other tools in common vector or bitmap formats.

At the simulation level, Dymola transforms a
declarative, equation-based, model description into
efficient simulation code. Advanced symbolic
manipulation (computer algebra) is used to handle very

large sets of equations. Efficient simulation, including
realtime simulation of hydraulic systems, can only be
achieved after extensive symbolic transformations of
the equations [Elmqvist et al., 2002].

Dymola provides a complete simulation environment,
but can also export code for simulation in Simulink. In
addition to the usual offline simulation, Dymola can
generate code for specialized Hardware-in-the-Loop
(HIL) systems, such as, dSPACE, xPC and others.

Recent developments in Dymola 5 allow distributed
(parallel) simulation on several computers in a
network, for example to perform parameter studies.
There are facilities for optimization, also carried out
with parallel simulation runs. Such experiments are
controlled with a Modelica-based scripting language,
which combines the expressive power of Modelica
with access to external C libraries, e.g., LAPACK.

The built-in plotting and animation features of Dymola
provide the basis for visualization and analysis of
simulation data. Experiments are documented with logs
of all operations in HTML format, including
animations in VRML (Virtual Reality Modeling
Language) and images. Models and libraries are
extensively documented in HTML automatically
generated by Dymola from the models themselves.

Brück D., Elmqvist H., Mattsson S.E., Olsson H., Dymola for Multi−Engineering Modeling and Simulation

The Modelica Association 55 − 3 Modelica 2002, March 18−19, 2002

Figure 2. The model editor.

Graphical user interface
The graphical user interface has been extensively
redesigned. In Dymola 5 emphasis has been put both
on simplifying the task of building models for the
novice user and on providing tools for building and
managing large and complex models developed by a
collaborating team of engineers.

Graphical editor
Figure 2 shows a screen dump of the Dymola modeling
environment. The top left tree browser shows the
(Package) hierarchy of a library called SimpleCar
[Tiller, 2001]. When I4_Engine is chosen different
representations (icon and composition diagram) of the
model I4_Engine are shown. The lower left tree
browser, “Component and Extends hierarchy”, shows
the hierarchical decomposition, for example, that the
engine model contains crankshaft-inertia and the four
cylinders: cylinder1, … cylinder4. A visual
representation of that is shown in the Diagram in the
middle. An Icon representation of the engine is shown
at the top right. A The Documentation window is
shown at the lower right. Such a documentation
window contains HTML formatted information, i.e.

also graphics and links to other resources may be
included.

Editing of models at the fundamental level has been
improved by syntax highlighting of the Modelica code,
see Figure 3. Another convenience is that models can
be dragged from the package browser into the text
editor, which gives access to fundamental types in the
Modelica library with no typing. Editing in the textual
view is instantaneously represented in the graphical
view.

Figure 3. Model editor with syntax highlighting.

The Icon representation can be created with a built-in
graphical editor. It allows insertion of lines, rectangles,
ellipses, polygons and text strings. Figure 4 shows the
tool bar for the graphical editor.

Dymola for Multi−Engineering Modeling and Simulation Brück D., Elmqvist H., Mattsson S.E., Olsson H.,

Modelica 2002, March 18−19, 2002 55 − 4 The Modelica Association

Figure 4. Drawing tools.

It is also possible to insert scalable bitmaps created in
other tools like MS Paint and scalable vector graphics
from the clipboard. Advanced graphics can thus be
created in, for example, MS PowerPoint or MS Visio
and inserted into Dymola as Icons or backgrounds for
the composition diagrams.

The toolbar also contains controls for setting graphical
attributes, e.g., foreground and background color, line
style and fill pattern.

As indicated above, Dymola 5 supports Modelica’s
notion of different layers of information:

• Icon layer
• Diagram layer
• Documentation layer
• Modelica text layer
• Model dependencies layer (generated by Dymola)

It should be noted that Dymola 5 allows several layers
to be shown simultaneously.

Figure 5. Navigation tools.

Figure 5 shows the buttons of the navigation tool in
Dymola. The first two buttons are used to navigate in
the component hierarchy, similar to navigation with a
web browser. The back arrow displays the previously
visited component; the forward arrow negates the
backward move. The other buttons are used to display
layers in the graphical editor

Simplifications
In response to user comments, a major design goal was
to simplify the graphical user interface. The first step
has been to reduce the number windows: both model
editing and simulation is controlled from a single
window, and plot/animation windows are not opened
until a simulation has been performed (or opened
explicitly by the user). The design has been influenced
by common paradigms, for example, the web-browser
approach to navigation.

The design of Dymola 5 more closely follows
published guidelines [Microsoft, 1999], and has in
general adopted more modern idioms compared to
Dymola 4. Common operations are invoked by buttons
in addition to menu commands. Dockable windows
which either can be part of the main editor window,
float on the desktop or be minimized, are used for
browsers and similar tools.

The extended use of commonly used GUI elements
(toolbars, dockable windows, “what’s this” help
information) makes Dymola consistent with other
applications.

Browsing
The “Package hierarchy” browser shows the library
structure and it is possible to drag a component model
from the tree into a Diagram in order to add a
component to a model, see Figure 6. The browser can
either be docked to the editor window as shown in
Figure 2, or be dragged onto the desktop.

Figure 6. The package browser.

The components of a library can also be viewed as
icons in a separate library window, see Figure 7, from
which components can be dragged.

Figure 7. Library window.

The hierarchical structure of a model is shown in the
“Component and Extends hierarchy” browser. The top-
level components of an engine model are shown in
Figure 8.

Maneuvering in this hierarchical structure can be done
by clicking in the tree which then changes the view to
the selected model. It is also possible to point at an
icon and “zoom-in” on the content, i.e. next abstraction
layer.

When a model is chosen in the package browser, it
becomes the root model of the graphical editor. The
root model is used in check, translate and simulate

Brück D., Elmqvist H., Mattsson S.E., Olsson H., Dymola for Multi−Engineering Modeling and Simulation

The Modelica Association 55 − 5 Modelica 2002, March 18−19, 2002

Figure 8. The component browser.

commands. Navigation into its component hierarchy
allows inspection of model details, but does not change
the root model or permit editing. This view is
consistent with the common metaphor used in web
browsers.

Dymola 5 has search facilities, for example to search
for models that mention particular keywords in the
documentation. It may also be useful to find models
with a component or a parameter with a known name.

For advanced users, the biggest problem has been to
organize the large amount of information in complex
models and extensive component libraries. The biggest
improvement in Dymola 5 is the use of hierarchical
browsers for navigating packages and models. The
package browser is also the natural focal point for
copying/renaming of models and restructuring of
packages.

Advanced Modelica concepts, such as, replaceable
classes, is given an intuitive user interface via the
component browser. If a class is declared as
replaceable, the actual class can be dragged from the
package browser onto the replaceable class in the
component browser. Other features that benefit from
the new user interface are choices (a selection of
replaceable classes) and arrays of components.

Visualization in 3D
The graphical editor represents a abstraction of the
model, the object diagram. When building 3D
mechanical systems, the user greatly benefits from the
instantaneous 3D visualization available in Dymola 5.
Parameters settings for e.g. the length of a bar can be
visually checked in the animation window.

Experimentation
By “experimentation” we mean all the steps necessary
to use a model in order to achieve useful results. That
includes setting up model parameters and initial
conditions, running simulations, analysis of simulation
data, and report generation.

Parameter values specific to the studied model have to
be entered in a form associated with a component, see
Figure 9. Parameters and initial conditions can be set at
three different abstraction levels:

• The default values specified in the model of a
component, when a reasonable default exists.

• Parameter values that are specified in the modifier list
of a specific component. For example, the crankshaft
shift is different for each cylinder in an engine.

• Model parameters which are specific for a given top-
level model. Such parameters are specified at the top-
level of the model, and then propagated through a
hierarchical modifier.

Dymola allows the user to set parameters and initial
conditions at each of these levels, either through the
model editor or while running simulations.

Figure 9. Parameters for specification of details of
the engine

For visualization, Dymola offers plotting and 3D
animation. Figure 10 shows a window with multiple

Figure 10. Plot of car speed, engine RPM and
selected gear versus time.

Dymola for Multi−Engineering Modeling and Simulation Brück D., Elmqvist H., Mattsson S.E., Olsson H.,

Modelica 2002, March 18−19, 2002 55 − 6 The Modelica Association

plots of car speed, engine RPM and selected gear
versus time during such an experiment. The car
accelerated to 100 km/h in 6.66 seconds. Plots can be
exported as PNG files for inclusion in session log or as
vector graphics.

Animation is provided by specialized visualization
properties which are present in the mechanical libraries
by default. These properties are calculated during
simulation and then used to show 3D views in Dymola,
as shown in Figure 11. It is also possible to export such
animations in VRML format [VRML, 1997], which
can be examined with special viewers or with plugins
for web browsers.

Figure 11. Animation of an automatic gearbox.

Dymola 5 has powerful features for postprocessing of
simulation results. It is possible to compare simulation
results with experimental data. Data can be imported
and exported to other programs like Matlab and
Microsoft Excel. There is a scripting language based on
Modelica for automating design studies and analysis.
Interfaces to subroutine packages such as LAPACK (or
other libraries written in C or FORTRAN) enables
advanced numerical calculations. The scripting
language is also used for running parameter studies in a
distributed environment (see below) and for
performing optimization.

Figure 12. Dymola session window

Automatic logging of design sessions including
graphics is provided as HTML code for archiving and
sharing over the Internet, see Figure 12. A complete
experiment report can be written by editing the session
log.

Distributed simulation
During the design phase, hundreds or thousands of
simulations have to be performed with different
parameter sets. Optimization is used to determine
parameters in the model by fitting simulation results to
experimental data and to optimize the parameters of a
design. It is a task that significantly benefits from
parallel simulation. Dymola 5 can use many computers
and automatically schedule simulations in parallel to
shorten the design cycle.

Figure 13 shows the Dymola monitoring window for
parallel simulations. It shows the status of each
simulation run: the parameters used and optional
criteria result. The Dymola scheduler assigns tasks to
computers as they become available. When a
simulation finishes, the next task is run on the freed
computer. Transfers of the simulation code, input data
(parameters and initial conditions) and results are fully
automated.

Figure 13. Dymola monitoring window for parallel
simulations.

During normal simulation on a single computer, a
simulation is performed through cooperation between
the Dymola program and a separate simulation process.
In a distributed environment, a third party, known as
the simulation proxy, handles data transfers between
Dymola and the simulation task; the use of a proxy
allows exactly the same simulation code to run locally
and on another computer. As a special case, the
“distributed” scheme can utilize multiple CPUs on one
computer.

Simulator

Proxy

Simulator

Proxy
Dymola

DDE

TCP/IP

Figure 14. Architecture of distributed simulation.

A proxy is started on each machine willing to act as
“compute server”, see Figure 14. On receiving a
connection via TCP/IP from a Dymola program, its
first task is to help copy the simulation code and input
files to a unique area on the server. It then relays
parameter settings and commands from Dymola, and

Brück D., Elmqvist H., Mattsson S.E., Olsson H., Dymola for Multi−Engineering Modeling and Simulation

The Modelica Association 55 − 7 Modelica 2002, March 18−19, 2002

handles data transfers from the simulation to Dymola
for online animation and plotting. The Dymola
program maintains a list of computers that may be
asked to run simulations; the user can control this list
by simple commands.

This scheme for distributed simulation is designed for
cooperative sharing of resources and quite simple;
security measures are limited. First, a computer can
only be used as server after the proxy has been started.
Second, the proxy runs as an unprivileged process,
having only the capabilities of the user starting it. Load
is limited because each proxy blocks requests while a
simulation is running, but it is possible to start
additional proxies to handle multiple simulations (e.g.,
if the computer has multiple CPUs). Ways to utilize
existing system security features need to be further
investigated.

Collaborative development
In developing model components for a complex system
such as a vehicle, many different kinds of competence
are needed. Experts in engines, transmissions and
chassis etc. are needed. Because several people are
involved in the process, it becomes essential to break
up or decompose the overall problem into modular
units during development.

The equation-based modeling supported by the
Modelica language is fundamental in enabling true
reuse of modeling knowledge and the practical use of
model libraries. Dymola is able to transform equations
of subcomponents as required by the structure of the
system. Without the equation-based foundation, several
variants of a single model are needed to handle
different computational causality. Even worse would
have been that the user of a library is given the
responsibility to analyze the computational causality of
the system in order to pick the right variant.

Inheritance is also important for supporting reuse.
Model libraries may include partial models that
describe common properties of a set of component
types. Such a partial model is conveniently used as a
base class to develop models for the individual types of
the set by just adding a specific part that distinguish it
from the others in the set. This approach makes it
simpler to add new component models as well as
simplifies maintenance since the common properties of
the component types are described only once.

Furthermore, as more people are involved in the
process, the development is geographically and
chronologically distributed because it is natural to have
centers with specific core-competencies. This implies
that the modular units developed must be seamlessly
integrated to solve the overall problem, and the
partitioning should be able to reflect the organizational
structure of the model development teams.

In order to increase quality and reduce development
time, tools should be made available to

• Provide a structure for organizing, storing and
retrieving information (models, documentation,
experiment data).

• Support the exchange of information and simplify
reuse of models throughout the organization.

• Ensure that correct information is available to each
user (versions of libraries, corresponding experiments).

A version control system provides means to track
changes to a set of files. A “commit” operation
associates a developer and documentation with each
change to the common storage of files. The Modelica
text of two versions can be compared, and it is possible
to back up to any previous version.

The underlying version control system must be able to
support multiple concurrent developers working on the
same set of models. Extensive locking of files is
undesirable in a collaborative environment, and more
recent tools also support concurrent development of
closely related parts (with appropriate safety nets). A
single physical person may have multiple roles in the
development or use of the library.

Tracability is essential for maintaining quality over
time. Tool enforcement to document modifications
before they become publicly available gives the
opportunity to review changes and improves quality.
The development history and documentation of
changes may also be needed for tracing model
incompatibilities, for example.

Model testing should be integrated with model
development, which implies that the version control
system must be able to handle test scripts, support
utilities and binary test data. Regression testing, where
models are simulated and compared with known good
simulation results, is very powerful in detecting
involuntary changes to model libraries. A failed
regression test may cause either a change of a model,
or the revision of the test itself.

Multiple libraries are often used together. In this case,
version compatibility across libraries becomes
essential. It must be possible to “tag” releases of
multiple libraries to indicate compatibility at the
project level.

Dymola will support storing, retrieving, etc. of models
in version control systems such as CVS (Concurrent
Version System) [CVS]. We have deliberately chosen
to build on existing version control systems, which
offers greater flexibility and better integration than a
proprietary system. Because of the textual
representation of models in the Modelica language,
existing text-based tools can be used, for example, to
compare versions. To browse changes in large systems,
support in the graphical environment of Dymola is
needed.

The use of public libraries has increased in industry
over several years. More recent is “open source

Dymola for Multi−Engineering Modeling and Simulation Brück D., Elmqvist H., Mattsson S.E., Olsson H.,

Modelica 2002, March 18−19, 2002 55 − 8 The Modelica Association

development”, which can be described as the loosely
organized development (typically of software) by
several geographically separated parties. Public
websites, such as SourceForge, support Open Source
development with web-based tools and CVS. The
Modelica Standard Library is maintained as a project at
SourceForge.

Library protection
There are many closed simulation packages on the
market where you are not able to see what model is
used. Modeling is an art in the sense of describing the
relevant aspects of the object under observation. It is
thus very important to be able to see what assumptions
and approximation that the author of a model made.
Dymola is open to view all and possibly modify the
details by showing of the Modelica code. However, if a
company want to protect proprietary information when
shipping models, Dymola will support encryption of
model details.

A protected library typically consists of parts that are
open, and other parts that need protection. Protected
parts may require different degree of information
hiding, for example

• Preventing unauthorized modification of models (but
viewing is unrestricted).

• Parameters and documentation are visible, but model
structure and equations are protected.

• The model is regarded as a “black box”. Only model
connectors and the icon are available to the user.

The other aspect of library protection is to ensure
authorized use. In this case, any use of the library is
controlled by options in a license file. A special license
is also needed to make protected libraries in order to
prevent unauthorized distribution.

Acknowledgements
The authors would like to thanks all users of Dymola,
who through their suggestion have directly influenced
the development of Dymola.

This work was in parts supported by the European
Commission under contract IST-199-11979 with
Dynasim AB under the Information Societies
Technology as the project entitled “Real-time
simulation for design of multi-physics systems”.

References
CVS: http://www.cvshome.org/

Elmqvist, Hilding, Sven Erik Mattsson and Hans
Olsson (2002): “New Methods for Hardware-in-the-
loop Simulation of Stiff Models”, Modelica 2002,
Modelica Association.

Microsoft (1999): Microsoft Windows User
Experience, Microsoft Press.

Modelica Association (2002): “Modelica — A Unified
Object-Oriented Language for Physical Systems
Modeling”, Language specification version 2.0,
January 30, 2002.

Tiller, Michael, Paul Bowles, Hilding Elmqvist, Dag
Brück, Sven Erik Mattsson, Andreas Möller and Hans
Olsson (2000): “Detailed Vehicle Powertrain Modeling
in Modelica”, Modelica 2000, Modelica Association.

Tiller, Michael (2001): Introduction to Physical
Modeling with Modelica, Kluwer Academic Publ.

VRML (1997): “Information technology — Computer
graphics and image processing — The Virtual Reality
Modeling Language (VRML) — Part 1: Functional
specification and UTF-8 encoding”, International
Standard ISO/IEC 14772-1:1997.

The Modelica Association 57 Modelica 2002, March 18−19, 2002

Session 3a

Automotive Powertrains and
Hardware-in-the-Loop Simulation

Modelica 2002, March 18−19, 2002 58 The Modelica Association

Elmqvist H., Mattsson S.E., Olsson H. New Methods for HIL Simulation of Stiff Models.

The Modelica Association 59 Modelica 2002, March 18−19, 2002

���������	
�����
��	���������������������������
�����������	��

��	����������
�����������������

�����	�
��
���

��
��������	
����	
������	�������	����������	���������	����������������

��
��� �
���	� ���!�������	 "	������� ����	������#��#��
� �����$	��	��� ��	 "���	����	� 	� ����	����	! ��
"���	���	�� �	�����	���	���	�������� �	�� !����
!�# ��	���""�	���	�����	���	 "	���	�%���#��	�����
���� �	" �	����������������� �	�������� ��	��	� �
���� �������	!�#����	��	��������	����	�����	����	��&��
���	����	� 	���$�	# ������� ���	�"" ����	���	�����#��
�����	���� �	��� ��	���$��	����	��&��	� 	!�	�����
' ������	�	� ��������	������	 "	������ ��	�����	� 	!�
� ����	��	��#�	�����	(���#��$	���	��&�	 "	���	� ��������
�� !���	��	�������$� ���	���	���� �	 "	������
����$���� �	���	���� ��#��	� 	���� ��	�����	���
���#����&��� �	" ������	 "	���	����$���� �	���� �	���
# �!����	����	���	� ���	������ ��	���	����#�����
��������	���	# ������	��$�!��	���� ��	���		�������	 �
���	��$������	������	 "	������ ���	����	�����
���#��!��	���	�����������	� ��	����	��� �����
���� �������	��	��� ��)�	���� ��	 "	���	������
����$���� �	���� ��	���	���! ��#	��������	���
���������� �	����	!���	���� ���	���	��	����#���	��
����	#����	����	��&�	 "	���	� ��������	������
������#�����	*������#	+�# !����	" �	���	� �������	������
��� 	��#�����	�""�#���#�	���	� !��������	
��� ��	 "
������	����$���� �	 "	��$���	 ����	�����	� 	!�����
�##���#�	" �	���$��	������

!����	� ����
(��������	�������� �	 "	�����#��	� ����	��	�	$� ���$
"����	 "	�����#��� ��	" �	�������� �	� "������	,��	$ ��
��	� 	!�	�!��	� 	��������	� ��	���	� ��	# ����%
� ����	��	���������	����	"���	�������$	������	-���	 "
�� ��	� ����	���	��������$�������$	� �����	���#�
������	����	����	# �����	# �� �����	"� �	� ��	����
 ��	��$�������$	� �����	-�#����#�	���#���#�	��������#
 �	����� ������#	# �� �����	���	 "���	# �����
� $�����	��	 ��	� ����	����	�����	� 	�	���$�	����	 "
�����# �������	��	���	� ����	���	�����	���	 "	���
�%���#��	�����	���� �	��	� �	���� ������	!�#����	���
"������	�����# ������	����������	���	# ������� ���
�"" ��	.����	��&�/	" �	���	�������� ��	0�	 ����	�
��������	���!�����	 "	���	����$���� �	���� �	���	����
��&�	����	!�	����	����	���	��������	����	# �������
����#�����	���	"������	� ���	���	� �	�%#����	� 	�	��$���
����	��	��	��#�����	� 	��� ���	����	" �	���	��������
���� ���	0�	��#�	#����	���	�� !���	��	��"�����	��	���""�
���	�����#��	�����	���� �	� ����	���	������#��
���������	�� !���	���	��� ��	���$��	����	��&��	� 	!�
�����	0�	��	���	���	
���	��������	����	������#��	� �	���$�

����	��&��	����	#��	!�	�����	1���$	���	�����#��	�����
���� ��	 �	���	 ����	�����	�������	����	�	� �������
������	 "	������ ��	�����	� 	!�	� ����	��	�����	�����
���	��&�	 "	����	������	��	��	�����	��	���$�	��	���	��&�	 "
���	�����	��#� ��	��	
 ����$	���$�	� �������	�������	 "
������ ��	��	���������	� ������	�� !������#	!�#����
���	���!��	 "	 ������ ��	��	,.��/	���	���	���!��	 "
������� ��	��$��	����	" �	��""�����	������	(���#��$	���
��&�	 "	���	� �������	�� !���	��	�������$� ���	���	�
���	��!���	������	 "	���	������	���	+�# !���	 "	���
� �������	������	#��	#���$�	������#����	!������	������
����	�����	��	��""�#���	� 	�����	���� ��	������$	 �
+�# !���	�������$�

���	���� �	 "	������	����$���� �	234	���	���� ��#��	�
������	��#�	#�����	���	���#����&��� �	" ������	 "	���
����$���� �	���� �	���	# �!����	����	���	� ���
������ ��	���	����#�����	��������	���	# ������	��$�!��
���� ��	���		�������	 �	���	��$������	������	 "
������ ���	5 �	�	� ! ��#�	� ���	����	66	�������	���	��&�
 "	���	� �������	������	 "	������ ��	# ���	!�	����#��
� 	 ���	6�	����	���� �	���	���	������	���#��#��	����
!�#����	#������	���$���	�! ��	���	����#����	 "	���
� ���	������ ��	���	� 	!�	���	��� 	���	� ���	!�	���
�����

*� ����	���� ��	7��%���� ��	����$���� �7�	 "
����#��$	���	��&�	 "	���	������	 "	� �������	������ ��
��	� 	���	�%���#��	���#����&��� �	 �	�� �	������	���
�����#��	 �	"���	�������	���	�� !���	��	����	� 	"���	���
������� ���$	 "	���	�����	��#� �	��� 	�� �	���	"���	�������
*	���� �	!����	 �	�������&��� �	���	��$�������
��������	���	���������	��	264�	
��#�	���	������� ���$	��
!����	 �	�������&��� ��	���#���	#���	��	������	" �	��$���
� ��������	���	������	���#����	� ���	��#�	��	"��#�� ��	0�
������ �	��	��������	�	������ #�����$	����	����	��#�����
 ""�����	�������� �	���	7�����!��7	�������	0�	��	����	� �
�����$��" �����	� 	���	����	���� ��

����	�����	���#��!��	���	�����������	� ��		��� �����
���� �������	��	��� ��)�	28�94	���� ��	 "	���	������
����$���� �	���� ��

8�� ���	���! ��#	��������	���	���������� �	����	!���
���� ���	���	��	����#���	��	����	#����	����	��&�	 "
���	� ��������	������	������#�����

9�� ���	$������� �	 "	�������#��	+�# !����	���	!���
���� ����

3�� 0�����	����$���� �	 "	��$���	 ����	���� ��	���
���� �����

New Methods for HIL Simulation of Stiff Models. Elmqvist H., Mattsson S.E., Olsson H.

Modelica 2002, March 18−19, 2002 60 The Modelica Association

���	���$�	� ���!��	����#�� �	 "	���	��&�	 "	���	�����#��
� ��������	������	 "	������ ��	��	���	� 	���	"�#�	����
#������	��!�������	��$��	!�	������	����	�"���
����������	 "	���	# ����� ����$	���#����&��� �
" �������	��� ��	��		� �	�!��	� 	��� ����#����	����#�
��#�	����#�����	�����$	���	����#�����	��������	 "	���
������ ���	5������� ���	��	#������	#����	���
# ����� ����$	������	��!�� !���	��	�������	����	���	" �
�%������	���	#���	" �	���#����&��	:��)��	5 �	�	 ��
������� ���	:���	�	!���	����#����	��	 !�������	���
�����	��#������	 "	������$	����	�������	�	����#�� �	 "
���	��&�	 "	���	�� !����	5 �	�	:��	� ���	����	8;
���������	���	��&�	 "	���	� �������	�� !����	����	���
���!��	 "	������� �	�����!����	#��	 "���	!�	����#��	�
 ��	����	�	"����	 ����	�������	���#����&��� �	��	�����

���	�����#��	������	�����	��#������	� ����	���
������#��	���!�����	�� !����	' ������	���	����	��&�
����	� 	!�	#� ���	�����	�� �$�	� 	$��	�������
�##���#��	��� ��	���� ��	 "	������	����$���� �	���
!���	�%������	����	��$���	 ����	���� ��	� 	����	���
�##���#�	�������������	���	���	 "	��$���	 ����
���� ��	��	��#������	" �	��$�	��������#�	�������	�����
 ��	#��	����	 �#������ ��	��	���	�'&����$�	���	����	�
���	�������&��	" �	�%������	�������$	��	���	����	���$��

�"���������
���
��
��� ����

< ������	�	������	 "	��""��������	��$�!���#	������ ��
.�*�/

;/���. ������ �

�����	�	��	�����	�	���	�	���	��#� ��	 "	���� ��
�����!����	���	��������	 "	�	���	#�����	������#
�����!���	���#�	�����	����	������������	 �� �	������	��	���
������ ��	���	���	��������	 "	�	���	#�����	��$�!���#
�����!���	���#�	� ��	 "	���	�����������	������	��	���
������ ���

=���	�����$	������	���#����&��� ��	���	� ���
������ ��	���	# �!����	����	���	���#����&��� �
" ������	 "	���	����$���� �	���� ��	5 �	�����#��	�����
��	$��	���	� �������	�� !���

;/���. ����� ����� �

��� ��� >/. �����

� 	� ���	" �	��������������	��#�	�����	*�� 	" �	��	,��	 �
�%���#��	�����	���#�	" ���

/�. ���� ��

���	�������	����$���� �	���� �	����$	�����#��	�����
$����	�	� ��������	�� !����	���	��&�	 "	���	�� !���	��
���	��&�	 "	���	�����	��#� ��

���	� ��������	�������	 !������	����	# �!����$	���
���#����&��� �	" ������	 "	�����#��	����$���� �	���� ��
����	� ���	������ ��	���	�������	!�#����	����#����	�
� ���	���	��������	 �	�� ������	 "	���� ����	�����
��#�	������ �	��"��	� 	����	"���	���	����	�����!����
�����	��	��#�	����#����	� 	�%�� ���

��	��	���������	���	����#����	 "	�	������	!�	�	����#����
+�# !����	��	�����	��#�	� �	����������	�	�#����
������ �	���	��#�	# ����	����������	��	���� ��
�����!��	 "	���	�������	0"	�����!��	?	� ��	� �	������	��
������ �	�	����	�����@	;�	,��������	��	��	 ���	���
������������ �	#��	!�	�%������	� 	����#���	� �	��
��������	" �	�%������	�������	��	�������	������	 �	� ��

																	���

;

;>8

������	8�	*	�������	����#����	" �	���	+�# !����

< ������	�	����#����	+�# !���	 "	���	" ��	��	�� ��	��
5�$���	8�	���	��������	 "	���	��$��	���	� ���	! �����
.���	$���	����/	#��	����	���	�������	0�	��	���	����#����
 "		���	�����	��"�	����	.���	�����	����/	����	��	��� ������
0�	�����	!�	!� #�	� ���	�����$����	.A
�/	���	��#�
���$ ���	!� #�	�����	!�	� �����$�����

0"	���	&	�����!���	���	�������	�� ���	���	�� !���	 "
� ����$	" �	���	%	�����!���	��	��# �� ���	��� 	�
������#�	 "	�������	�� !����	����	!�	� ����	��	����
$����$	���������������

�

0�	�����	����	����	����$	�	������#��	� ����	� 	� ���
���	� ���	�� !����	���	������#��	� ����	�����	 ���
�������	 ���	���	&	�����!���	���#�	��	�	�������	�� !����
*	������#��	� ����	�����	���������	� 	!�	#��#�������
����	��	�� �����	�	�����	" �	���	��	���	��������	��
#��#������	��	���	" �� ���$	���

8��
 ���	��	����	���	������#�	 "	�� !����	" �	���	��

������	����$	���	$����	�	�����	���	���	��		.�	B�/
������	�������	#��#�������

9�� 1��	���	�	�����	���	���	#��#������	��	������	�
#��#�����	���	���������	 "	���	��������$	������ ��
��	���	! �� ��

� 	 !����	�""�#����	�������� ��	���	���	��	� 	 !����	�
�����	���!��	 "	�	�����!���	�����	������$	���
������#�	 "	�� !����	� 	� ���	��	�������	0�	��
"�� ���!��	�"	���	#��#����� ��	 "	���	�	�����!���	���	?���
�	������#�	 "	����$�����	��� ����$	� 	������#��
� ������	
����	������	�������	 "	������ ��	���	���
�##����!���	0�	��	����	��� �����	����	���	��!�� !����	�
� ���	" �	���	��	�����!���	���	� ����$�����	0"	���	 ��$����
�� !���	��	� �����$�����	����	���	���������� �	����
� �	���� ��#�	���$���������	 �	������ ��	!�	&�� �
1�" ����������	��	��	� �	 ���	�	������ �	�� ����$
������ ��	!�	&�� �	!��	��� 	������ ��	!�	� 	�����

Elmqvist H., Mattsson S.E., Olsson H. New Methods for HIL Simulation of Stiff Models.

The Modelica Association 61 Modelica 2002, March 18−19, 2002

���!����	=���	� ����$	������	������ ��	����	��
# �� ���	� ����	!�	��� ���$	��	 ����	� 	�� ��	���$�
# ����� �	���!���	 "	���	"�#� ��&��	�����#���

=���	� ����$	���	 ����	� �������	�� !����	��	��
"�� ���!��	� 	���	C��� �	���� ���	5�%��	� ���
������� �	#��� �	!�	����	" �	���""	�� !�����	C��� �
���� ��	����	���	+�# !���	 "	���	�� !����	
��	�

�

��� ��	���	���!��	 "	��������	 "	��	���	+�# !���	#��
!�	#��#������	������#�����	!�	���" ����$	������ ���	�

�

��������	#��#����� ���	���#�	���	!�	# �����	A�
$��������$	# ��	" �	�������#	#��#����� �	 "	���	+�# !���
���	�"" ��	� 	#��#�����	���	� ��&�� 	��������	 "	���
+�# !���	����#����	��	 "	���	����	��$������	��	 ��
��������	#��#����� ��	���#�	��	�	# �������!��	����	�"" ���
����	����#�� �	��	���	� 	# �� �	��!�%������ �
��������� ��

��������	��������	

0�	 ����	� 	$��	��""�#����	�##���#�	" �	���$�	�����	��	���
��#������	� 	�%����	���	!���#	���� �	� 	��$���	 ����
���� ���	'�$���	 ����	���� ��	����#���	����	����	����
 ����	$������	����	 ���	���	���	 ���	# ��������	����
 �����	9	� 	D�

���	��$���	 ����	���� ��	�����������	" �	���	���
���� �	���	
����!��	���$��	���$ �����	�����#��	(��$��
E����	���� ��	2D4�	���	
����!�����	�������	����	����	���
���!��	" �	���	���!��	������	�������	���	� 	� �	�%��!��
 �#������ ��	" �	����	���""	��������	���	#����	 "
���� ���	���$��	���$ �����	�����#��	(��$��E����
���� ���	�������	���	� ���� �	� 	���	����	������ �
�������	��	�����#��	������

�����������	�
�������	
�
- ��	$������	�����#��	(��$��E����	���� ��	#��	 "���
!�	����	� ��	�""�#����	��	 ""�����	�������� ���
' ������	����	��������	� ��	# ����	"�#� ��&��� ��	����
#��	!�	������	!������	����	�����	���	��	����	� �
�����!��	" �	��������	�������� ���	-����������	���� ��
���	 ����	���� ��	����	�� ��$���	� ��	��" ����� �
"� �	 ��	����	� 	���	��%�	���	� �	������	" �	���������
�������� ��	 "	��!���	��������

�"�����#�����	����
������$%�

���#����&��	�������	��""��������	������ ��	.:��/	����
���#���	������	����#�����	!�#����	��#�	���� ��
�������	 ���	��	�	"��	������ ���	5 �	�	 ��	������� ���
:���	�	!���	����#����	��	 !�������

< ������	���	" �� ���$:���	� �����$	 ���
������� ���	����	��""��� ��

�

�

�

	
�
	

�
�

�
�
�

����	! ������	# ����� ��

3;;/
9

���.9;/;�. ���
�
�

��	
�

3;;/
89

���.9;/�;. ��� ���	
�

;/�. ��
�
�

���
�
	

�����	����	���	���$��	 "	���	 !?�#��	A�	���#����&��$	��
���#�

��

� /�./�.9/�.
/�.

�

���	��	���	
��

�

	

�
������

�
�
�

�����	 ��� >�� ����	��!���$	���	���!��	 "	���#����
���������	���	:��	#��	!�	�����" ����	��� 	�	���	 "
,����	���	�����%	� ���� �	��� ��	# ��������
���#����� �	 "	���	���#����&��	� ����

���������
����	���
�	������	�
���
����	���
�	�
���������
����
����������
�	���
�����

��
��������
�����������
������������ �
����
���
����� �
���!"��#�����!
���$�������
����	#���%� $�
�#���%����� �&
�����!���%� ������%��&�� $�#��!��$�
��������� �
�����&�� �
���
��������
���
�����%� �
���!"��#����!#�%�&�$!��$��
��������������!'��"#�&�$�
��������

���	���#����&��	,��	��	# ����������	�������	!�	���	 "
���"���	��!����$��	 "	���	��#� �	��	���	! ������
# ����� �	��	�@;	��	$����	��	��	��������&��� �	������ ��
���	����	"��#�� �	��	���������	�����������	 �	���
������#��	���	! ������	# ����� �	��	%@;	��	�������	!�
�����$	�284	��	��$�!���#	�����!��	����	$����	����
��������#��	���	! ������	# ����� �	��	%@8	��	�������
!�	�����$	 ��	�������	� 	��	������	�2�F84�	���	���
������ �	�2�F84	@	�2��84�

A�	���#����&��$	��	����	����$	�����#��	�����

��	#��� $�
�#��� &'�(#��� $$�)

�����	�	��	���	����	��&�	���	���	�%������ �	 ��.�2�4/
��� ���	���	�����	 "	�2�4	��	���	����� ��	�����	���	,��

��	#���%� $�
�#���%����� �&
�����!���%� ������%��&�� $�#��!��$

��	�����" ����	���

���%����� �
�#���$!���%� �&����%��&��
&��!'�(#���%� $

New Methods for HIL Simulation of Stiff Models. Elmqvist H., Mattsson S.E., Olsson H.

Modelica 2002, March 18−19, 2002 62 The Modelica Association

�����	�	��	���	# ������

��
���!���)

���	"����	# �� ����	 "	���	���#����&��	,��	��

��� �
�#���$!��� �&���� �&��!'�(#��� $

���	�����!��	�284	��	�� ��	!�#����	��	������
#��#������	"� �	���	! ������	# ����� �	$����	��	�	����
����	���������	�%������ ��	����	���	������ �	���	��
���� ����	�294	���	�234�	���#�	���	 ��	�%������ ��	���
�� ��	����������	����	�����$	�	���	�����	0"	�294	��
�� ���	��	��	������	� 	#��#�����	�234�

��	��	������	�28�34	� 	!�	�� ��	���	# ������	���
��# ��	# �� ����	 "	���	���#����&��	,��

��� �
�#���$!��� �&���� �&��!'�(#��� $

���#�	��	������	� 	���	� 	#��#�����	�2D4�	:� #�����$	��
���	����	���	" �	���	# �� �����	 "	���	���#����&��
,���	��	"���	������ ��	" �	#��#������$	�23��F84	��	�
������	���	����	�294	��	�������	� 	!�	�� ���

���	��������$	������ �	��

������� �
�����&�� �

���#�	� �	��	����	� 	$���	���	��������	�2�F84��2��84
" �	#��#������$	�294	������������	0�	 ����	� ���	���
������#��	� ����	����	 ���	�������	 ���	 ��	�����!���

��#�	����	�� !���	��	�������	��� ��	# �������	���
���! ��#	���������� �	���	����	���	�%���#��
�%������ ��	" �	�23��F84	� 	!�#����!�������	���	��������
������ �	� 	$��	��	������ �	" �	�294	���	� ����	����
������ �	���! ��#�����	��� ��	���	�����" ����	���
� ���	� 	�	������	������#�	 "	����$������	���	�����	��
� 	����	" �	�	������#��	� �����

����	� ���	" �	����	��""��� �	��	� �	���""�	!��	��
�����������	����	����	� �	���	������	����#�����	 "
���#����&��	:���	#��	!�	�%�� �����		- �� ����	��#�	�
� ���	#��	!�	����	 "	�	� ���	����	��	���""�	��� ��	��
����	�!��	� 	"���	���	�����	�����	������ ��	��	���#��!���

- ����	 "	��������#�	�������	���	���""�		- ����	�
���#��!�	��������	����	 �#������ ��	��	���	�'&	���$�	��
� �$	�����	����	���	����	!�����	����#����	��	���#�����
�! ��	���	��� ��	��	�!��	� 	"���	���	� 	����#�	���	��&�
 "	���	� ��������	������	 "	������ ��	��� ����#�����

�"�����#���������	&�
&
���

< ������	� �����$	 "	������! ��	��������	���
������ �	 "	� �� �	#��	!�	�������	��

/�./. ������ ��� �
�����	�	��	�	��#� �	 "	$�������&��	# ��������
�����������$	���	������)�	� ���� �	.������#��	 �	��$���/�
����	���	� �����$����	����	�����%�	���	�	����������
�������	" �#���	
��	�	��� ��	���	���!��	 "	��������	 "
�	 �	��	 ����	� ���	���	��$���	 "	"���� �	" �	���

��#����#��	��������	���	������	���	�	���	�� �	����	���
���!��	 "	������	��	9��

=���	���������$	����	����$	��	�%���#��	,��	� �����	��
��	�	��? �	����	� 	������	���	����	�����%	� 	� ���	" �	���
�##������� ���	=���	����$	�����#��	�������$�	��������$
���	����	�����%	#��	!�	�� ����	���	���	��&�	 "	���	� ��
������	������	� 	!�	� ����	#��	!�	����#��	"� �	3��� 	��
���	���� �#�	��	� 	�������	 ���	���	�##������� ��	 ��� ���
���	���	���	���#����&��� �	" ������	� 	#��#�����	�	���
�� �	���	���	 /�./. ������ ��� � 	��	���	���������	����
���� �#�	���	���������	��	284�	' ������	����	���� �
���	���	������	���#��#��	����	!�#����	#������	���$���
�! ��	���	����#����	 "	���	� ���	������ ��	���	� 	!�	���
��� 	���	� ���	!�	���	�����

���	���	����#�����	��������	���� ��	 "	��� ��
��� ����#����	�����# ����	������� ��	,.�/	���� �	!�

���	=������	���	:���	" �	#��#������$	���	? ���	" �#��
���	� �����	"� �	���	� �� �	 "	���	? ����	.��	 �� ���	 ��� /�
��� ��	��	�!��	� 	"���	����	���� �#�	��� ����#����
���� ��	� 	�����	 �	�%�� ����$	"�#��	����	��	��	�	������
! ��	� ����	��� ��	�����	��	!�	 ���	�����&��$	���
����#����	 "	���	������ ��	���	����������	����
�� ������	���	# �� ����	� ����	 "	���	��!����
- ����#*����� ���-���A ��	������	����#����	��	�
�������	���� ���	" �	��#�	��$���	 "	"���� ��	�����	��
��	"��	"� �	�������	� 	�����" ��	��	�������	� ���	� 	����
�""�#����	" ��	" �	������#	� ���� ��	- �� ����	��� ��
��	�!��	� 	"���	���	# ��	�� !���	��	� ��	# ����%
������$�	��#�	��	" �	�	� ! �	����	����������	���
# ��� ������	����	��	�����������	��	���	" �� ���$
�����#��� ��

����� �����#�'�����
���	��
< ������	���	� ���	�3�� ! �	��	���	- ����#�	2G4	��!����
- ����#�*����� ���-����A ����%�������(! ��	��
�� ��	��	5�$����	9	���	3�

���	� ���	���#��!��	��	����������	� ! �	����	��%
��$����	 "	"���� ��	���	� ���	��	# �� ���	 "	!���#
��#����#��	# �� �����	��#�	��	? ����	���	!���	��
�� ��	��	����	3	 "	5�$���	9�	*�	�����	? ����	�	�����	�����
��	�� ��	��	����	D	 "	5�$���	9	��	��������	��#�	�����
�����	# ������	�	� � ��	�	$���! %	���	��	�#���� �	��
����	��	�	# ��� �	�������	���	������#���	 "	���	$����	 "
���	"����	�����	? ����	��	� ������	!�	 ��	�����$	" �	��#�
$���! %�	���	������#���	 "	���	����	�����	? ����	��
��$��#����	0�	����	G	 "	5�$���	9�	���	� ���	 "	���	� � �
���	���	�#���� �	 "	 ��	? ���	��	�� ���	����	# �� ����
��	��"�����	� ��	����������	��	��	���#���#��	#��#����
5�������	��	5�$���	3�	���	# ��� �	������	����	��#�
"������	" �	 ��	�����	�����	��	��"����	��	!� #�	���$���
" �����	� 	������"�	���	���#���� ��	��	 ���	� �������
� #���$	��	���	? ����	���	� 	!�����$	"��#�� ��

���	� ���	# ������	 "	89	������	" �	���	��#����#��	����
 "	���	� ! ��	�� 	������	" �	�����	$���! %	����	� �����
������#����	�� 	������	" �	�����	� � �>�#���� �
# �� �����	�����	������	" �	�����	��#� 	"������	���	�����

Elmqvist H., Mattsson S.E., Olsson H. New Methods for HIL Simulation of Stiff Models.

The Modelica Association 63 Modelica 2002, March 18−19, 2002

�����

���������

�

�
�

�
�

�

��	 	
��
�

������

�

�������

�

�

�

	

��������������

�� �����

���������	���	� ! �	� ���	�3�

������

����	

�
�
�

�

����	

�
���

���

���

�
���

�
��������

�
���

���

���

�
����

��������

��������

��

�

� ���
�!"

#�

#�
�!"

#
#�

#��

� ���

������$

�%

�
����

���

���

�������	�	���	# ��� ����	 "	 ��	? ����

������	" �	�����	# ��� �����	���	 ������	� ���	���	����
89F3H9F6H.9F3F3/	@	66	�������	���	�������� �	�� !���
���	������ ���	89	������	" �	$��������$	���	��"����#�
�����

���	� ���	���	GI63	���� ����	*"���	��� ��)�
��������� �	 "	# ������	���	�����	�����!���	��
��������� ��	I39	� ��������	���	�����������$	�����!���
�������	5 �	�%���#��	���� ��	�����	��	 ��	������
������ �	������	� 	� ����	0�	��	 "	��&�	��%�	0�
# ����� ���	� 	���	������� �	 "	���	����	�����%�
��� ��	���	� ����	���	 ����	������ �	�������
���! ��#�����

=���	����$	�������	�%���#��	������	�	����	��&�	 "	;�;G
��	���	� 	!�	����#���	� 	�#�����	���!��	!����� ��	���
�����	264	��� ���	����	���	"������	��$��������	 "	���
�������&��� �	 "	���	������	���	�! ��	J;;;	��
��$�������

5 �	���	�������	�����#��	������	��� ��	����������	���
�������� �	�� !���	� 	�	� ��������	������	 "	��&�	6
����	� 	������ ���	� #��	������ �	��������	���
������ �	�������	"� �	���#����&��$	���	�����	������	���
�����	# ��� �����	���	������	���	��� ��	��	�!��	� 	� ���
����	���! ��#�����

��
����	:��" ����#�	 "	���	���� ��	" �	���	� ! �
�� !���	����	��	���������	" �	8	�	����$	�	:������	0K
8�6	L'&	�� #��� ��

��
�

���
�

��
��

��
�

���
�

��
��

��
�

���
�

���	

��
�

���
�

���	

���	��&�	2��4 ;�;G 8 G 8;

: ��	��� �		2��4 ;�8 3 ;�8 ;�D

K���	��� �	2��>�4 G 9; G 9;

<:1	����	2�4 8�IJ ;�86 ;�88 ;�;6

���	��������$	�%�#��� �	�����	���	��%����	� ���� �
���	��� #���	��� ��	# ������	� 	�	��"����#�	� ���� �
#��#������	����$	�*

	���	�� ��	��	��!��	8�	=���
?��$��$	���	��� ��	��	���	!�	 "	��������	� 	�� �	����	���
� ! �	��	 "	�����	��&�	���	���	��%����	������	���	9�D
�>��

5 �	����	������������ �	 "	���	�%�#��� �	�����	���
�� !���	���	���������	" �	 ��	��# ���	0�	�����	����	�"
���	<:1	����	��	����	����	 ��	��# ���	���	�������� �
����	"�����	����	����������

=���	����$	�%���#��	�����	���	�������� �	����	�� ���
����	����������	���	� ���� �	���	$ �	�##���#��	!��	���
# ������� ���	!�����	��	��$��	0�	��	����	����������$	�
���	����	���	�������	�����	 ����	�����#��	(��$��E����
���� �	$����	�	� ���� �	����	���	����	�##���#�	 ���
������$	6M	 "	���	�"" ��	" �	���	�%���#��	�����	���� ��

���	�����#��	���� ��	���	���	"�����	����	����������	*�
��� ����	�! ��	��� ��	��	�!��	� 	����#�	���	��&�	 "	���
� ��������	������	� 	��%�	A�" ��	���	���	���� �������
��� ��	����#��	���	��&�	 "	���	� ��������	������	� 	3I
$����$	�	<:1	 "	8�8	�	" �	���	�������� ��	1���$	���	���
���� �#�	���	�����#��	�����	���� �	�����	 ���	;�86	�

New Methods for HIL Simulation of Stiff Models. Elmqvist H., Mattsson S.E., Olsson H.

Modelica 2002, March 18−19, 2002 64 The Modelica Association

" �	���	�������� ��	���	�������� �	��	�������	��	� ��
����	��%	�����	���	��	����	"�����	����	����������

���	��!��	�� ��	����	��$�	 ����	���� ��	���	 ""�	���
�����	 ����	(��$��E����	���� �	$����	����	����	�"" ��	�
!�����	������	����	�����#��	�����	� ���

0"	��	���	���	� ! �	� ���	��� �	� �������	� #���$	��	���
? ����	���	� 	!�����$	"��#�� �	����	����$	���	�������
�����	 ����	�����#��	(��$��E����	���� �	����	�	����
��&�	 "	G	���	���	<:1	����	������	��	;�86	��	�����	����
� ���	����	��� 	��#�	"�����	����	����������

(�� ��
���

����	�����	���	���#��!��	���	�����������	��� ��)�	���
���� �#�	� 	�������	�����#��	����$���� ��	���	���
"�������	��#����	� ��	�����#��	��������	���
���������� �	 "	���	�������	�� !���	$����$	��	����
#����	�	������#	����#�� �	 "	���	� ��������	�� !���	����
���	� 	!���	� ����	������#�����	L������� �	 "	�������#
+�# !����	��� 	��#������	���" ����#��	
��� ��	 "	������
����$���� �	 "	��$���	 ����	���� ��	�����	� 	!�����
�##���#�	" �	���$��	������	����	��� ���$	"�����
�������� ��

(�� ����	�%������#��	 "	�������$	���	���	���� �#�	�
�������� �	 "	��	����������	� ! �	����	�� ��	����
�� �����$	��������	���	���� �	���	��� 	!���	�������
��##���"����	� 	���������$	��������#	�������	����	� �$
�����	�%��!����$	��������	����	 �#������ ���

���	���
�������

����	� ��	���	��	�����	���� ����	!�	���	��� ����
< ������ �	�����	# ����#�	0
��8II�88IJI	����
�������	*A	�����	���	0�" ����� �	
 #������
��#�� � $�	��	���	�� ?�#�	��������	7(��������
�������� �	" �	����$�	 "	�����������#�	�������7�

'������ �

284	��	A�N#��	'�	���������	
���	-����� ��	'�	,��� ��
���������
��	�����������
������ ��������
!��	�������	:� #�����$�	 "		- ����#�	9;;9�	- ����#�
� ����$��	�����>>����- ����#�� �$�

294	��� ���	���������� ����������
���
��	�������
*A�	
����	
������	�����>>��������������

234	'�	���������	5�	<�������	-�	,����	0�����	0���$���� ��
*	���	��%��	���! ��#>������#	���� �#�	" �	� ����$
��""�����������$�!���#	������ �	��������	:� #�����$��
��� ����	
������� �	-����# �"����#�	+���	8IIG
:��$���	���	OO000�OOO0K�

2D4	'������	=������	
 ����$,�������	��""��������
������ ��	00�	
����$��	K����$

2G4	- ����#��	- ����#�	� ����$��
�����>>����- ����#�� �$�

264	
#������	,��� ��	-�%���� ��	0���$���� �	" �	(����
����	
������� ��	- ����#�	= ���� �	9;;;�	,#� !��
93�9D�	9;;;�	
���	1����������	
����	
�����

Soejima S., Matsuba T. Application of mixed mode integration and new implicit inline integration at Toyota

The Modelica Association 65 − 1 Modelica 2002, March 18−19, 2002

Application of mixed mode integration and new implicit inline
integration at Toyota

 Shinichi Soejima Takashi Matsuba
 Toyota Motor Corporation Toyota Techno Service Corporation

The HILS (Hardware In the Loop Simulation) is a popular technique to debug
control logic of vehicles. Previously, only simplified models could be used to
achieve real time performance in the simulations. On the other hand, quite detailed
models of engine, drivetrain, hydraulics and brake system were developed with
Dymola in recent years. Therefore we would like to use these models also in HILS.
However, real time is difficult to obtain for stiff model components, such as the
hydraulics, because integrators with fixed step size must be used. With explicit
methods very small step sizes are needed to ensure stability. With implicit methods
large nonlinear systems of equations have to be solved. Both approaches seem to
be not feasible. To improve this situation, the new inline and mixed mode
integration technique introduced by Dymola is evaluated for an engine model and
results are reported.

1. Introduction

Concerns over fuel consumption and

environmental problems have brought about a

demand for higher performance in automobiles.

To achieve this, the development of highly

advanced systems using control technologies that

incorporate the use of numerous actuators and

sensors has been progressing. The composition and

control of such systems is becoming increasingly

more complicated. However, at the same time,

reducing the length of their development period is

also necessary. Applying simulation is essential

for achieving this task. Particularly, HILS

(Hardware In the Loop Simulation) is widely

utilized in the debugging of ECUs (Electronic

Control Units). In HILS, the ECU carries out its

operation in real time, and as a result, the model is

also required to carry out its operation in real

time. Simple models with experimental data

tables and transfer functions have been used for

HILS so far. However, the demand is rising for

Dymola models, that have been developed during

the design of control logic, to be used in HILS

without changes.

Physical models have typically a large span of

time constants making them stiff for real time

calculation. When using the explicit Euler

method, the step size must be less than the fastest

time constant in order to maintain numerical

stability. However, in real-time simulation using

HILS, the step size cannot be set shorter than the

length of time necessary for calculating the new

values of the model variables. The implicit Euler

method allows a larger step size to be used.

However, it implies that a nonlinear system of

equations needs to be solved at each step.

Reducing the size of the non-linear problem is

advantageous. Dymola [1] exploits the method of

inline integration [3,4] to support this. The

discretization formulas of the integration methods

are combined with the model equations. To

reduce the size of the resulting non-linear

problem, Dymola analyses the structure of the

problem and manipulates it symbolically. The

symbolic manipulation has recently been

improved [4]. The improvements include also

inline integration of higher order methods to

obtain better accuracy for larger steps.

Another method, "mixed-mode integration", of

reducing the size of the system of non-linear

equations is to use explicit discretization on slow

states and implicit on fast states. The problem is

then to find which states that are slow and which

that are fast. A method based on linearization and

eigenvalue analysis was presented in [6].

Unfortunately, it is not straightforward to use this

method.

This paper reports results from applying inline

integration and mixed mode integration to two

real applications.

Application of mixed mode integration and new implicit inline integration at Toyota Soejima S., Matsuba T.

Modelica 2002, March 18−19, 2002 65 − 2 The Modelica Association

2. Application: Engine model

Figure 1 shows the structure of the engine model

which was used for evaluation. The engine has a

Variable Geometry Turbo (VGT) and an Exhaust

Gas Recirculation (EGR) system. The EGR

system reduces nitrogen oxide (NOx) by

recirculating exhaust gases back to the intake

manifold. The VGT system increases the exhaust

pressure by restricting the flow of burned gas

using vanes installed at the entrance. To achieve

low emission levels, it is important to control the

VGT and EGR correctly. A complication is that

both the VGT and the EGR influence the intake

manifold pressure and fresh air/EGR gas flow

into the engine.

The model is a mean value engine model. The

variation of torque or cylinder pressure during a

cycle is not calculated. The model builds on

conservation of energy and mass and Newton's

equations of motion. The amount of air mass flow

and EGR gas flow, and the pressure and

temperature of every part of the engine are

calculated. The model has 796 unknowns. After

Dymola's elimination of constant and alias

variables at translation, 183 nontrivial and time-

varying variables remain. The model has 26

continuous time states. The mass flows of the air

or EGR gas are calculated by the Equation (1).

&m CA p= 2 1 1ρ Φ (1)
























+
<








⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

+









+










+
>








⋅⋅⋅⋅

























−









−
=Φ

−−

−
+

1

1

1

2
1

1

1

1

1

2

1

1

2

2

1

2

1
2

11
2

1

2

1

κκ

κκ
κ

κ

κκ
κ

κ

κκ
κ

p

p
if

p

p
if

p

p

p

p

Figure 2: The flow characteristics

The equation shows that the flow changes are

large when there is a small difference between the

upper pressure and the lower pressure. It implies

that the time constants of the dynamics change.

As a result, the use of explicit Euler method with

fixed step size, requires a small step size for the

simulation.

2.1 Evaluation of inlined explicit Euler

We compared the calculation time of two 10

seconds simulations, one in which the explicit

Euler inline integration method was applied and

one in which a non-inlined explicit Euler method

was used. Table 1 shows the results. We can see a

39% performance improvement when using the

inlined explicit Euler in Dymola.

The results are labelled "Simulink" when

simulating the S-function generated by Dymola in

Simulink. The `sim´, `tic´ and `toc´ commands

were used for timing. It should be noted that using

the simulate button in Simulink 3.0 (Matlab 5.3)

made the simulation of these models about 50%

slower. This situation has been improved in

Simulink 4.0 (Matlab 6.0).

It should be noted that there was not any

significant improvement in speed when

simulating in Simulink. The reason has not yet

been determined.

atmosphere

VGT

EGR
valve

Cylinder

Intake
Manifold

Exhaust
Manifold

Figure 1: Engine model

Φ

2

1
p

p

Soejima S., Matsuba T. Application of mixed mode integration and new implicit inline integration at Toyota

The Modelica Association 65 − 3 Modelica 2002, March 18−19, 2002

Table 1: Performance for explicit Euler when

simulating the engine model for 10 seconds using

an Intel Pentium II 350 MHz processor.

Integration Step CPU
Method [ms] Time [s]

 Explicit
 Euler

 Inlined
Expl Euler

 Explicit
 Euler

 Inlined
 Expl Euler

 S

im
ul

in
k 460.1

0.1 44

 D
ym

ol
a 0.1 41

250.1

2.2 Evaluation of mixed mode integration

Next we evaluated mixed mode integration. The

partition with 4 fast state variables discussed in

[6] was used. Table 2 shows the results of a

comparison of calculation time when mixed mode

integration was used with the Engine model and

when a non-inlined explicit Euler method was

used. The mixed mode integration method

showed very high performance. The improvement

of the performance is about 85%. And without

mixed mode integration, the model simulation

needed 0.1 ms of step size to ensure calculation

stability. On the other hand, with mixed mode

integration the calculation was still stable with a

step size of 1.0 ms.

The explict Euler method cannot be used for HIL

simulation, because a step size of 0.1 ms is

needed, which is too short for HILS calculation.

The mixed mode integration method allows HIL

simulation as the results from running on

dSPACE 1005 (PowerPC 750, 480 MHz)

indicate. However, there are problems of using

the mixed mode approach in general

1. It is difficult to find the suitable partitioning.

The operation is difficult to generalize because

the partitioning depends on the characteristic of

each model, and thus requires trial and error

analysis on each occasion.

2. Once partitioning has been made, stability is not

guaranteed when the input is changed.

Table 2: Performance for mixed mode

integration when simulating the engine model for

10 seconds using an Intel Pentium II 350 MHz

processor.

Integration Step CPU
Method [ms] Time [s]

 Explicit
Euler

Mixed
Mode

 Explicit
Euler

Mixed
Mode

Mixed
Mode

Mixed
Mode

 S

im
ul

in
k 460.1

1 7.1

 D
ym

ol
a 0.1 41

6.11

 d
SP

A
C

E 1 Not Realtime

1.3 Realtime

2.3 Evaluation of inlined implicit Euler

In order to provide more easy to use method than

the mixed mode integration method, the implicit

line method reported in [6] has been considerably

improved [4]. The performance results of using

this method are shown in Table 3.

Table 3: Performance for inlined implicit Euler

integration when simulating the engine model for

10 seconds using an Intel Pentium II 350 MHz

processor.

Integration Step CPU
Method [ms] Time [s]

 Explicit
 Euler

 Inlined
Impl Euler

 Explicit
 Euler

 Inlined
 Impl Euler

 S

im
ul

in
k 460.1

0.1 15

 D
ym

ol
a 0.1 41

14.30.1

Application of mixed mode integration and new implicit inline integration at Toyota Soejima S., Matsuba T.

Modelica 2002, March 18−19, 2002 65 − 4 The Modelica Association

It can be noted that the simulation time was about

15 seconds on the Pentium II processor, i.e. 1.5

ms/step. Since dSPACE DS1005 according to

Table 2 needs more CPU time per step it would

need at least 2 ms to calculate one step. However,

using offline simulation in Dymola, it was

determined that convergence was not obtained

when the step size 2 ms was used.

Faster HILS environments based on Pentium

processors are available, for example xPC from

MathWorks. Dynasim made test using an Intel

Pentium 4, 1.6 GHz processor. Table 4 shows the

performance results for simulating in Dymola on

xPC. The model could then be run in real-time.

Table 4: Performance for inlined implicit Euler

integration when simulating the engine model for

10 seconds using an Intel Pentium 4, 1.6 GHz

processor.

Integration Step Comp
Method [ms] Time [s]

 Explicit
 Euler

 Inlined
Impl Euler

 Explicit
 Euler

 Inlined
Impl Euler

 Inlined
 Impl Euler

1 Realtime/4.5s

xP
C

1 4.6Si
m

ul
in

k 13.60.1

D
ym

ol
a 0.1 11.4

4.61

3. Application: Hydraulic system

The hydraulic system is one of the most important

systems in an automobile. It plays a crucial role in

the power train and the drive train. As the

hydraulic system exhibits very complicated

characteristics, it is very useful to simulate it.

Additionally, the ability to simulate such systems

in real time is very important. So far real-time

simulation of hydraulic systems has not been

possible. Hydraulic systems are typical examples

of very stiff systems. It is necessary to use

implicit solvers.

Long...
Q

Trapez...

period...

Lo
ng

..
.

Trapez...

period...

Figure 3: Hydraulic actuator system.

As the next application, consider simulation of an

actuator which is usually used to control the

pressure in automobiles. Figure 3 shows the

structure of the model developed by using

components from the HyLib hydraulics library

[2]. There are a number of valves and pipes

between a high-pressure source and low-pressure

parts such as the brake at a wheel. The dynamics

within the pipes cannot be neglected, because

they are several meters long. The valves adjust the

pressure of the lower part by very fast actuation.

This introduces very fast pressure changes and the

pressure wave propagate with the speed of sound

which is approximately 1300 m/s. The result may

be oscillations in the range 400-500 Hz generating

vibration and noise within the automobile system.

See Figure 4. It is important to analyze this

phenomenon in order to develop ways of reducing

the vibration and noise.

[MPa]

[sec]

Figure 4: Pulsation in the long hydraulic line

Soejima S., Matsuba T. Application of mixed mode integration and new implicit inline integration at Toyota

The Modelica Association 65 − 5 Modelica 2002, March 18−19, 2002

The two pipes of the model are each 3 meters

long. Each pipe is modeled by 15 segments,

where each segment is 0.2 m long and has 5

continuous time states. The model has in total 164

states.

It is not possible to use explicit Euler for real-time

simulation, because the model requires the step

size to be less than 0.001 ms to ensure the

stability of the simulation.

A the third order implicit inline Runge-Kutta

integration method, RK3, with a step size of 0.5

ms was used to obtain both stability and desired

accuracy. The symbolic manipulation of Dymola

reduces the size of the nonlinear system to be

solved by a nonlinear solver from 164 to 10.

Table 5 shows the performance results for the

Pentium II processor when simulating 1 second.

Table 5: Performance for inlined implicit RK3

when simulating the hydraulic actuator model for

1 s using an Intel Pentium II 350 MHz processor.

Integration Step CPU
Method [ms] Time [s]

 Explicit
 Euler

 Inlined
Impl RK3

 Explicit
 Euler

 Inlined
Impl RK3

 S

im
ul

in
k 2530.001

0.5 3

 D
ym

ol
a 0.001 283

3.10.5

It should be noted that the inlined implicit RK3

gave a speed up of a factor of 91. However, the

simulation is 3.1 times too slow to run in real-

time. Therefore Dynasim made corresponding

test shown in Table 6 for Pentium 4, 1.6 GHz.

Real-time performance was then achieved.

When attempting to test on xPC, the diagnostic

`Failed to download´ was received. More

investigations have to be made to determine the

cause.

Table 6: Performance for inlined implicit RK3

when simulating the hydraulic actuator model for

1 s using an Intel Pentium 4, 1.6 GHz processor.

Integration Step CPU
Method [ms] Time [s]

 Explicit
 Euler

 Inlined
Impl RK3

 Explicit
 Euler

 Inlined
 Impl RK3

 D
ym

ol
a 0.001 59.1

0.710.5

 S

im
ul

in
k 50.90.001

0.5 0.6

These results show that the improved implicit

inline integration method is very effective in this

case. Conventionally it was difficult to handle

hydraulic models using fixed step explicit Euler

and process the model within a practical

calculation time. Using the improved implicit

inline integration method it is possible to handle

hydraulic models and process them at high speeds

even in fixed step situations.

This characteristic is desirable for real time

simulation. Implicit inline integration produced a

remarkable improvement for this simple hydraulic

model. Furthermore, it has also shown

considerable effectiveness even for models that

are more complicated. The representative

characteristics of this method are as follows.

• This method enables the generation of a code

which is suitable for real-time simulation,

even in the case of models that have the

property of oscillation, such as the hydraulics

system.

• This method makes the handling of models

with larger step size possible.

Application of mixed mode integration and new implicit inline integration at Toyota Soejima S., Matsuba T.

Modelica 2002, March 18−19, 2002 65 − 6 The Modelica Association

4. Conclusions

We evaluated inline integration and mixed mode

integration which were developed to improve

calculation performance. Improved implicit

inline integration, which has recently been

developed, was also evaluated. It was confirmed

that these methods effectively increased the

ability to handle models in real time. In particular

the improved implicit inline 3rd order integration

method could handle the model very efficiently

even if it was a hydraulic model.

On the other hand, it was generally the case that

setting step size for fixed step size integrators

remained a problem. Even inline integration

needs trial and error testing to find a suitable step

size. In addition, an increasing number of

modeling beginners are using these kinds of tools.

These users are not always experts in modeling or

control. It would therefore be desirable if they

could more easily obtain improved performance

using the techniques we evaluated. We hope that

such method will be established and be applied to

the physical models, which were made for

controller designing in order to enable HILS.

The improved implicit higher order integration

method has given a break-through in simulation

speed for stiff models and for discreticized partial

differential equations originating for example in

long hydraulic pipes.

References

[1] Dymola. Dynamic Modeling Laboratory,

Dynasim AB, Lund, Sweden,

http://www.Dynasim.se.

[2] P. Beater, “Modeling and digital simulation of

hydraulic systems in design and engineering education

using Modelica and HyLib”, Modelica Workshop 2000

proceedings pp 33-40

[3] H. Elmqvist, F. Cellier, M. Otter: Inline Integration:

A new mixed symbolic/numeric approach for solving

differential-algebraic equation systems. Proceedings

European Simulation Multiconference, June 1995,

Prague, pp: XXIII-XXXIV.

[4] H. Elmqvist, S.E. Mattsson, H. Olsson: New

Methods for Hardware-in-the-loop Simulation of Stiff

Models, Proceedings of Modelica Conference 2002.

Modelica homepage: http://www.Modelica.org.

[5] Modelica. Modelica homepage:

http://www.Modelica.org.

[6] A. Schiela, H. Olsson, “Mixed mode integration for
Real-time Simulation”, Modelica Workshop 2000

proceedings, pp 69-75

[7] S. Soejima, ”Examples of usage and the spread of

Dymola within Toyota”, Modelica Workshop 2000

proceedings, pp 55-59

Schlegel C., Bross M., Beater P. HIL−Simulation of the Hydraulics and Mechanics of an Automatic ...

The Modelica Association 67 Modelica 2002, March 18−19, 2002

HIL-Simulation of the Hydraulics and
Mechanics of an Automatic Gearbox

Clemens Schlegel
cs@schlegel-simulation.de
Schlegel Simulation GmbH

Munich, Germany

Marco Bross
Marco.Bross@bmw.de

BMW AG
Munich, Germany

Peter Beater
Beater@mailso.uni-paderbon.de

Universität -GH Paderborn
Soest, Germany

Abstract

In this article, hardware-in-the-loop (HIL) simula-
tion of a passenger car automatic gearbox is dis-
cussed. The simulation includes detailed models of
the mechanics and hydraulics and less detailed mod-
els of the other parts of the car’s drive train like its
engine, torque converter, differential gearbox, chas-
sis and driving resistances. After a short description
of the components to be modeled, special issues of
simulating variable-structure mechanical systems
(coupled frictional elements), simulating hydraulics
and simulating in real time with the gearbox control
electronics hardware in the loop are discussed. A
simulation based, detailed assessment of the dynam-
ics of the gearbox hydraulics show that it might be
modeled (under certain assumptions) with fixed
causality without major loss of accuracy. Therefore
nonlinear systems of equations in the hydraulic parts
of the model can be avoided. This enables the usage
of a model based on hydraulic component submod-
els, rather than on overall global dynamics to be
used for real time simulations with standard HIL-
simulation hardware. The article ends with a short
discussion of HIL-simulation results and an outlook
on future work.

1. Introduction

The motivation to realize tests in a HIL-environment
is manifold, but two main reasons are:

Shorter development time. The time available for
the development of new components and cars is
becoming shorter and shorter. Thus, a lot of time has
to be saved during the development phase. HIL-

simulation and testing is a possibility to achieve this,
as

• There is no need to wait for prototype produc-
tion, if the data of these are available for model-
ing,

• No driver and test circuit is needed,
• Test conditions can be reproduced precisely,
• Tests can even be automated.

Rising complexity due to interacting electronic
control systems. Cars have always been aggrega-
tions of several subsystems like engine, gearbox,
brakes and so forth, and thus showed a certain com-
plexity. But in former times those systems worked
rather independently and could therefore be devel-
oped and tested separately. Nowadays the subsys-
tems of passenger cars are strongly interdependent:

• Different control systems act on the same dy-
namics (e.g. both motor management (DME)
and gearbox controller (EGS) influence the lon-
gitudinal dynamics (fig. 1).

• Different control systems share sensor informa-
tion that is exchanged via CAN bus for control
purposes, but also for self-diagnosis.

• Functions are spread over several controllers.

As a consequence systems can no longer be tested
separately and the number of different error cases
that have to be tested increases drastically. The test
environment has to include all essential parts or
functionalities of all interacting systems. Optimal
testing should be automated in order to handle the
number of error cases. Both requirements lead to
automated HIL simulation and testing.

This article describes the test environment that was
installed at BMW in order to test the control system

HIL−Simulation of the Hydraulics and Mechanics of an Automatic ... Schlegel C., Bross M., Beater P.

Modelica 2002, March 18−19, 2002 68 The Modelica Association

Figure 1: System overall view

(EGS) of the automatic gearbox. For the above men-
tioned reasons, it was not sufficient to model only
the gearbox itself that is controlled by the EGS, but
also the remainder of the powertrain and parts of its
controllers and communication structures. Figure 1
gives an overview of the components, physical inter-
actions and information flow:

• The EGS represents the hardware in the loop
and is the item under test. All other parts are
simulated.

• Gearbox mechanics, hydraulics and actuators
have been modeled in detail. This was necessary,
as one of the goals of this setup was the possibil-
ity to simulate the effects of failure of one of the
actuators or the hydraulic valves.

• The less detailed models contain only those
functionalities that are necessary for the simula-
tion, e.g. the model of the DME does not control
a full model of the engine, but is necessary to
transmit the required signals via CAN bus to the
EGS.

2. Modeling driveline and gearbox
mechanics

An automatic gearbox can be simulated only if the
input and output torques or speeds are known.
Therefore, at least the engine and the longitudinal
dynamics of the vehicle also have to be modeled.
Figure 2 shows a corresponding model: Engine
(controlled by a control unit and a driver model),
torque converter, gearbox, final drive, brake wheels,
vehicle inertia and driving resistances. The engine is
modeled by a torque map, the torque converter by
static characteristics, and all other components, apart
from the gearbox, by the well known physical rela-
tions.

Figure 3 shows an outlined sketch of the 5 speed
gearbox ZF 5HP24 [1] which was investigated.
Apart from the hydrodynamic torque converter it
consists of three planetary wheel sets and seven
switching elements: Three clutches (A, B, C), three
brakes (D, E, F), and a freewheel (FF). The gearshift
pattern (fig. 4) indicates which switching elements
have to be active to engage a certain gear.

If appropriate component models are given, the
object-orientation of Modelica allows to derive the
complete simulation model (fig. 5) easily from the
gearbox scheme of figure 3. For the component
models the standard Modelica library “Mechan-
ics.Rotational” [2] and the Modelica powertrain
library [3] have been used. For more details of mod-
eling automatic gearbox mechanics see [4].

Clutches, brakes and freewheels in a simulation
model result in a variable structure system, this is
because two shafts can stick or slip relative to each

ASC
DSC
others

S
e
n
s
o
r
s

Chassis

A
c
t
o
r
s

S
e
n
s
o
r
s

Gearbox
mechanics

and
hydraulics

D
M
E

S
e
n
s
o
r
s

Engine

Hardware

Detailed
Models

Less
Detailed
Models

Schlegel C., Bross M., Beater P. HIL−Simulation of the Hydraulics and Mechanics of an Automatic ...

The Modelica Association 69 Modelica 2002, March 18−19, 2002

Figure 2: Drive train simulation model

Figure 3: Outlined sketch of 5 speed automatic
gearbox ZF 5HP24

Figure 5: Gearbox mechanics simulation model

Gear A B C D E F FF

R x x
N x
1 x x
2 x x
3 x x
4 x x
5 x x

Figure 4: Gearshift pattern

R1

ratio=r1

Shaf t1

J=J1C

F

Fixed1=0

Flange... Flange...

R2

ratio=r2

R3

ratio=r3

Shaf t2

J=J2

Shaf t3

J=J3

Shaf t4

J=J4

Shaf t5

J=J5

Shaf t6

J=J6

B

A Shaf t7

J=J7

D

Fixed2=0

E

Fixed3=0

HIL−Simulation of the Hydraulics and Mechanics of an Automatic ... Schlegel C., Bross M., Beater P.

Modelica 2002, March 18−19, 2002 70 The Modelica Association

other. The number of states is changing during a
transition from stick to slip and vice versa. Neglect-
ing some “fast” dynamics in order to reduce simula-
tion time results in a typical idealized friction
characteristic shown in figure 6. The friction torque
is a discontinuous and in part non-unique function of
the relative speed of the clutch disks. Therefore
additional equations have to be set up for a complete
system description.

Figure 6: Idealized friction characteristic

In the Modelica libraries used, friction is modeled in
a parameterized form (in contrast to [4]) with a
curve parameter included plus a state machine de-
scribing the transitions between the unique and non-
unique parts of the idealized friction characteristic.
Because the relative speed in the clutch is an output
of the integration algorithm and computed with a
limited precision only, finding the transition between
the unique and non-unique parts of the friction char-
acteristic is not trivial. This holds especially for
systems with several interacting clutches, like the
system treated here.

Modeling a clutch by a parameterized friction de-
scription in connection with a state machine results
in a mixed system of discrete and continuous equa-
tions, which cannot be solved by standard methods
like Gaussian elimination. There are a few methods
to solve such mixed systems [5], all of them need
iteration at an event instance (transition from stuck
to sliding mode and vice versa). Using Dymola [6]
for processing of the Modelica models, these itera-
tions proved to converge quite quickly. Therefore the
real-time condition was met in the HIL setup with
only a few exceptions.

3. Modeling gearbox hydraulics

The hydraulic system of an automatic gearbox con-
sists of different elements with the following func-
tions:

• Electro-hydraulic elements provide a hydraulic
pressure as a function of the electrical current
flowing through the element.

• Switching valves open or close canals.
• Proportional valves amplify pressures and / or

transform hydraulic impedances.
• Cylinders generate a normal force on a clutch

pack if a hydraulic pressure is applied on them.

Figure. 7 gives an overview over the elements and
their interactions. In the following section a short
outline of modeling techniques for hydraulic sys-
tems is given.

Figure 7: Interaction of hydraulic subsystems

The early simulation languages were block-oriented
[7] and emulated analog computers. They were very
well suited for the simulation of control systems
where the output signal of a control block doesn’t
influence the input. Hydraulic systems, however,
work differently: The state at the input port of a
component is dependent on the state of the output
port. A hydraulic line illustrates this: If the line is
closed at the end the pressure at the entrance will
rise according to the input flow rate. If the line is
open at the end the pressure at the input will fall
almost to atmospheric pressure. These dependencies
can be modeled with block-oriented software but
lead to awkward models because of the necessary
feedback loops. It is very difficult to build modular
models with this approach.

Modelica enables acausal modeling, i.e. it is possi-
ble to describe the behaviour of a component with-
out defining which variables are input and which are
output variables. As a consequence it is possible to
use the same library model for a hydraulic pump
(input is the mechanical power, output the flow rate)
and a hydraulic motor (input is the hydraulic power,

TStick

TFriction

TCoulomb

Electro-
hydraulic

actors
p,q

Hydraulic
valves

p,q Cylindersi

Schlegel C., Bross M., Beater P. HIL−Simulation of the Hydraulics and Mechanics of an Automatic ...

The Modelica Association 71 Modelica 2002, March 18−19, 2002

output the torque at the shaft). This object oriented
modeling approach thus resembles the design strate-
gies of component manufacturers: They use (to a
great extent) the same parts for pumps and motors.
[8].

Hydraulic systems can be described by differential-
algebraic equations (DAE). The differential equa-
tions are usually non-linear first-order equations that
model the pressure build up in lumped volumes.
Only special cases require partial-differential equa-
tions (PDE) to describe the behaviour of long lines.
Usually these PDEs are discretized to arrive at a
system of first order ODEs.

Figure 8: Modeling approach using lumped volumes.

Figure 9: Library models; the lumped volumes at the
ports are included but not shown in the icons.

Figure 10: Diagram layer of library valve model
with included volumes at the ports shows more
details.

For standard applications it has proven very helpful
to place a lumped volume at each port of a compo-
nent to model the behaviour of the compressible oil
(fig. 8). This leads to a simple structure of the result-
ing DAE-system. However to be able to solve this
DAE with standard solvers it is necessary to reduce
the index. In former times this was done by hand
from the modeling engineer by adding the amount of
oil of all components connected at a particular node,
nowadays it can be done automatically by the tool.

To avoid the manual placement of volumes and the
resulting cluttering of the diagram layer library
models are available that have already included the
lumped volumes at the ports but don’t show them in
the icons. The resulting diagram layer is almost
identical to a standard hydraulic circuit diagram (fig.
9 + 10). It can therefore be read also by engineers
with training in hydraulics but no deeper experience
in modeling and simulation [9].

When modeling hydraulic systems it makes sense to
follow the path of the oil: The source is the pump,
the sink is the tank, the cylinders, motors and valves
are in between. Using an appropriate library even
complex circuits can be modeled in a short period of
time if the required parameters of the components
are known [10].

The advantages of the outlined concept are obvious.
Hydraulic components can be modeled in a truly
modular way. They can be arranged in an arbitrary
structure – parallel or in series. The resulting nonlin-
ear DAE system can be solved for the derivatives of
the state variables thus avoiding the numerical solu-
tion of systems of nonlinear equations. There are
however also some drawbacks. The lumped volumes
between components can become very small, they
may contain less than a thimble full of oil. As a
consequence the pressure builds up very rapidly. In
mathematical terms this means a stiff system that has
eigenvalues near the origin and almost at minus
infinity. Using advanced integration algorithms with
automatic step size control these DAEs can be
solved successfully but the required computing time
will usually be greater than the simulated time. Con-
siderations of the numerical stability will restrict the
permissible step size for fixed step-size algorithms
that are used for HIL simulations.

One way to reduce the required computing time is
the observation that not all pressure states (lumped
volumes) are significant for the overall behaviour of
the model. In that case it is possible to eliminate a

Id...
Q

R...

T...

Cha... Stop1

Fixed1 Fixed2

Spring1

O
i..
.

Oi... Oi...

Oi...

O
i..
.

O
i..
.

Stop1

Fixed1 Fixed2

Spring1

Fl...
Q

T...

Cy lin...

R...

Ta...

port_A port_B

port_A.q port_B.q

in...

TWVnS

Vo
lum
e
A

Vo
lum
e
B

HIL−Simulation of the Hydraulics and Mechanics of an Automatic ... Schlegel C., Bross M., Beater P.

Modelica 2002, March 18−19, 2002 72 The Modelica Association

state. As an example figure 11 shows two orifices in
series.

If the pressure dynamics of the lumped volume
between the two orifices is not significant one can
neglect it and assume that the flow rate through both
orifices is identical. It is then possible to calculate
the flow rate through both orifices as a function of
the pressure differential across both orifices. This
approach is identical to the assumption of a zero
volume.

Figure 11: Two orifices in series.

In general, using these techniques, one has to find a
compromise between placing a lumped volume at
each connector and not using them at all. The first
approach avoids nonlinear systems of equations, but
generates a stiff system. The second approach does
not generate a stiff system, but the resulting system
of nonlinear algebraic equations has to be solved
numerically. Thus, both approaches will lead to long
simulation times (compared to simulated time), the
optimum is a combination of both.

Unfortunately, using this method simulation times
are still far from real-time using a standard HIL
simulation processor (we used a Motorola PowerPC
750 processor running at 480MHz). Thus, another
simplification has to be made. Detailed analysis of
the hydraulic system shows that it is possible to use
a causal approach for some elements: For the major-
ity of the valves, the generated pressure of one valve
can be considered to be independent of the valve that
is driven by that pressure, as the volume flow of oil
is usually small. Thus, a model can be derived from
an acausal model where the majority of the elements
is modeled in a causal way, which speeds up simula-
tion times to an extent that real-time simulation
becomes possible.

4. Gearbox electronics & HIL

After having combined all necessary simulation
models (all subsystems shown in fig. 1 apart from
the gearbox controller EGS), they have to be imple-
mented on an appropriate real-time processor to-
gether with all interfaces needed. For the Modelica
implementation of the gearbox mechanics model, we
used Dymola and exported the processed model as a
Simulink S-function [11]. The fixed causality
hydraulics model and the software interfaces to the
hardware have been implemented in Simulink too.
Since the gearbox controller provides no trigger
signal the simulated plant model has to be sampled
much faster than the controller. The EGS under test
operates at 100 Hz, requiring a sampling rate of 1
kHz for the simulation model. For the real-time
simulation hardware we used boards by dSPACE
[12].

Setting up a HIL simulation often non-standard
interfaces are needed due to I/O reversal: Sensors
and actuators are simulated, but they interface in part
directly to the power-electronics part of the control
unit which needs the respective electric loads for
proper operation. In contrast, standard real-time I/O
interfaces provide TTL-level signals only.

The EGS senses the speed of the gearbox input- and
output shafts and oil temperature. Based on these
signals (interfaced directly) and other signals like
vehicle speed, throttle position, and estimated engine
torque (interfaced indirectly via CAN bus), the ac-
tual gearshift is performed according to a shift map
and a set of parameters adjusting the slope of the
hydraulic forces acting on the respective clutch
packs to the actual driveline and vehicle state. Dur-
ing a gearshift the EGS may require via CAN bus
the engine controller to reduce engine torque for a
smooth transition.

On the output side the EGS interfaces directly to
electro-hydraulic components of the gearbox. The
respective original parts are included in the HIL
setup to provide proper electrical loads. That parts
are combined in a load box which may be exchanged
for simulation of another automatic gearbox type.
Without proper electric loads at the power-electron-
ics interfaces the EGS would operate in emergency
mode only (4th gear, no gear shift) due to imple-
mented watchdog functions. For the same reason
health monitoring signals of other controllers have to
be provided via CAN bus, too.

Orifice1 Orifice2

O
ilV
ol
um
e

Schlegel C., Bross M., Beater P. HIL−Simulation of the Hydraulics and Mechanics of an Automatic ...

The Modelica Association 73 Modelica 2002, March 18−19, 2002

Figure 12: HIL simulation control main panel

For the operator interface to the simulation we used
the board vendors software ControlDesk [12]. Figure
12 shows the main panel with standard passenger car
instrumentation, gearshift control, simulation con-
trol, and simulation output of the actual state and the
pressure history of all six clutches of the gearbox.

With the HIL setup described the effects of partial or
total failure of one or more mechanic, electric, or
hydraulic components of the gearbox can be studied
in detail. For interfacing to the EGS software, e.g.
for changing parameters, disabling certain parameter
adaptation functionalities, etc. an additional device
is needed. We used INCA [13] for that task.

5. Simulation Results

The following simulation results show the hydraulic
pressure (in [N/mm2]) for two cylinders as a result of

two gear shifts. Until t = 1s, the neutral gear is en-
gaged. Then, the first gear is engaged, and the gear-
box switches to the second gear at t = 3s. Figure 13
shows the simulation results for the acausal model,
simulated with Dymola. Figure 14 shows the same,
but the results are based on a causal model with the
same parameters.

The results for both models are fairly similar, prov-
ing the assumption to be correct for most of the time.
This is not the case for the pressure in cylinder A
around t=3.5 s (red circle). In the acausal, precise
model, the pressure in A falls slightly, because cylin-
der E gets filled by a considerable volume flow.
Thus, the working pressure drops, which is also
reflected in the pressure in cylinder A. As it can be
expected, the causal model does not show this effect.

Figure 15 shows the influence of a EGS parameter
modification (application parameter). The result
represents an uncomfortable gear shift, as the pres-

HIL−Simulation of the Hydraulics and Mechanics of an Automatic ... Schlegel C., Bross M., Beater P.

Modelica 2002, March 18−19, 2002 74 The Modelica Association

sure in cylinder E shows a peak (blue circle). The
fact that changes in these parameters are reflected in
the pressure buildup opens the possibility to use
these models for application purposes, too.

Figure 13: Simulation results: Acausal model

Figure 14: Simulation results: Fixed causality model

Figure 15: Simulation results: Effects of poor
application parameters.

6. Conclusion & Outlook

Using the available component models of Modelica,
quite detailed models of gearbox hydraulics and
mechanics have been developed. Further investiga-
tion showed the possibility to model the gearbox
hydraulics in part with fixed causality, which al-
lowed real-time simulation of both hydraulics and
mechanics. This model was implemented on a HIL
environment together with the gearbox controller.
For fully automated component failure tests of the
EGS the respective models have to be enhanced by
failure injection inputs.

The fixed causality hydraulics model may also be
implemented in Modelica. This would enable to split
up the combined mechanics and hydraulics model in
“slow” and “fast” parts and thus using the potential
advantage of Dymola’s inline integration scheme
[14]. A limitation may be that the presumable “slow”
mechanic parts of the model need “fast” sampling
too, in order to meet the real-time condition if itera-
tions occur at an event instance in the clutch models.

An other area of future investigation might be the
use of simulation models for application purposes.
This creates the need for further improvement of the
models without loss of simulation speed. Since only
a limited set of signals are available for measure-
ment with reasonable effort, setting up procedures
for identification and validation of those refined
models needs to be addressed.

References

[1] Funktionsbeschreibung Automatikgetriebe
5HP24. ZF Getriebe GmbH, Saarbrücken

[2] Modelica Association.
Modelica.Mechanics.Rotational,
http://www.modelica.org/library/library.html

[3] PowerTrain library, http://www.dynasim.se

[4] M. Otter, C. Schlegel, H. Elmqvist, Modeling
and Realtime Simulation of an Automatic
Gearbox using Modelica, 9th European
Simulation Symposium ESS’97, Passau,
Germany, Oct. 19.-22., pp. 115-121, 1997.

[5] M. Otter, H. Elmqvist, S.E. Mattsson, Hybrid
Modeling in Modelica based on the

Schlegel C., Bross M., Beater P. HIL−Simulation of the Hydraulics and Mechanics of an Automatic ...

The Modelica Association 75 Modelica 2002, March 18−19, 2002

Synchronous Data Flow Principle. IEEE
International Symposium on Computer Aided
Control System Design, Hawaii, August 22-
27, USA, Proceedings of CACSD'99, S. 151-
157, 1999.

[6] Dymola, http://www.dynasim.se

[7] J.C. Strauss, D.C. Augustine, B.B. Johnson,
R.N. Linebarger, F.J. Sanson,. (1967) The SCI
Continuous System Simulation Language
(CSSL). Simulation, IX(6)281-303, 1967.

[8] P. Beater, Entwurf hydraulischer Maschinen –
Modellbildung, Stabilitätsanalyse und Simula-
tion hydrostatischer Antriebe und Steuerun-
gen. Berlin, Heidelberg, New York, Springer
Verlag. 1999.

[9] P. Beater, Modeling and Digital Simulation of
Hydraulic Systems in Design and Engineering
Education using Modelica and HyLib. Lund,
Modelica Workshop 2000, pp 33 – 40, 2000.

[10] HyLib. Library of Hydraulic Components
http://www.hylib.com

[11] Simulink, http://www.mathworks.com

[12] http://www.dspace.de

[13] http://www.etas.de

[14] A. Schiela, H. Olsson, Mixed-mode Integra-
tion for Real-time Simulation. Lund, Modelica
Workshop 2000, pp 33 – 40, 2000

Modelica 2002, March 18−19, 2002 76 The Modelica Association

Puchalsky C., Megli T., Tiller M., Trask N. and Wang Y., Curtis E. Modelica Applications for Camless Engine Valv...

The Modelica Association 77 Modelica 2002, March 18−19, 2002

Modelica Applications for Camless Engine Valvetrain
Development

Christopher Puchalsky, Thomas Megli, Michael Tiller, Nate Trask,
Yan Wang, Eric Curtis

Ford Motor Company

Abstract

Several variable valvetrain technologies are being
aggressively pursued to increase vehicle fuel economy
and reduce engine exhaust emission levels.
Electromechanical Valve Actuation (EMVA) is a
promising alternative that uses electromagnetic
actuators to replace the conventional camshaft and
provide fully flexible valve timing control. This
"camless" valvetrain provides new opportunities and
challenges for engine control optimization. In this
work, we present two Modelica applications for
EMVA development.

Control and prediction of the Air to Fuel (A/F) ratio in
a port fuel injected spark-ignited (PFI SI) engine is an
important factor for emissions, performance, and fuel
economy. A Modelica model to simulate the dynamic
behavior of fuel vaporization and storage inside a PFI
SI engine has been developed. This "wall wetting"
model was developed from an existing FORTRAN
based model and employs several control volumes to
represent fuel in various phases and locations in the
engine. A multi-component fuel model (i.e.
containing different constituents with a wide range of
molecular weights) is used where the fuel component
masses are the state variables and the mass flow rates
are the flow variables. The fuel model can be easily re-
declared so that different numbers and types of fuel
components can be used to simulate the distillation
characteristics of various fuels. For the control
volumes that represent liquid fuel puddles, the
connectors have additional information such as puddle
area, puddle height, fuel component vapor pressure,
puddle temperature, and puddle heat transfer. The
processes of fuel injection, vaporization, liquid flow,
and shattering are used to move fuel between the
various control volumes. The Modelica model can be
coupled by various degrees to engine simulation
models. By comparison, in the original FORTRAN
model, engine operating inputs to the wall wetting
model were made by rough approximation with no
opportunity for feedback from the wall wetting model
to affect the operating conditions. In this application
we fully couple the wall wetting dynamics to a single
cylinder engine model. The complete model is then
more generally applicable to the increased number of
degrees of freedom afforded by the variable valve

timing control. The engine model incorporates a
simple valve actuator model to replace the
conventional camshaft motion with the flexible timing
and transition characteristics of EMVA. The engine
model predicts gas flows, temperatures, and pressures
that were inputs to the FORTRAN wall-wetting model.
The wall wetting model then determines the fuel
vaporization rate, which in turn determines the A/F
ratio input to the engine model. This subsequently
changes the temperatures, pressures, and flows in the
combustion chamber and port sub-models. Initial
comparison of results to the FORTRAN model show
reasonable agreement in A/F prediction but the
FORTRAN version currently runs faster.

The other use of Modelica involves actuator
development. Actuator design and control is a
significant challenge for EMVA engines. To achieve
performance, durability and fuel economy objectives,
valve motion must be carefully controlled via
electromagnets to achieve both fast transitions and low
contact velocities. The actuator system must also be
designed to minimize electrical power consumption. A
detailed actuator model is developed to study valve
transition characteristics. The model incorporates
mass, spring, and electrical elements from the
Modelica standard translation and electrical sub-
libraries. A detailed sub-model of a solenoid with an
"E-shaped" core has been developed to predict
magnetic forces and inductive characteristics. The
magnetic force is coupled to a reciprocating mass
which represents the armature and valve assembly.
Various actuator design modifications have been
investigated. The effect of a simple voltage control
scheme on valve motion is investigated here.

Introduction

The global automotive industry is under increasing
pressure from governmental, consumer, and non-
governmental groups to improve the fuel economy of
motor vehicles. Reasons for improvement range from
concerns about global warming to the need to reduce
the dependence on foreign, and often volatile,
petroleum sources. Consumer demand and competitive

Modelica Applications for Camless Engine Valv... Puchalsky C., Megli T., Tiller M., Trask N. and Wang Y., Curtis E.

Modelica 2002, March 18−19, 2002 78 The Modelica Association

forces demand that improvements in fuel economy not
be accompanied by decreases in other metrics of
vehicle performance – safety, power, interior space,
emissions, price, and NVH. It is often required that
these other metrics improve along with fuel economy.

One group of technologies that holds promise for
improving fuel economy while maintaining or
improving most other areas of vehicle performance is
variable valve timing (VVT). VVT reduces or
eliminates many of the tradeoffs between low and high
speed torque, fuel economy, idle quality, and emissions
that are currently made with fixed valve timing. VVT
includes current production technologies like variable
cam timing, cam switching, and variable valve lift. All
of these technologies use a cam to open and close the
valves. A new VVT technology that holds promise is
Electromechanical Valve Actuation (EMVA). EMVA
uses electromagnets to open and close the valves. The
valve timing is then independent of crankshaft position,
and valve opening and closing times can be optimized
to reduce throttling losses and to control residual gas
fractions. Additionally, valves may be deactivated to
reduce power consumption or to deactivate cylinders
for improved fuel economy.

EMVA presents several engineering challenges in
which modeling plays an important role. One such
area is the development of strategies for transient air
fuel control. We will discuss the development of the
plant model to predict liquid fuel dynamics. Another
engineering challenge is the development of the
electromagnetic actuator. Both will be discussed and
results will be presented.

Wall Wetting Model Development

Prediction of transient fuel dynamics is difficult with
conventional port fuel injected (PFI) engines running at
fixed valve timing. In PFI engines, a fuel injector is
placed in the intake port as close to the intake valve as
packaging will allow. A schematic of the fuel injection
and wall wetting process in a standard camshaft engine
is shown in Figure 1. Fuel is injected towards the
intake valve and port walls just before intake valve
opening. Some fuel becomes entrained in the air
stream, but most lands on the valve and port where it
forms small "puddles". The fuel evaporates off the hot
port walls (~95 C) and the hotter intake valve (~175
C). The fuel, gasoline, is composed of many different
chemical species with widely different characteristics.
The lighter, more volatile, components will evaporate
easily while the heavier, less volatile, components will
tend to evaporate slowly and stay in the puddle. The
evaporation rate increases dramatically when the intake
valve is open and the air speed in the port is high. The
high air speed in the port also produces a forward flow
phenomenon, which causes some of the liquid fuel on
the port walls and the intake valve to be sucked into the

combustion chamber where it forms a puddle.
Additionally, right at the moment of intake valve
opening, the pressure in the intake port is much less
than that in the cylinder. This produces a backflow
pressure wave that splatters some of the fuel off of the
valve and up into the port. In both the forward and
backward flow processes some of the fuel is entrained
in the air stream before it lands.

1

3

2

4

1. Port Film
2. Valve Film
3. Upstream Film
4. In-Cylinder Film

Figure 1: Schematic of Fuel Injection.

Prediction of transient air fuel dynamics becomes even
more difficult under certain EMVA engine operating
modes (e.g. late intake valve closing (IVC), alternating
valve closing, and cylinder deactivation). A detailed
wall wetting model to predict transient air fuel
dynamics has been created in Modelica. A starting
point for the Modelica model was a FORTRAN model
developed by Curtis, et. al. [1]. The FORTRAN wall
wetting model contains models of all of the processes
described above, all of which have also been
implemented in the Modelica version. Additionally,
the Modelica version is also tied to an engine cycle
simulation that provides data such as air speeds,
pressures, and temperatures to the wall wetting model.
The FORTRAN version used approximations for this
data.

Basic Models

In the most basic form, the wall wetting model is a
collection of fuel puddles (control volumes) linked
together by processes that move fuel between the
various puddles. This is similar to modeling in the
thermal domain where a series of thermal capacitances

Puchalsky C., Megli T., Tiller M., Trask N. and Wang Y., Curtis E. Modelica Applications for Camless Engine Valv...

The Modelica Association 79 Modelica 2002, March 18−19, 2002

exist with thermal resistances and convective elements
to move the thermal energy between them.

The control volume model has the following connector
instantiated as cv (control volume):

connector MassConnector
import Modelica.Siunits;
parameter Integer n "# of species";
parameter String FuelNames;

 SIunits.Mass m[n];
flow SIunits.MassFlowRate mdot[n];

end MassConnector;

The control volume model also contains the following
equation to link the flow and across variables:

der(cv.m) = cv.mdot;

A multi-component fuel model is used. The number,
type, and injected mass fraction of each component
(species) is selected to match the distillation
characteristics of the fuel. There are 21 chemical
species from which to select. The fuel model contains
both fuel composition and material property data. It
has the following code:

model Fuel
extends FuelIcon;
replaceable Two_Component_Test

Fuel_Comp ;
 FuelsDataAdjustable

Data(Fuel_Comp=Fuel_Comp) ;
end Fuel;

The replaceable Two_Component_Test model
defines the fuel. This model contains the injected mass
fractions, the fuel names string, and an array of
integers that specifies which components are used.
This information is then passed to the
FuelsDataAdjustable model. The
FuelsDataAdjustable model extracts the
material property data for the used species from the list
of possible species. FuelsDataAdjustable is
implemented as a model and not as a record
because of an assert statement in the equation layer of
the model. This forces Fuel to be a model because
one of it used classes is a model and not a record.
Knowing which fuel, and hence which species, will be
used at translation time decreases the number of
variables and run time.

Note that the connector definition has a string
parameter FuelNames. The string FuelNames is a
concatenation of abbreviations for the names of all the
various fuel components that make up the current fuel
model. An example of FuelNames for the indolene
fuel model is: "ispnt|ioctn|tolun|ndecn|cy-
hex|naph|ethylb". This is on the connector to assure

that all the parts of the model are using a consistent
fuel model.

The control volumes used to represent the liquid fuel
are placed inside a wrapper model. The wrapper model
contains the fuel model and a thermal connector that is
connected to a thermal model that predicts the
temperature of the puddle. It also has two models that
calculate the surface tension and the vapor pressure of
the fuel mixture in the puddle from the puddle
temperature and fuel properties. The geometry (area,
height, perimeter) of the liquid puddle is calculated in
the equation layer of the model. It also has a liquid
fuel connector that is similar to the control volume
connector:

connector LiquidMixture
import Modelica.SIunits;
parameter Integer n "# of species";
parameter String FuelNames;

 SIunits.Mass m[n];
flow SIunits.MassFlowRate mdot[n];

 SIunits.Pressure Pv[n];
 SIunits.Temperature T;

flow SIunits.HeatFlowRate q;
 SIunits.DynamicViscosity mu;
 SIunits.SurfaceTension SurfTen;
 SIunits.Area A;
 SIunits.Height H;
 WallWetting.Types.Perimeter Pwet;
end LiquidMixture;

The liquid puddle model and liquid mixture connector
allow all of the information pertinent to the puddle to
be calculated in one place. This prevents, for example,
both the evaporation and forward flow models from
calculating the puddle geometry.

The FORTRAN version used liquid puddle models to
represent the liquid fuel puddles – one on the intake
valve, one on the cylinder, and two in the port (see
Figure 1). The fuel in the port is split into two puddles
– one downstream in the port near the valve and one
upstream away from the valve and close to the injector.
The downstream puddle is nominally hotter than the
upstream port. The modular nature of Modelica
permitted easy creation of two different models with
different numbers of control volumes. One is identical
to the FORTRAN wall wetting model with 4 puddles.
Both 4-puddle models can be used to model engines
with multiple intake valves, bifurcated and non-
bifurcated ports, and charge motion control valves by
the use of multipliers. For example, an engine with
two valves and a bifurcated port with fuel injected
evenly into both ports would have the amount of fuel
injected divided by 2 and the amount of fuel vaporized
multiplied by 2.

Modelica Applications for Camless Engine Valv... Puchalsky C., Megli T., Tiller M., Trask N. and Wang Y., Curtis E.

Modelica 2002, March 18−19, 2002 80 The Modelica Association

To model liquid fuel dynamics with EMVA it was
necessary to use 7 control volumes because each
cylinder has two intake valves and a single fuel
injector. Only one cylinder puddle control volume was
used, but all of the other puddles were doubled to
represent the two intake valves. The use of 7 control
volumes instead of 4 with multipliers was necessary
because of certain EMVA modes that are non-
symmetrical. One such mode occurs when the intake
valves open on alternating cycles, but the single fuel
injector sprays fuel into both ports on each cycle.

The FORTRAN version of the wall wetting model had
a control volume to keep track of the fuel evaporated.
Some versions of the Modelica wall wetting model
have a separate control volume to keep track of the fuel
that has been vaporized. Others simply convert the
multicomponent evaporation mass flow rate into a
single component mass flow rate that can be applied
directly to the medium connectors that Ford uses for
cycle simulation [2].

In addition to the fuel model, four different records are
used to pass information to different sections of the
model. They are passed down the hierarchy as
replaceable records or models.

Processes

The wall wetting model has several processes that add
fuel to the liquid puddles, move the liquid fuel between
the puddles, and remove the evaporated fuel. The
dominant process is evaporation [3]. Each puddle is
connected to the air-stream using an evaporation
model. The evaporation model uses the Reynolds
number of the flow over the puddle, the free stream gas
state (temperature, pressure, composition), and puddle
information from the puddle connector. It calculates a
total mass convection rate from the puddle to the air
stream. The evaporation mass flow rate is governed
by:

)
1

ln(
fvp

fvifvp

port

puddle
mixevap

X

XX
D

d

A
Shm

−
−

=
•

ρ (1)

where Sh is the Sherwood Number (dimensionless
concentration gradient which is dominated by the
Reynolds Number), ρmix is the density of the air/fuel
mixture in the gas phase directly above the puddle,
Apuddle is the area of the puddle, dport is the port
diameter, D is the diffusion coefficient, Xfvp is the mass
fraction of fuel in the vapor phase above the puddle,
and Xfvi is the mass fraction of fuel vapor in the inlet
stream. The total mass convection rate is divided
among the various fuel components (species) in the
puddle based on their mass fractions in the vapor
phase.

Liquid fuel is added to the puddles via an injector
model. The injector apportions the total fuel injected
by means of data about the engine hardware (e.g.
injector targeting info) and calibration parameters (e.g.
how much fuel dribbles off of the injector as opposed
to being sprayed). Most of the fuel during closed valve
injection goes to the valve puddle and the downstream
port puddle. During the rare event of open valve
injection a large portion of the fuel goes directly to the
cylinder puddle. The injector model also calculates an
amount of fuel that is either vaporized or entrained in
the air stream before it reaches the puddle. It does this
by calculating a Roslin-Rammler distribution of the
fuel droplet size in the injection spray. Then it
assumes that all the drops under a certain diameter are
entrained, and half of the drops between that size and a
larger size are entrained. Both sizes are calibration
parameters.

A forward flow model simulates the dragging effects of
the air-flow in the port. The forward flow model
moves liquid fuel from the upstream puddle to the
downstream puddle, and liquid fuel from the
downstream and valve puddles into the cylinder
puddle. All of these flows are modeled by instances of
the same flow model.

Using the mass flow rate of air in the port, the forward
flow model makes several assumptions in order to
calculate a mass flow rate. First, it is assumed that
there is no slip at the surface between the puddle and
the engine. Next, there is an equal shear force between
the puddle and the air stream. Finally, there is a
laminar flow distribution in the air and fuel film. The
model then divides the total mass flow rate among the
various fuel components in the puddle by their mass
fractions in the puddle. The forward flow model also
has an entrainment model similar to that in the injector
model.

The process of backflow shattering is also modeled.
This occurs at intake valve opening (IVO) when the
pressure in the port at part throttle operating conditions
is much less than that in the cylinder. At typical
operating conditions, the cylinder pressure at IVO
would be at atmospheric (100 kPa) and the pressure in
the port would be about 50 kPa. This pressure
difference produces a short duration but large
magnitude, sometimes sonic, backflow event. This
shatters the downstream and valve puddles. A
percentage of the fuel that was shattered will be blown
up into the port, a percentage will fall back into the
puddle, and a percentage will be entrained in the air.
The process is modeled as an event in Modelica. At
IVO an event is triggered and a submodel calculates
the redistribution of fuel. This information is then
passed up to higher levels so that all of the control
volume models are children. This model uses reinit
statements to move the percentages among the various
control volumes. This method is not entirely

Puchalsky C., Megli T., Tiller M., Trask N. and Wang Y., Curtis E. Modelica Applications for Camless Engine Valv...

The Modelica Association 81 Modelica 2002, March 18−19, 2002

satisfactory because the process is not completely
represented in one submodel. We are currently
evaluating the experimental impulse handling
functionality in Dymola to rewrite the backflow
shattering model.

Thermal Warm-up Model

One of the most important features in predicting
transient A/F dynamics is good prediction of the
temperature of the liquid fuel. The liquid fuel puddle
is thin and is assumed to be in thermal equilibrium with
the engine surface. The task is therefore to make a
thermal model of the intake valve, seat, and cylinder
walls. The Modelica version of the wall wetting model
is essentially the same as the FORTRAN version [4].
The valve and valve seat are modeled by thermal
capacitances connected by thermal resistances. This
resistor-capacitor network is connected to the
combustion gases, backflow gases, fresh charge gases,
and coolant fluid via thermal convective resistances.
Twenty-six thermal capacitances are used. Four are for
the valve stem, three are for the valve seat, one is for a
thermocouple, and 18 are for the valve head. The
thermal capacitance and thermal resistance models are
the HeatCapacitance and HeatResistance
modes from the HeatFlow1D package found in the
ModelicaAdditions library. The Convection
model in the HeatFlow1D library was not suitable
because the convection coefficient is a parameter.
In our model the convection coefficient changes
throughout the simulation so we made our own
convection model with a variable convection
coefficient. When a formal heat transfer library is
available in the Modelica Standard Library, we will
migrate our models to use the standard components.

The temperature of the valve puddle is calculated as a
weighted average of the cells on the valve head. The
downstream port puddle is connected to one of the seat
cells. The upstream port puddle is connected to an
average of the coolant and the seat.

Interface with Cycle Simulation

The original FORTRAN wall wetting model was not
coupled or integrated into to a detailed engine cycle
simulation model. Therefore simple but useful
approximations for information such as in-cylinder
pressure, burned gas temperatures, and in-cylinder and
port air velocities were used as inputs.

The Modelica version of the wall wetting model was
designed to permit integration with engine cycle
simulations of varying complexity. The simplest cycle
simulation would be to use the approximations that the
original FORTRAN model uses. The next level of
complexity would be to have a simple cycle simulation
(e.g. using a single species ideal gas model, prescribed

burn model, and no in-cylinder heat transfer effects) to
provide results for input to the wall wetting model, but
not visa versa. A more complex cycle simulation could
also be used (e.g. using a multiple species gas model
with detailed property models, a predictive burn model,
and in-cylinder heat transfer effects). Finally, the most
complex form of integration would involve the two-
way communication of results between the wall
wetting model and the cycle simulation model. In
other words, the cycle simulation would provide the
wall wetting models with the necessary temperatures,
pressures, air flow velocities, and heat transfer
coefficients while the wall wetting model would
provide the cycle simulation with the air/fuel ratio.

For our purposes we have built two versions of the wall
wetting model. This first was for model verification.
Here we used a simple cycle simulation that was
coupled one way to the wall wetting model. Then for
the camless application we chose a slightly more
complex cycle simulation model (four gas species,
thermodynamic relations by polynomial, prescribed
burn, and no in-cylinder heat transfer effects) that was
fully coupled to the wall-wetting model.

Actuator Model Development

Both simplified and detailed models of the EMVA
have been developed. The simplified model is
incorporated into the wall wetting simulation of the
camless engine, while the more detailed "stand-alone"
model is used for actuator controls development.

The actuator, shown schematically in Figure 2, is
comprised of an upper and lower electromagnet and a
moving armature which pushes on the engine poppet
valve. Compression springs of equal stiffness (ks) are
placed above and below the armature, and are pre-
loaded during assembly (by positioning the threaded
top spring housing) to center the armature between the
solenoid pole faces as shown in the left figure. During
engine start-up, the valve is pulled from the center
position to one of the pole faces corresponding to the
open or closed position of the poppet valve. During
normal engine operation, the armature and engine
valve essentially operate as a reciprocating system.
The motion during a transition from one pole face to
the other is then primarily harmonic with the transition
speed being determined by the effective armature/valve
mass (meff) and the effective stiffness (keff =2ks) of the
upper and lower springs. The electromagnets are used
to (1) hold the valve in either the open or closed
positions position, and (2) to inject enough magnetic
energy into the armature to overcome frictional losses
during transitions.

Modelica Applications for Camless Engine Valv... Puchalsky C., Megli T., Tiller M., Trask N. and Wang Y., Curtis E.

Modelica 2002, March 18−19, 2002 82 The Modelica Association

Springs, ks

electromagnets

Moveable armature and
engine valve assembly, meff

Middle equilibrium position Fully closed position Fully open position

Cylinder head

Springs, ks

electromagnets

Moveable armature and
engine valve assembly, meff

Middle equilibrium position Fully closed position Fully open position

Cylinder head

Figure 2: Schematic of the EMVA actuator in
middle, fully open and fully closed positions.

Simplified EMVA Model
A simplified sub-model is developed for use with the
engine cycle simulations. The simplified model
provides valve profiles to the valve port flow models
which subsequently determine the gas flow to and from
the engine cylinder. From a free-body diagram of the
effective reciprocating mass meff, the equation of
motion during a transition can be expressed in terms of
the viscous friction damping coefficient c, the effective
spring constant keff, the upper Fmag,u and lower magnet
Fmag,l forces, and the gas pressure and flow forces Fgas:

gaslmagumageffeff FFFzkzczm −−=++ ,, (2)

In Equation 2, z is the distance from the center position
(the upper magnet face is at z = L/2 and the lower
magnet is at z = -L/2. Lift L is the total armature
travel). The magnetic force drops off as with the
square of the armature distance from the pole face;
therefore, during most of the transition, Fmag,u and Fmag,l

are small compared to the spring forces. Additionally,
the damping coefficient is very small, and for light to
moderate engine loads, the gas forces are relatively
small. A reasonable first approximation to the valve
lift x = z – L/2 is harmonic motion at a frequency of ωn

= (keff/meff)
1/2. For example the position for movement

from the closed position at time to is given by:

{ }() ω/π≤−ω−= noon t-tfortt
L

x)(cos1
2

(3)

and

not-tforLx ω/π>= (4)

This simply generates a time based one-half period
harmonic transition from closed to open position. A
similar expression is used for the valve closing
transition.

Figure 3 illustrates an instance of the simplified EMVA
model within the context of the camless engine exhaust
valvetrain model. The sub-model incorporates a
rotational connector to sense engine position and a
control connector that provides opening and closing
timing signals from higher levels of the model. The
output is the harmonic lift profile which is then
connected to the exhaust port flow model.

Simplified EMVA model

Valve control connector

Valve lift profile generator

Simplified EMVA model

Valve control connector

Valve lift profile generator

Figure 3: Exhaust valvetrain model showing the
simplified EMVA model

Detailed EMVA Model
Modelica standard libraries for linear masses and
springs are used to model the mechanical
characteristics of the system. Additionally a model of
an E-core type electrical solenoid is developed and
used in conjunction with the electrical libraries. This
provides a plant model for evaluation of passive and
active motion control schemes.

The model, shown in Figure 4, is used to evaluate the
dynamics of the armature motion during catching near
the end of a transition. It includes the mechanical
system, a catching electromagnet, and simple voltage
supply.

The mechanical system is modeled as a reciprocating
mass that is connected to 4 spring-damper elements.
These elements are piece-wise linear with a change in
stiffness and damping coefficient defined by the
positions where the armature meets the magnet pole
face. Two of the spring-dampers represent the
mechanical stiffness of the upper and lower actuator
springs, while two other high-stiffness elements
simulate the collision between the armature and the
electromagnets. The lower stiffness spring-damper
parameters are active during mid-travel (-L/2 < z <
L/2) and are tuned to match the free oscillation motion
of the armature. The high stiffness spring-dampers
(active for |z| L/2) are then tuned to match the
experimental data to simulate the inelastic collision of
the armature with either of the magnet pole faces.

Puchalsky C., Megli T., Tiller M., Trask N. and Wang Y., Curtis E. Modelica Applications for Camless Engine Valv...

The Modelica Association 83 Modelica 2002, March 18−19, 2002

Mechanical system

Electromagnet
model

Power supply

Mechanical system

Electromagnet
model

Power supply

Figure 4: Actuator model

Also shown in Figure 4 is an e-core magnet sub-model.
Electrical connectors are provided to connect the coils
to a voltage source. In addition, a translational
connector is provided to apply the magnetic force to
the spring-mass-damper system.

ww/2

w/2

d

x

t

b

h

l

µ Bs

µ Bs

core

armature

wire

H ww/2

w/2

d

x

t

b

h

l

µ Bs

µ Bs

core

armature

wire

H

Figure 5: "E"-core magnet schematic

The magnet model development begins with a
consideration of the e-core geometry and flux path,
which is shown schematically in Figure 5. By applying
Gauss' law for magnetostatics:

0=∫ • dAB (5)

where B is the magnetic field and Ampere's law:

NienclosedIdlH =∫ =• (6)

where H is the magnetic excitation, i is the current, and
N the number of coil turns, the flux can be expressed in
terms of the geometry, windings, material properties,
air gap x, and current i for both the linear (where
magnetic field B=µH) and magnetic saturation regions
of operation. In the linear region the flux is given by:

xk

ai

+
=λ (7)

where a and k are constants determined by the core and
armature dimensions and material properties.

Integrating λ with respect to current i gives the co-
energy, which can be differentiated with respect to the
air gap to give the magnetic force Fmag:

2

2

)(2 xk

ai
Fmag +

= (8)

The flux and magnetic force will vary according to
Equation 7 and Equation 8 until either the core or
armature begins to saturate at higher current levels.
Here, an exponential form for the flux is defined which
permits the characterization of the flux and magnetic
force in terms of the B-H curve characteristic of the
materials.

With the flux characterized, the equation which
describes the voltage Va applied across the coil the can
be expressed using Kirchoff's, Faraday's and Ohm's
laws:

Ri
dt

d
Va +λ= (9)

where R is the coil resistance which is parameterized in
terms of the e-core dimensions and wire diameter d.

Equations for the magnetic force and the coil voltage
essentially describe the magnet sub-models. The
model interfaces with the electrical and mechanical
subsystems through translational connectors and
electrical pins.

Results and Discussion

Wall Wetting Simulations

The camless wall wetting model has been used to
model 1200 RPM 300-second engine "cold-start" tests.
The engine starts from near ambient conditions, and is
then operated at 1200 RPM. The engine load (or
torque) is periodically moved between a lower and
higher level, with the excursions being made during a
1-second interval. The load changes are accomplished
by changing the engine airflow induction rate. Both
"throttled" and "unthrottled" operating modes are
investigated, and simulation results are compared to
experimental data. In the throttled mode, the camless
engine is operated in a conventional way. The valve
timings are fixed and load changes are executed by
throttling the air flowing into the intake manifold. In
the unthrottled mode, the intake manifold air is at
atmospheric pressure. Load changes are accomplished
by changing the intake valve closing timing (IVC) to
change the length of the induction stroke.

Modelica Applications for Camless Engine Valv... Puchalsky C., Megli T., Tiller M., Trask N. and Wang Y., Curtis E.

Modelica 2002, March 18−19, 2002 84 The Modelica Association

Figure 6 shows the results for the throttled engine
operation. Both experimental and predicted results are
shown for injected air-fuel ratio (the ratio of inducted
air mass per cycle to injected fuel mass per cycle) and
for the air-fuel ratio in the engine exhaust (inferred
from measuring exhaust species concentrations). Note
that these are in general different under transient
conditions due to the wall wetting fuel dynamics. The
model prediction for injected air/fuel ratio is
significantly higher than the experimental injected air
fuel ratio during the high load operating condition.
This difference may be attributed to modeling and
experimental error. The difference could be due to
over-prediction of the inducted air mass during high
load conditions. The exhaust air fuel ratio for the
experimental data and modeling simulation behave
similarly during low load engine operation, but during
high load operation conditions the experimental and
modeled exhaust air fuel ratio diverge. This may be
due to the differences in the injected air fuel ratios and
experimental error.

Dual intake valve operation, Throttled results for fixed valve timings

10

11

12

13

14

15

16

17

18

19

20

0 50 100 150 200 250 300

Time, s

A
/F

 R
at

io

Experimental A/F Ratio Model A/F Ratio

Experimental Injected A/F Ratio Model Injected A/F Ratio

Figure 6: Throttled Operation.

Figure 7 shows the results for unthrottled engine
operation. The injected air fuel ratio for the model
closely matches the experimental data, demonstrating
that the air charge estimation is improved compared to
the throttled operating condition. However, the
modeled exhaust air fuel ratio does not yield similar
results. Although the experimental exhaust air fuel
ratio tracks close to the desired stoichiometric
conditions, the modeled exhaust air fuel ratio is
calculated to be much richer. The model reasonably
represents the air fuel excursions during load
transitions, but most likely underestimates the quantity
of fuel lost to the crankcase. If the model calibration of
the lost fuel becomes more representative, the
simulation is expected to more closely match the
experimental results.

Dual Intake and Exhaust (EIVC) - Results for variable IVC and
Unthrottled Operation

10

11

12

13

14

15

16

17

0 50 100 150 200 250 300
Test time [s]

A
/F

 R
at

io

Experimental A/F Ratio Model A/F Ratio

Experimental Injected A/F Ratio Model Injected A/F Ratio

Figure 7: Unthrottled Operation.

These results show reasonable agreement for the
general trends in air fuel-ratio behavior and
demonstrate that Modelica is suitable for modeling
transient air fuel dynamics; however, they also
underscore the need for good model calibration and
experimental air charge estimation. The FORTRAN
version of the wall wetting model has a routine to
calibrate the model by adjusting several parameters.
The values of these calibrated parameters were used for
the Modelica wall wetting model. However, the results
show that the Modelica version of the model needs a
different calibration process. Once a calibrated version
of the model is available, it should be generally useful
for both hardware and control strategy development.

Actuator Simulations
The actuator model has been exercised to investigate
various design and motion control scenarios. Here we
present results that compare model predictions to
experimental data for armature catching using a simple
square-wave catching pulse.

The model flux and force relationships are tuned to e-
core and armature properties for a 200V prototype
actuator using data from [5]. Mass, spring and
damping parameters are selected to provide reasonable
agreement between the predicted and measured free
oscillation data. Experimental data are obtained by
using a bench-top experimental set-up described in
[6]. An actuator is installed on a cylinder head, and
instrumentation is provided to drive the coil and to
measure the position, velocity, current, and voltage.
Figure 8 illustrates the experiment. The actuator is
held in either the open or closed position with a low
holding current in the corresponding coil. This holding
coil current is then quenched at the time of the release
command. After a delay time td, a square wave
catching pulse of amplitude Vapp and pulse-width tpw is
applied to the opposite coil to catch the armature at the
magnet pole face. The catching coil voltage is then
decreased to provide the lower current required to hold
the valve in position.

High
Low

Load
Condition

Puchalsky C., Megli T., Tiller M., Trask N. and Wang Y., Curtis E. Modelica Applications for Camless Engine Valv...

The Modelica Association 85 Modelica 2002, March 18−19, 2002

holding current

Catching coil at Vapp

Outputs: position, velocity, and current response

valve position

Inputs: pulse timing and square wave catching pulse

time

Catching current

tpwRelease command

td

holding current

Catching coil at Vapp

Outputs: position, velocity, and current response

valve position

Inputs: pulse timing and square wave catching pulse

time

Catching current

tpwRelease command

td

Figure 8: Schematic of armature catching
experiment.

Figure 9 shows both predicted and measured position
and velocity traces for a Vapp = 117 V, tpw = 10 ms
catching pulse applied at td = 1.4 ms from the armature
release point. The release spring first accelerates the
armature and valve assembly to peak velocity of about
3.7 m/s. As the armature approaches the coil seat, it
decelerates due to the catching spring force, but the
magnetic force increases to pull the armature in to the
open position. The predicted and measured contact
velocities are about 0.3 m/s and 0.5 m/s respectively,
and occur at 3.2 ms from the release point. Note that
under these conditions the armature bounces and
contacts a second time at about 0.6 m/s at around 4.5
ms.

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Time, ms

P
os

tio
n,

 m
m

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

V
el

o
ci

ty
, m

/s

predicted

measured

Figure 9: Predicted and measured position and
velocity for apply voltageVapp = 117V , delay time td

= 1.4 ms, and pulse-width tpw = 10 ms.

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Time, ms

P
os

tio
n,

 m
m

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

C
u

rr
en

t,
 A

predicted
measured

Figure 10: Predicted and measured position and
current for apply voltage Vapp = 117V, delay time td

= 1.4 ms, and pulse-width tpw = 10 ms.

Apply Voltage Vapp= 150 V, pulsewidth tpw = 3 ms

0

0.5

1

1.5

2

2.5

3

0.5 1 1.5 2 2.5

catching pulse delay time td, ms

co
n

ta
ct

 v
el

o
ci

ty
, m

/s model prediction

measured data

Figure 11: Predicted and measured contact velocity
versus catching pulse delay time td for apply voltage
Vapp = 150 V and pulse-width tpw = 3ms

Figure 10 shows the predicted and measured current
responses. The measured current first increases to
about 2.0 amps, and then decreases as the armature
lands due to the counter electromotive force (EMF)
induced when the armature moves toward the magnet
pole face. After bouncing, the armature moves away
from the pole face and induces a reinforcing EMF.
The current then increases, and this subsequently
increases the magnetic force to pull the armature in
with a higher contact velocity during the second
impact. After the armature lands, the current then
increases even more rapidly due to magnetic saturation
effects. The model over-predicts current until very
near the landing point. Here the model predicts a much
sharper current decay than is shown by the
measurement. The overall trends agree; however,
model refinements are being developed to improve the
current prediction.

An important issue for actuator design and control is
the poppet valve and armature contact velocities.
Valve seating velocities must be low enough so that
valvetrain durability and noise level targets are met.
Figure 11 shows the predicted contact velocities for the
pulse timing sweep experiment shown in Figure 8.
Here the applied voltage is Vapp = 150 V, the pulse
width is tpw = 3 ms, and the pulse timing delay td is
varied. As the pulse timing delay td is varied from 0.5

Modelica Applications for Camless Engine Valv... Puchalsky C., Megli T., Tiller M., Trask N. and Wang Y., Curtis E.

Modelica 2002, March 18−19, 2002 86 The Modelica Association

ms to 1.7 ms, the contact velocity decreases from about
2.7 m/s to a minimum of about 0.2 m/s. The minimum
occurs when the injected energy from the magnetic
force is about equal to the frictional losses from
damping. For td > 1.7 ms the contact velocity begins to
increase (due to reinforcement of the coil current as the
armature motion reverses near the landing point) until
td = 2.0 ms. Beyond this point, the magnetic force is
not sufficient to catch the armature. Experimentally
measured contact velocities are also shown in Figure
11. The predicted and measured trends agree
reasonably well.

Conclusion

The Modelica language proved to be useful for creating
a model for transient fuel dynamics in port fuel
injected engines. The model was easily integrated into
a cycle simulation model, and was suitable for
modeling the transient fuel dynamics in a camless
engine, as the predicted trends agreed reasonably with
measured data. Modelica was also useful for
developing camless engine valve actuator models. An
actuator model was developed by using an e-core
solenoid sub-model and a mixture of elements from the
standard translational and electrical libraries. The
model predictions for valve motion agreed reasonably
well with experimental data.

References

1. Curtis, E., Russ, S., Aquino, C., Lavoie, G.,
Trigui, N., "The Effects of Injector Targeting
and Fuel Volatility on Fuel Dynamics in a PFI
Engine During Warm-Up: Part II – Modeling
Results", SAE 982519

2. Newman, C., Batteh, J., Tiller, M., "Spark
Ignited-Engine Cycle Simulation in
Modelica", 2002 Modelica Conference
Proceedings

3. Spalding, D.B., Combustion and Mass
Transfer, Pergamon Press, 1979.

4. Curtis, E., Aquino, C., Plensdorf, W., Trumpy,
D., Davis, G., Lavoie, G., "Modeling Intake
Valve Warmup", ICE-Vol. 29-1, Proceedings
of the 19th Annual Fall Technical Conference
of the ASME Internal Combustion Engine
Division, 1997.

5. Wang Y., Stefanopoulou A. G., Haghgooie
M., Kolmanovsky I., Hammoud M.,
"Modeling of an Electromechanical Valve
Actuator for a Camless Engine", AVEC 2000,
5th International Symposium on Advanced

Vehicle Control, No. 93, Ann Arbor, USA,
2000.

6. Wang Y., "Camless Engine Valvetrain:
Enabling Technology and Control
Techniques" Ph.D. Dissertation, University of
California, Santa Barbara, 2001

The Modelica Association 87 Modelica 2002, March 18−19, 2002

Session 3b

Electrical Systems

Modelica 2002, March 18−19, 2002 88 The Modelica Association

Hongesombut K., Mitani Y., Tsuji K. An Incorporated Use of Genetic Algorithm and a Modelica Library ...

The Modelica Association 89 Modelica 2002, March 18−19, 2002

An Incorporated Use of Genetic Algorithm and a Modelica
Library for Simultaneous Tuning of Power System Stabilizers

Komsan Hongesombut, Yasunori Mitani, and Kiichiro Tsuji

Osaka University, Graduate school of engineering
2-1 Yamada-oka, Suita, Osaka 565-0871, JAPAN

Abstract

ObtectStab package that has been successfully ap-
plied to power system studies is a general-purpose
simulation tool developed by the Modelica language.
It takes advantages from the capability of physical
modeling of Modelica language that make ones read-
ily develop new models and use them for complex
and large cases of power system studies based on
object-oriented programming. However, in the situa-
tion that control of complex power systems is not easy
to be realized by traditional methods, genetic algo-
rithm (GA) becomes an alternative powerful method
that can be used to solve several difficult problems
without any prior or little knowledge of the systems
being solved. Proposed in this paper is an incorporat-
ing the use of GA to an ObjectStab library to enhance
the use of this library into optimization environment.
The idea has been applied to one challenging problem
of simultaneous tuning power system stabilizers in a
multimachine power system. The simulation results
show that the resulting controller obtained by a GA
can achieve good performance.

Index Terms – ObjectStab, genetic algorithms, Simu-
link interface, simultaneous tuning, power system
stabilization.

1. Introduction

 Until recently, there has been widespread interest
using genetic algorithms (GA’s) to search and opti-
mize in several difficult problems. Compared to tradi-
tional search and optimization procedures, such as
calculus-based approach, GA’s are robust, conceptu-
ally simple to apply in problems where little or no
prior knowledge is available for the problem being
solved. Problems on modern power systems are more
and more difficult to be solved by using only conven-
tional techniques due to large complex networks and
nonlinear characteristic of power systems. The need
of using other alternative tools such as genetic algo-
rithms to solve such difficult problems become evi-

dent in case many conventional techniques get into
difficulties. Incorporating the use of GA and power
system simulation tools, among them such as
PSCAD/EMTDC, EMTP, EuroStag, etc, ObjectStab
[1] in Dymola [2] which is a library developed by
Modelica language [3] for power system studies is
more flexible than those in the view point of its easi-
ness to realize the phisical models and its powerful
interface with MATLAB and Simulink that can allow
ObjectStab be used with optimization methods such
as GA. This paper describes a method of how a GA
can be applied to a Modelica library named Object-
Stab. An example of simultaneous tuning of power
system stabilizers in a multimachine power system is
used to validate the effectiveness of the incorporated
use of these two features. It opens up a new idea of
the use GA and Modelica library together allowing
designers to design more sophisticated controllers.
The idea does not limit only the applications to power
systems, but also other Modelica users can adapt this
idea to their own works. The simulation tools used in
this paper are the Dymola, ObjectStab library,
MATLAB [4] and Simulink [5] and Genetic and Evo-
lutionary Algorithm Toolbox (GEATbx) [6].

2.Genetic Algorithms

 A Genetic algorithm (GA) is a biologically inspired
search algorithm pioneered by Holland [7]. The ap-
proach is based on Darwin’s survival of the fitness
hypothesis. In GA’s, candidate solutions to a problem
are analogous to individuals in a population. A popu-
lation of individuals is maintained within search space
for a GA, each representing a possible solution to a
given problem. The initial population can be a random
collection of bizarre individuals. The individuals will
interact and breed to form future generations (off-
spring). The stronger individuals will reproduce more
often than weaker individuals. Presumably, the popu-
lation will get collectively stronger as generations
pass and weaker individuals die out. Unlike other
optimization methods, GA’s do not limit by con-
straints on the form of fitness function. The fitness

An Incorporated Use of Genetic Algorithm and a Modelica Library ... Hongesombut K., Mitani Y., Tsuji K.

Modelica 2002, March 18−19, 2002 90 The Modelica Association

function does not need to be differentiable or con-
tinuous. This flexibility in which GA’s use a fitness
function to search for the solution makes GA’s be-
come a power tool for optimization in many difficult
problems in many fields.
 GA’s work with coding of the parameters them-
selves (called string) and then use the genetic opera-
tors to evolve the solution with minimum computa-
tion. An optimal solution can be found and repre-
sented by the final winner in the competitive envi-
ronment. GA’s consist of simple three operators; se-
lection, crossover and mutation. Selection is the op-
eration in which the fittest individual of the popula-
tion in the current generation forms part of the popu-
lation to the new generation. Crossover is responsible
for providing new offspring by selecting two indi-
viduals and exchanging some parts of their structures.
Mutation is an operator which is applied for altering
the value of a random position in a string. A simple
algorithm flowchart is shown in Fig.1.

3.Combination of Modelica library and
Genetic Algorithms

 In this section, we will generally describe how a
Modelica library combines with a GA. One of the
most powerful features of MEX files, including C
format S-functions is it allows ones to incorporate
existing code into a Simulink model. The key idea of
combination a Modelica library and GA is using this
feature by converting a Modelica model to a compiled
MEX-file used in Simulink as an S-function block.
Then a GA that exists in MATLAB environment will
adjust some parameters of a Modelica model accord-
ing to the fitness values. Briefly, incorporating a
Modelica library and GA can be achieved by these
following steps:
1. Build a Modelica model. The model is build up in
Dymola environment.
2. Build a Simulink model named model 1 by using a
DymolaBlock which is a new interface to Simulink
that can be found in Simulink’s library browser. This
block is shielded around an S-function MEX block
that interfaces to the C code generated by Dymola for
the Modelica model. Model 1 is constructed for serv-
ing as an interfacing block for editing and compiling
for two environments by switching the current active
window between Dymola and Simulink environment.
3. Compile to Simulink dll file. It is possible to con-
verted a Modelica model to a compiled MEX-file

SimStr.dll to be used as one block in Simulink envi-
ronment. By doing this, command dymcomp is used.
4. Build a Simulink model named model 2. This
model is served as a main system for connecting with
a GA. It contains an S-function block representing a
model as in Dymola and Simulink model for calculat-
ing fitness values used in a GA. Parameters and initial
conditions are be defined or changed by passing these
variables as inputs to S-function block.
5. Build a main m-file and a function used in a GA.
 Details of above procedures are summarized and
given in Fig.2. After this short summary of how a
Modelica model combines with a GA, we will con-
tinue by real building a model for simultaneous tuning
PSSs in a multimachine power system. We will show
the flexibility of using GA by using two objective
functions with the same Modelica model.

4. Problem Formulation

 The objective of this problem is to tune an appro-
priate set of PSSs to damp local and inter-area modes.
This problem is not easy by using traditional analyti-
cal methods to simultaneously tune all PSSs. The
fixed structure of ith PSS as shown in equation 1 is
used for all 4 generators. It consists of a two-stage
lead lag compensation with time constants T1i - T4i ,
and a gain Ki. We set the wash out time constant Twi

with large enough value so that it can be considered
as a constant.

1 3

2 4

1 1
()

1 1 1
wi i i

i i
wi i i

sT sT sT
PSS s K

sT sT sT

 + +=  + + + 
(1)

Selection

Population of
individuals

Fitness
evaluation

Crossover
and

Mutation

Initial
population

parents

decode
New

generation

Objective
function

Mates

gene

1101 0011 1101 1111

chromosome

Fig.1 Simple algorithm flowchart of GA

Hongesombut K., Mitani Y., Tsuji K. An Incorporated Use of Genetic Algorithm and a Modelica Library ...

The Modelica Association 91 Modelica 2002, March 18−19, 2002

where

1 3
i

i i
i

T T
γ

δ
= = and 2 4

1
i i

i i

T T
δ γ

= = (2)

We present two methods to satisfy the objective of
tuning PSS as follows,

4.1 Method 1: time domain-based performance
index

 Typically, the performance of the design controller
is measured directly from the output responses vary-
ing with time. This is a straightforward approach that
can guarantee the performance of controllers under
scenarios which are predefined by the designer. Equa-
tion 3 shows the objective function used in a GA
meaning that we are trying to minimize the deviation
of generator speed for local and inter-area modes by
applying the suitable set of PSS control parameters.

Simulink

Dymola

MATLAB

GA Cycle
(GEATbx)

Dymcomp,
loaddsin

Edit

Parameters (p) and
initial conditions (xo)

Fitness value

Create dll fileCompile

model 1 model 2
model 3

(subsystem)

End

Start

1

2

3

4

5

Fig. 2 Summary of how to combine a Modelica library with a GA

An Incorporated Use of Genetic Algorithm and a Modelica Library ... Hongesombut K., Mitani Y., Tsuji K.

Modelica 2002, March 18−19, 2002 92 The Modelica Association

()10
2 2 2

12 13 1
0

min ... n
t

F t dtω ω ω
=

= ∆ + ∆ + ∆ ⋅∫ (3)

where n is the number of generators by assuming that
generator 1 is a reference.

4.2 Method 2: eigenvalue-based performance
index

 For every operating conditions under consideration,
here, it is supposed that a linearized model of power
system is obtained first. The problem of selecting the
parameters for power system stabilizers that can as-
sure minimum damping performance over the consid-
ered set of operating point is converted to a simple
optimization problem and then is solved by a GA with
an eigenvalue-based performance index. The GA ob-
jective function is derived in this following way:
 A linear model of power system is extracted around
a certain operating condition. The system can be ex-
pressed in the linear state-space form as shown in the
following equations

x Ax Bu= +� (4)

y Cx Du= + (5)

 The equation expressed for the controllers is shown
in (6) where in this study, the controller K(s) is a lead-
lag type that is the same as described by the transfer
function in (1). y(s) is the measuring signal and V(s) is
the output signal from the controller which provides
additional damping by shifting under damped or un-
stable oscillation modes to the left hand side of the s-
plane.

() () ()V s K s y s= (6)

 Combining equation 4 through 6, a closed-loop
eigenvalues of the system can be obtained. Here, let

i i ijλ α β= ± be the ith mode of the closed-loop sys-

tem. Damping coefficient iδ of the ith mode is calcu-

lated by

2 2

i
i

i i

αδ
α β

= −
+

 (7)

 If p is a number of operating conditions where each
condition contains the matrix of damping coefficient

iδ , i = 1, …, n where n is the number of oscillation

modes of the closed-loop system. The optimization

problem to be solved by a GA can be written in the
following form:

max min(min())i pF δ= (8)

 For simplicity, we will choose only one operating
condition for considering in this paper.

5. Test Power System and Scenarios

 Fig.3 shows a single line diagram of a test power
system constructed by using a graphical editor of
Dymola and ObjectStab. The data of this power sys-
tem network is given in [8]. The disturbance consid-
ered in this study is a three-phase to ground fault near
Bus 7 by the following situations:
 t = 1 s : fault is applied,
 t = 1.1 s : fault is cleared by tripping one of two
parallel lines.
 t = 2.5 s : line is reclosed.

Fig.3 Power system model

6. Demonstration Example

 In this section, we will describe the implementation
of a GA to a Modelica library called ObjectStab by
using 2 different objective functions as described in
section 4. Considering the procedure chart in Fig.2,
we need to follow 5 steps. It should be noted that only
step 5 is different when changing the objective func-
tion of a GA. This is due to the manner in which a GA
uses the fitness function to evaluate the goodness of
solutions that provides greater flexibility of using GA
to realize many difficult problems.

Hongesombut K., Mitani Y., Tsuji K. An Incorporated Use of Genetic Algorithm and a Modelica Library ...

The Modelica Association 93 Modelica 2002, March 18−19, 2002

 In order to follow the procedure in Fig.2, first task
is to build a power system model in Dymola. By using
the objective function in method 1, we need 3 output
variables which are the speed difference of generator
1 and 2, the speed difference of generator 1 and 3, and
the speed difference of generator 1 and 4. It should be
noted that this is because generator 1 is taken as a
reference, hence, the speed difference of generators
within the same area is represented as the local mode
and the speed difference of generator with different
area is represented as the inter-area mode.
 Next, we build 3 models in Simulink. Model 1 as
shown in Fig.4 can be constructed by drag and drop a
DymolaBlock which can be found in Simulink’s li-
brary browser to a Simulink model. Model name and
its path of the Modelica model must be specified in
the DymolaBlock in order to point the location of a
created Modelica model. It is possible that users can
modify a Modelica model directly by using the editing
command in the DymolaBlock or compiling a Mode-
lica model by using compiling command. In order to
make a Modelica model useful in Simulink and a GA,
we will declare external outputs of a Modelica model.
These outputs are used for evaluating the fitness value
in a GA. The following script is an example of exter-
nal output declaration in a Modelica model.

class TestPSSga
 extends ObjectStab.Examples.Kundur126.linefault;
 Real w1, w2, w3, w4;
 output Real w12;
 output Real w13;
 output Real w14;
equation
 w1 = G1.w;
 w2 = G2.w;
 w3 = G3.w;
 w4 = G4.w;
 w12 = w1 - w2;
 w13 = w1 - w3;
 w14 = w1 - w4;
end TestPSSga

 After compiling the model, the declared outputs
will appear in the DymolaBlock. These outputs can be
connected with other Simulink blocks. Now, we can
covert a Modelica model to a compiled MEX S-
function file by using the following MATLAB com-
mands

dymcomp;
[p, x0, pnames, x0names, inputnames, outputnames] = loaddsin;

 The first command line is used to generate a com-
piled MEX S-function file (dll file). The second
command line is used to load values such as parame-
ters, initial conditions and their names from dsin.txt

which are necessary for input parameters to S-
function block. GA will change parameters p every
iterations according to the decoded chromosome.

Fig.4 Model 1 in Simulink

Fig.5 Model 2 in Simulink

Fig.6 Model 3 in Simulink

An Incorporated Use of Genetic Algorithm and a Modelica Library ... Hongesombut K., Mitani Y., Tsuji K.

Modelica 2002, March 18−19, 2002 94 The Modelica Association

 After we get a compiled MEX S-function file
which has a default name SimStr.dll, as stated earlier,
we need to calculate ∫∆ω2t⋅dt for each generator

speed deviation. Model 2 shown in Fig.5 is served for
this function where model 3 shown in Fig.6 is a sub-
system for calculation ∫∆ω2t⋅dt of each speed sig-

(a) Objective function by method 1 (b) Objective function by method 2

Fig.7 Comparison of two objective function used by a GA

Hongesombut K., Mitani Y., Tsuji K. An Incorporated Use of Genetic Algorithm and a Modelica Library ...

The Modelica Association 95 Modelica 2002, March 18−19, 2002

nal. The summation of 3 speed signals become the
objective function of a GA by using the method 1.
Particularly useful in conjunction with a GA is the
way to write the objective function. It is worthwhile
to discuss the construction of the objective function.
In Fig.7, it shows the comparison of two objective
functions used in this study. The meaning behind each
style is

Method 1:
1. Decode the chromosome of a GA.
2. Find the index of parameters which correspond to
the tuning parameters in a Modelica model. The syn-
tax of this command is

pindex = tnindex(pnames, ‘parameter name’)

where pnames is obtained from loaddsin command

3. Replace current parameters with new parameters
obtained by a GA.
4. Run the Simulink model with sim command. Simu-
link will run the model 2 and save the index calcula-
tion of each signal when the simulation is complete.
5. Calculate the fitness value by summing 3 signals
which each signal is calculated by subsystem model 3.

Method 2:
1. Decode the chromosome of a GA.
2. Find the index of parameters which correspond to
the tuning parameters in a Modelica model.
3. Replace current parameters with new parameters
obtained by a GA.
4. Run the Simulink with sim command in order to
find good initial condition x0.
5. When the initial values are obtained, we can then
proceed to use the MATLAB linmod function to de-
termine the [A, B, C, D] matrices of the small-signal
model of the nonlinear system about the chosen
steady-state operating point. The syntax of the lineari-
zation command is as follows:

[A, B, C, D] = linmod(‘model name’, x0)

It should be noted that when calculating the eigenval-
ues, it is not necessary to have an input, but there
should be at least one output of a Modelica model.
6. Calculate the fitness value by (8).

7. Simulation Results

 A GA is applied to solve the problem of simultane-
ous tuning by using 2 different objective functions. In
this study, routines from GEATbx were used with

bounds for PSS parameters shown in Table 1. The
implementation of a GA in this work used real encod-
ing chromosome, a population size 30, maximum
generation 50, a uniform crossover rate of 0.9 and a
uniform mutation rate of 0.01. The approach also
adopted an elitist strategy that copied the best string
found in the current generation to the next generation.
Selection was performed by using the tournament
selection with tournament size of 2. After executing a
GA, the final result as shown in Table 2 were ob-
tained. Fig.8 and 9 show the screen outputs of a GA
by using the objective function by method 1 and
method 2 respectively.

Table 1 Bounds for PSS parameters

PSS parameter value
Kmin 0
Kmax 20
γmin 0.1
γmax 10
δmin 1
δmax 10

Table 2 Final result obtained by a GA

Method 1 K T1 = T3 T2 = T4

PSS1 20.000 0.331 0.139
PSS2 20.000 0.107 0.291
PSS3 17.791 0.127 0.153
PSS4 18.319 0.201 0.055

Method 2 K T1 = T3 T2 = T4

PSS1 19.175 1.583 0.632
PSS2 20.000 0.161 0.184
PSS3 14.209 0.198 0.239
PSS4 7.513 0.051 0.218

 To demonstrate the effectiveness of the resulting
controller obtained by using 2 objective functions,
nonlinear simulation and plot of close-loop ei-
genvlaues were performed. In nonlinear simulations
of Fig.10 to 12, the responses of generator speed de-
viation for local and inter-area modes confirm the
effectiveness of the results obtained by a GA. It
should be noted that the method 1 gives better result
than the method 2 when using time domain-based
performance index. The system is well damped and is
stabilized in less than 5 seconds.
 Fig. 13 to 14 show the plot of dominant eigenval-
ues of the closed-loop system. It can be observed that
using PSS parameters obtained by both methods, the
system is sufficiently damped with all modes of the

An Incorporated Use of Genetic Algorithm and a Modelica Library ... Hongesombut K., Mitani Y., Tsuji K.

Modelica 2002, March 18−19, 2002 96 The Modelica Association

system having the minimum damping greater 5%
which is a typical requirement in PSS tuning. It is also
found that the method 2 gives better result than the
method 1 in case of using eigenvalue-based perform-
ance index.

 It is become clear that using different GA objective
function, the final result may be quite different. In
addition, GA is a time consuming search procedure.
Thus, GA is not generally used for problems easily
optimized.

Fig.8 Screen output from a GA by using the objective function in method 1

Fig.9 Screen output from a GA by using the objective function in method 2

Hongesombut K., Mitani Y., Tsuji K. An Incorporated Use of Genetic Algorithm and a Modelica Library ...

The Modelica Association 97 Modelica 2002, March 18−19, 2002

0 1 2 3 4 5 6 7 8 9 10
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

time (s)

sp
ee

d
de

vi
at

io
n

be
tw

ee
n

ge
ne

ra
to

r
1

an
d

2
(p

u)

without PSS
method 1
method 2

Fig.10 Speed deviation of generator 1 and 2

0 1 2 3 4 5 6 7 8 9 10
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

time (s)

sp
ee

d
de

vi
at

io
n

be
tw

ee
n

ge
ne

ra
to

r
1

an
d

3
(p

u)

without PSS
method 1
method 2

Fig.11 Speed deviation of generator 1 and 3

0 1 2 3 4 5 6 7 8 9 10
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

time (s)

sp
ee

d
de

vi
at

io
n

be
tw

ee
n

ge
ne

ra
to

r
1

an
d

4
(p

u)

without PSS
method 1
method 2

Fig.12 Speed deviation of generator 1 and 4

-15 -10 -5 0
0

2

4

6

8

10

12

14

16

real

im
ag

in
ar

y

10% 5% 15% 20% 25% 30%

δ
min

 = 8.956%

Fig.13 Closed-loop eigenvalues obtained by
method 1

-15 -10 -5 0
0

2

4

6

8

10

12

14

16

real

im
ag

in
ar

y

5% 10% 15%20% 25% 30%

δ
min

 = 33.058%

Fig.14 Closed-loop eigenvalues obtained by
method 2

8. Conclusions

 This paper deals with the incorporated use of a
Modelica library called ObjectStab and a GA and
application of a GA for simultaneous tuning of power
system stabilizers in a multimahcine power system.
The power system modeling can be realized by using
ObjectStab where the behavior of dynamic systems
can be expressed by using advance features of Mode-
lica language for detailed physical modeling. We also
showed how to link a GA and a Modelica model by
using the Simulink interface of the Dymola. We
showed the flexibility of optimization by a GA with
two different objective functions without modifying
the original Modelica model. Given a suitable objec-
tive function, the final solution will satisfy the re-
quired controller performance. It is important to point
that the idea does not limit only the applications to
power systems as shown in an example of this paper,
but also other Modelica users can adapt this idea to
their own works.

9. Acknowledgement

We gratefully acknowledge helpful discussions
with Dr. Mats Larsson from ABB Corporate Research
Ltd., Switzerland.

10. References

[1] M. Larsson, “ObjectStab - a Modelica library for
power system stability studies”, Proc. of the 2000
Modelica Workshop.

[2] Dymola, Dynamic Modeling Laboratory, Dyna-
sim 2001.

[3] M. M. Tiller, Introduction to Physical Modeling
with Modelica, Kluwer Academic Publishers,
Massachusetts 2001.

An Incorporated Use of Genetic Algorithm and a Modelica Library ... Hongesombut K., Mitani Y., Tsuji K.

Modelica 2002, March 18−19, 2002 98 The Modelica Association

[4] D. Hanselman and B. Littlefield, Mastering Mat-
lab 6, Prentice Hall, New Jersey 2001.

[5] J. B. Dabney and T. L. Harman, Mastering Simu-
link 4, Prentice Hall, New Jersey 2001.

[6] H. Pohlheim, Genetic and Evolutionary Algo-
rithm Toolbox for use with MATLAB, Publication
on internet web at http://www.geatbx.com.

[7] D. E. Goldberg, Genetic Algorithms in Search,
Optimization and Machine Learning, Addison
Wesley, New York, 1989.

[8] P. Kundur, Power system stability and control
McGrawHill, New York 1993.

Komsan Hongesombut received his B.Eng.(first
class honors) and M.Eng. degrees from the Depart-
ment of Electrical Engineering, King Mongkut’s Insti-
tute of Technology Ladkrabang, Thailand in 1997 and
1999 respectively. He is currently a Ph.D student at
Osaka University, Japan. His research interests in-
clude the applications of intelligent techniques to
power systems. He is a student member of the Insti-
tute of Electrical Engineers of Japan, IEE, and IEEE.

Yasunori Mitani received his B.Sc., M.Sc., and Dr.
of Engineering degrees in electrical engineering from
Osaka University, Japan in 1981, 1983, and 1986
respectively. He joined the Department of Electrical
Engineering of the same university in 1990. He is
currently Associate Professor. His research interests
are in the areas of analysis and control of power sys-
tems. He is a member of the Institute of Electrical
Engineers of Japan, the Institute of Systems, Control
and Information Engineers of Japan, and the IEEE.

Kiichiro Tsuji received his B.Sc and M.Sc. degrees
in electrical engineering from Osaka University, Ja-
pan, in 1966 and 1968, respectively, and his Ph.D in
systems engineering from Case Western Reserve Uni-
versity, Cleveland, Ohio in 1973. In 1973 he jointed
the Department of Electrical Engineering, Osaka Uni-
versity, and is currently Professor. His research inter-
ests are in the areas of analysis, planning, and evalua-
tion of energy systems, including electrical power
systems. He is a member of the Institute of Electrical
Engineers of Japan, the Japan Society of Energy and
Resources, the Society of Instrument and Control
Engineers, the Institute of Systems, Control and In-
formation Engineers, and the IEEE.

Urquía A., Dormido S. DC, AC Small−Signal and Transient Analysis of Level 1 N−Channel MOSFET ...

The Modelica Association 99 Modelica 2002, March 18−19, 2002

DC, AC Small-Signal and Transient Analysis of Level1
N-Channel MOSFET with Modelica

A. Urquia and S. Dormido
Dep. Informática y Automática, Facultad de Ciencias, U.N.E.D.

Avda. Senda del Rey 9, 28040 Madrid, Spain.
E-mail: aurquia@dia.uned.es, sdormido@dia.uned.es

ABSTRACT

The “translation” of the SPICE capabilities into Modelica language would allow
combining the best of each tool: the SPICE expertise at circuit analysis and the
Modelica/Dymola expertise at object-oriented modelling and simulation of hybrid
systems. This contribution intends to be a first step to achieve this goal. A reduced group
of SPICE device models are translated into Modelica language for OP, AC and TRAN
analyses. It includes passive components (resistor and capacitor), independent voltage and
current sources, and the SPICE2 level1 n-channel MOSFET.

1. INTRODUCTION

The simulator SPICE is an essential computer-aid for
circuit design. Originally, SPICE2 was conceived as
a stand-alone, general purpose, analog circuit
simulator. However, since the development of
SPICE2 at the University of California in 1975,
many commercial and freeware SPICE-compatible
simulators have been developed for a variety of
systems (UNIX, PC, etc). Most of these tools
• run in connection with other simulation

programs used in the circuit design flow,
• support analog, digital and mixed analog/digital

simulation, and
• include improved device models, additional

analyses and device model libraries.

They provide some support to the multi-domain
system simulation facilitating the analog behavioral
modelling (ABM). Behavioral parts allow defining a
circuit segment as a mathematical expression or a
lookup table. PSpice (OrCAD, 1999) is a
commercial, PC-version, SPICE-compatible
simulator. PSpice ABM library includes math
functions, limiters, Chebyshev filters, integrators,
differentiators, etc. However, the SPICE-based
simulators impose a hard restriction to ABM: the
function continuity (OrCAD, 1999; Kielkowski,
1998).

Device equations built into SPICE are continuous.
For instance, voltage- or current-controlled switches
are not ideal: they have a finite (very small) “on”
resistance and (very large) “off” resistance. The
switch resistance changes smoothly between the two

as its control voltage or current changes. Equally, the
functions available for ABM are also continuous (for
instance, the int function can not be implemented).
The reason behind this requirement is the heavy use
that SPICE numerical algorithms make of continuity
(OrCAD, 1999; Kielkowski, 1998). In consequence,
SPICE-based simulators are not suited for the
simulation of hybrid models (i.e., combined
continuous/discrete models) due to its inability to
handle discrete events.

On the contrary, general-purpose modelling
languages are intended for the simulation of multi-
domain hybrid models. To this respect, the object-
oriented modelling language Modelica (Modelica,
2000) is intended to serve as a standard format so
that models arising in different domains can be
exchanged between tools and users (Aström,
Elmqvist and Mattsson, 1998). The “translation” of
the SPICE capabilities (device models and analysis
modes) into Modelica language is one of the
Modelica library improvements that have been
suggested (Clauss et al., 2000). It would allow
combining the best of each tool: the SPICE expertise
at circuit analysis and the Modelica/Dymola
(Elmqvist et al., 2000) expertise at object-oriented
modelling and simulation of hybrid systems. This
contribution intends to be a first step to achieve this
goal.

An important feature of SPICE device models is their
variable-structure nature. A model is said to have a
variable structure when its mathematical description
changes during the simulation run. A different device
model is formulated for each analysis mode:

DC, AC Small−Signal and Transient Analysis of Level 1 N−Channel MOSFET ... Urquía A., Dormido S.

Modelica 2002, March 18−19, 2002 100 The Modelica Association

• static model (DC analysis),
• AC small-signal model (AC analysis), and
• large-signal model (transient analysis).
The transitions among these three device
formulations are carried out in simulation time. A
DC analysis (Massobrio and Antognetti, 1993)
• can be performed prior to a transient analysis to

determine the transient initial conditions, and
• it is automatically performed prior to an AC

small-signal analysis to determine the linearized,
small-signal models for the non-linear devices.

In addition, some DC analysis algorithms require the
combined use of the three device formulations.

In this contribution three analysis modes are
considered:
• bias point (OP),
• AC sweep (AC), and
• transient analysis (TRAN),
for three analog device types:
• Passive devices: linear resistor and capacitor.
• Independent voltage and current sources.
• Semiconductor device: SPICE2 level1 n-channel

MOSFET. It is composed of linear resistors,
voltage-dependent capacitors and voltage-
controlled current sources.

In addition, IC1 and IC2 pseudo-components are
modelled for setting initial conditions.

Model structuring into libraries and the interaction
between models are discussed in Section 2. The way
of using the model libraries to analyse the user-
defined circuits is also outlined. Initial condition
setting is described Section 3. Two procedures are
supported: IC symbols and the capacitor IC property.
The translation into Modelica language of the
passive device and source models is addressed in
Section 4. Device models have a variable structure
and signals are defined to control the model structure
transitions. Each analysis mode consists on an
ordered sequence of elementary operations implying
changes in the device model structure. Analysis
models set the control signals in order to accomplish
the required device-model structure changes.
Analysis models are discussed in Section 5. Bias
point calculation is the most problematic step from
the numerical point of view. Four alternative bias
point calculation algorithms are implemented.
Finally, level1 NMOS model is outlined in Section 6.

For the sake of simplicity, neither parameter
dependence with temperature nor TEMP analysis
have been considered in the present library release.
Temperature is considered a constant variable
intervening in some device constitutive relations (for
instance, the MOSFET source-substrate pn-junction
model).

2. ARCHITECTURE

A two-level architecture is proposed (see Fig. 1):
• Upper (controller) level is composed of the

analysis models.
• Lower (controlled) level is composed of the

device models.

• Unidirectional control signals (arrow in Fig. 1)
and global variables transmit the information
from analysis models to device models. In
addition, global parameters sets properties
common to both analysis and device models.

Controller level: analysis models

ANALYSES package contains the OP, TRAN and
AC models. Bias point calculation is a part of OP and
AC analyses and it is an option of TRAN analysis.
Therefore, the bias point calculation algorithms are
programmed in a separate partial model, called
BiasPointCalculation, inherited by the analysis
models (see Fig. 1). Control signals (see Table 1) and
global variables (see Table 2) are evaluated in the
analysis models.

Control signal T W R
Ctrl_AC B * S
Ctrl_CBREAK_resetTran B BPC C
Ctrl_CBREAK_Tran2DC B * C
Ctrl_CBREAK_Tran2IC B * C
Ctrl_DC B BPC S
Ctrl_IC_clampDC B BPC C, IC
Ctrl_IC_clampTran B BPC C, IC
Ctrl_IC_mode I BPC C, IC
Ctrl_IS_inhibit B BPC S
Ctrl_IS_TranOP B BPC S
Ctrl_log_AC B * S, R
Ctrl_log_DC B BPC S, R
Ctrl_OP_mode I BPC S
Ctrl_OP_value I * S
Ctrl_RBREAK_Tran2DC B BPC R
Ctrl_Tran B * S

Table 1. Control signals.
T: Variable type. (B): Boolean. (I): Integer (0,1)
W: Control signal written during the…

(BPC): bias point calculation. (*): other steps of the analyses.
R: Control signal read by …

(S): source. (C): capacitor. (R): resistor. (IC):IC symbols

scaleGMIN Scale factor of the “GMIN stepping”
algorithm for bias point calculation.

Freq AC small-signal frequency.

Temp Analysis temperature.

Table 2. Global variables.

Controlled level: device models

Device models are grouped in three packages:
• BREAKOUT,
• SOURCE, and
• SPECIAL.
The models of BREAKOUT and SOURCE packages
allow the composition of user-defined circuits, while
the SPECIAL’s provide one way to specify the
simulation initial conditions. In addition, a fourth
package containing the device model interfaces has
been defined: INTERFACE.

Urquía A., Dormido S. DC, AC Small−Signal and Transient Analysis of Level 1 N−Channel MOSFET ...

The Modelica Association 101 Modelica 2002, March 18−19, 2002

Figure 1. Two-level architecture.

Initialisation file

The initialisation file, init.mo, contains:
• Type definitions. Types conform to the Modelica

SIunits package. However, they are redefined for
the sake of conciseness when used. For instance:

type Voltage =
Modelica.SIunits.Voltage;

• INIT package. The control signals, the global
variables and the global parameters are defined
in the INIT package. It contains two partial
models (see Fig. 1):
• Analysis, inherited by the analysis models.
• Part, inherited by the device models.
The same set of control signals, variables and
parameters is defined in both partial models:
Analysis model variables are inner ones, while
Part variables are outer ones.

Global parameters

Two global parameters have been defined (see Table
3). TIME_SCALE is used for setting the length of the
source-ramping processes of some bias point
calculation algorithms. In addition, it is used for
establishing the time elapsed between consecutive
control signal transitions (conceptually similar to the
system clock period). To this end, the integer
parameter TIME_SLOT is defined in the analysis
models. It represents a percentage (1 to 100). The

time between consecutive events, CLOCK, is defined
as follows:

CLOCK = TIME_SLOT * TIME_SCALE / 100

TIME_SCALE It is intended for providing an (rough)
approximate value of the circuit time-
constant.

LOG_RESULTS It determines the amount of
information to be logged during the
bias point calculation and the AC
small-signal analysis.

Table 3. Global parameters

TIME_SCALE parameter plays another important role
(not implemented in the current release of the
libraries): redefine the units of the time variable in
order to allow the adequate numerical solution of the
system. Circuit simulation for microelectronics
applications requires very small time values in
comparison with the by-default time-related DAE-
solver parameters. For this reason, it is best to
include a scale factor between the circuit time and
the DAE-solver time (i.e., the time variable).

Similar considerations will be made when discussing
the pn-junction model. The use of the international
system of units for the current is inadequate, because
it leads to numerical problems. Large differences in
the order of magnitude of the variables (for instance,
the current and the voltage) makes impossible to set

model VSource

partial model BiasPointCalculation
extends INIT.Analysis;
replaceable model Circuit = NULL;
extends Circuit;

model OP
extends BiasPointCalculation;

package ANALYSES (analyses.mo)

partial model Part
outer...

package INIT
type ...

(init.mo)

function …

(functions.mo)

package INTERFACE (interface.mo)

partial model Analysis
inner…

model Tran
extends BiasPointCalculation;

model AC
extends BiasPointCalculation;

model IC1
extends INTERFACE…
extends INIT.Part;

package SPECIAL (special.mo)

model IC2
extends INTERFACE…
extends INIT.Part;

model Ground
extends INTERFACE…

model Rbreak
extends INTERFACE…
extends INIT.Part;

model Cbreak
extends INTERFACE…
extends INIT.Part;

model MOST
extends INTERFACE…
extends INIT.Part;

package BREAKOUT (breakout.mo)

package SOURCE

model ISource

package WAVEFORMS

(source.mo)

…

DC, AC Small−Signal and Transient Analysis of Level 1 N−Channel MOSFET ... Urquía A., Dormido S.

Modelica 2002, March 18−19, 2002 102 The Modelica Association

adequate values for the numerical algorithm
tolerances, the Dymola eveps parameter for event
detection (Elmqvist, Cellier and Otter, 1993), etc.
This fact is taken into account by re-formulating the
model constitutive relations. In order to keep the
compatibility with Modelica standard libraries, the
international system of units is used for all the model
terminal variables.

Performing circuit analyses

Two pieces of information are needed to perform a
circuit analysis: the analysis model and the circuit
model. The analysis models inherit (as a replaceable
model, called Circuit) the circuit model (see
BiasPointCalculation in Fig 1). The analysis model
instantiations have to contain the redeclaration of the
Circuit model. Consider the following example:

(File: my_circuit.mo)
model my_circuit
…
end my_circuit;

model circuitAnalysis_OP =
ANALYSES.OP (redeclare model Circuit =
 my_circuit);

model circuitAnalysis_Tran =
ANALYSES.Tran (redeclare model Circuit =
 my_circuit);

model circuitAnalysis_AC =
ANALYSES.AC (redeclare model Circuit =

 my_circuit);

The analysis to perform (only one per run) is selected
in the script file. For instance, AC analysis:

(File: my_circuit.mos)
openModel("pspice.mo");
openModel("my_circuit.mo");
checkModel(problem="circuitAnalysis_AC");
translateModel(problem=

"circuitAnalysis_AC");

The file pspice.mo:
• imports the library files (see Table 4), and
• defines the graphic windows containing the

model icons.

File Package
analyses.mo ANALYSES
breakout.mo BREAKOUT
functions.mo
init.mo INIT
interface.mo INTERFACE
pspice.mo PSPICE
source.mo WAVEFORMS

SOURCE
special.mo SPECIAL

Table 4. Complete list of files and packages.

3. SETTING INITIAL CONDITIONS

Adopting the PSpice methodology (OrCAD, 1999),
two equivalent procedures are provided to specify
the analysis initial conditions:
• Setpoint pseudo-components: IC1 and IC2 (see

Fig. 1, SPECIAL package). IC1 is a one-pin
symbol that allows setting the initial voltage on a
node. IC2 is a two-pin symbol that allows setting
the initial voltage between two nodes.

• The IC property of capacitors (inductor model is
not included in this library release).

IC property allows associating the initial condition
with a device, while the IC symbols allow the
association to be with a node or a node pair. Note
that these ways of specifying the simulation initial
condition substitute the Dymola standard procedures
to set the initial value of the state variables.

Two operations require the static model solution:
• bias point calculation (during OP and AC), and
• transient initial condition calculation.
When the transient initial condition calculation is
skipped (a Boolean parameter controls this option),
the devices with the IC property defined start with
the specified value. However, all other such devices
have an initial state of zero. IC symbols are ignored.

IC symbols clamp the voltage for the entire bias
point calculation. PSpice attaches a voltage source
with a 0.0002 ohm series resistance (R_EPS) at each
net to which an IC symbol is connected. This is the
set-up of the IC-symbol Modelica model. The model
of the capacitor IC-property depends on whether the
bias point is calculated or the calculation is skipped:
• During the bias point calculation, the capacitor

IC property is implemented using an IC2 symbol
in parallel with the capacitor. The capacitor
model contains this voltage-clamp circuit.

• When the initial transient solution is skipped, the
capacitor voltage is initialised to its IC value
using a “when clause”.

Control signals have been defined to set the state
(open/close) of the IC symbols switches, initialise the
capacitor voltage drop, etc.

4. DEVICE MODELS

Resistor, capacitor and independent source models
are discussed.

4.1. Interface

Device models are composed of three formulations:
static, AC small-signal and large-signal. Each model
formulation is described by its own set of equations
and variables. Pin model is conceived to allow the
simultaneous connection of the three formulation
terminal variables. AC small-signal currents and
voltages (complex numbers) are represented in
rectangular coordinates (i.e., real and imaginary).
The current is positive when flows into the pin.

The interface of the two-pin devices is composed of
two Pin connectors. PSpice sign criterion for current
is adopted: positive current flows from the (+) node
through the device to the (-) node.

(File: interface.mo)
connector Pin
 Voltage vDC "Static model”;
 Voltage vTran "Large-signal model";
 Voltage vAC_Re "AC small-signal";
 Voltage vAC_Im "AC small-signal”;

flow Current iDC "Static model”;
flow Current iTran "Large signal”;
flow Current iAC_Re "AC small-signal";
flow Current iAC_Im "AC small-signal";

…
end Pin;

Urquía A., Dormido S. DC, AC Small−Signal and Transient Analysis of Level 1 N−Channel MOSFET ...

The Modelica Association 103 Modelica 2002, March 18−19, 2002

partial model TwoPin
 Pin p "(+) node";
 Pin n "(-) node";

…

4.2. Linear resistor

Resistor static model is shown in Fig 2. The purpose
of the IC1-like circuits (switches, R_EPS resistors and
voltage sources) is clamping the DC-formulation
voltage at the pins. The bias point calculation
algorithm “dynamic model ramping” requires the
following operation: clamping the DC-formulation
voltage to the instantaneous value of the large-signal
formulation. The ctrl_RBREAK_Tran2DC signal
controls this information transfer between
formulations. When ctrl_RBREAK_Tran2DC becomes
true:
• The source voltages (vDCclampP and vDCclampN)

are set to the instantaneous value of the transient
voltage at the correspondent pin. Then source
voltages are held constant.

• The switches are closed. They remain closed
only while the signal is true.

The large-signal and AC small-signal models do not
include these IC1-like circuits.

When Then
ctrl_RBREAK_Tran2DC vDCclampP = p.vTran;

vDCclampN = n.vTran;

Figure 2. Resistor static model.

4.3. Capacitor

Linear and voltage-dependent capacitors have to be
modelled. The partial model Capacitor describes all
the capacitor behavior except its large-signal and AC
small-signal capacitance. Cbreak model (linear
capacitor) and MOS1 capacitors extend Capacitor.

Capacitor static-formulation is shown in Fig. 3. The
implementation of the IC property requires the IC2-
like circuit (switch, R_EPS resistor and vClampDC
source). Large-signal formulation is shown in Fig. 4.
IC2-like circuit is also included because the
“dynamic model ramping” algorithm uses the large-
signal formulation during the bias point calculation.
The Boolean signals
• ctrl_IC_clampDC, and
• ctrl_IC_clampTran.
controls the static and large-signal model switches
respectively.

The capacitor parameter IC_ENABLED enables or
disables the IC property. It allows distinguishing
between the cases when IC is intentionally set to zero
and those cases when the IC property is not enabled
(and its by-default value is also zero).

The signal ctrl_IC_mode controls vClampDC and
vClampTran voltages. Some bias point calculation
algorithms need the independent sources ramping
from zero up to their nominal initial values. When
implementing these algorithms, the voltage clamping
sources of the IC symbols and the capacitor IC
property need also be ramped from zero to their
respective IC values. Two cases are distinguished:
• ctrl_IC_mode==0, the clamping voltage

(vClampDC or vClampTran) is constant and
equal to the IC value.

• ctrl_IC_mode==1, the clamping voltage is
ramped from zero up to its IC value.

In addition, control signals trigger instantaneous
changes in the capacitor large-signal voltage drop
(see Fig. 4).

Figure 3. Capacitor static model.

When then
ctrl_CBREAK_Tran2IC
and IC_ENABLED

reinit(vTran, IC);

ctrl_CBREAK_Tran2DC reinit(vTran, vDC);

ctrl_CBREAK_resetTran reinit(vTran, 0);

Figure 4. Capacitor large-signal model.

4.4. Independent sources

There are a lot of similarities between the models of
the voltage and the current independent sources:
• the interface,
• the DC and transient analysis signals, etc.
The elements in common are defined in the partial
model Stimulus (SOURCE package) and the source
models (VSource and ISource, see Fig. 1) inherit it.

Source model parameters allow defining the DC and
AC characteristics of the source:
• DC analysis: DC_VALUE.
• AC analysis: AC_MAG and AC_PHASE.
Time-dependent waveforms used in the transient
analyses are defined in the WAVEFORMS package
(see Fig. 1): EXP, PULSE and PWL. PSpice standard
has been adopted for waveform parameter names.
The Stimulus model inherits the waveform model as

ctrl_RBREAK_Tran2DC

p (+) n (-)

R_EPS

vDCclampN

R_EPS

vDCclampP

R

ctrl_IC_clampDC
and IC_ENABLED

ctrl_IC_mode

p (+)

n (-)

vDC

+

-

R_EPS

vClampDC

ctrl_IC_clampTran
and IC_ENABLED

ctrl_IC_mode

p (+)

n (-)

vTran

+

-

R_EPS

vClampTran

C

DC, AC Small−Signal and Transient Analysis of Level 1 N−Channel MOSFET ... Urquía A., Dormido S.

Modelica 2002, March 18−19, 2002 104 The Modelica Association

a replaceable model. Therefore, the waveform model
can be declared when instantiating the source model
(no waveform is selected by default). Some examples
are provided in Table 5.

DC and AC specifications:
SOURCE.VSource V1(
 DC_VALUE=3, AC_MAG=10, AC_PHASE=45);

EXP waveform:
SOURCE.VSource V1(
 DC_VALUE=3, AC_MAG=10, AC_PHASE=45,
 redeclare model
 TransientSpecification =

 WAVEFORMS.EXP(S1=1,S2=2,TD1=1,TC1=1,
 TD2=3,TC2=1));

PULSE waveform:
SOURCE.VSource V1(
 DC_VALUE=3, AC_MAG=10,

redeclare model
 TransientSpecification =
 WAVEFORMS.PULSE(S1=1,S2=2, TD=1,TR=1,
 PW=3,TF=1, PER=8));

PWL waveform:
SOURCE.VSource V1(
 DC_VALUE=3, AC_MAG=10, AC_PHASE=30,

redeclare model
 TransientSpecification =
 WAVEFORMS.PWL(
 signalCorners = { 1, 2, 4, 8, 16 },
 timeCorners = { 0, 1, 2, 3, 4 }));

Table 5. Examples of source instantiations.

DC analysis

The control signal ctrl_DC enables or disables the
DC model:
• While ctrl_DC==false, the DC value of all the

independent sources of the circuit is zero.
• While ctrl_DC==true, the DC value of the

sources is determined by the integer parameters:
• ctrl_OP_mode, and
• ctrl_OP_value.

In order to set the source value when calculating the
initial transient condition, a parameter is associated
to each waveform model: TRANS_INITIAL. This
parameter coincides with the waveform initial value.

The parameter ctrl_OP_value determines the source
value during the static model solution:
• ctrl_OP_value==0: source value is DC_VALUE.
• ctrl_OP_value==1: value is TRANS_INITIAL.

The parameter ctrl_OP_mode determines the mode
of reaching the previous value:
• ctrl_OP_mode==0: the source is hold constant to

the value.
• ctrl_OP_mode==1: the source value is increased

linearly from zero with a slope equal to the value
divided by TIME_SCALE.

The “dynamic model ramping” algorithm requires
the cancellation of the independent sources. The
control signal ctrl_IS_inhibit allows this
operation. While it is true:
• voltage independent sources are substituted by

opens (current=0), and
• current independent sources by shorts

(voltage=0).

Transient analysis

The control signal ctrl_Tran determines:
• whether the transient analysis is enabled, and the

source signal is calculated of its associated
waveform (ctrl_Tran==true),

• or the static bias point calculation is enabled
(ctrl_Tran==false). The algorithm “dynamic
model ramping” requires the circuit large-signal
model simulation in order to calculate a “good”
initial value for static model iteration.

While ctrl_Tran==false, the source value is
determined by the parameter ctrl_IS_TranOP:
• While ctrl_IS_TranOP==false, the value is

zero.
• While ctrl_IS_TranOP==true, the value

depends on the parameters ctrl_OP_mode, and
ctrl_OP_value. The response associated to these
parameters is the same than the previously
discussed for the static formulation.

AC small-signal analysis

While the control signal ctrl_AC is true, the AC
small-signal value of the source is set according to
the source parameters AC_MAG and AC_PHASE.
Otherwise, the value is zero.

Model of the disabled formulations

It is important to notice that while a model
formulation is not enabled, the correspondent values
of the independent sources are zero. In this situation,
the circuit node voltages are trivially calculated and
the simulation computational effort is not
unnecessarily increased. The control signals that
enable each of the three formulations are:
• ctrl_DC,
• ctrl_Tran, and
• ctrl_AC.

Total power dissipation

The bias point calculation includes the evaluation of
the total power dissipation. It is calculated adding the
contribution of all the independent voltage sources:

()∑ −=

sourcesV
indep.all

DCDCDC ivW

The calculation is implemented thanks to the
Modelica capability of describing “physical fields”
(see Table 6). The PowerDisipation connector is
defined. The model of the voltage source contains:
• an instantiation of this connector,
• the declaration of an outer connector of this type,
• the connection between them.
The “environment” (inner) connector is defined in
the BiasPointCalculation model.

4.5. Log of analysis results

The analysis results are logged to the dslog.txt file
using the Dymola’s LogVariable function. Two
parameters control this information log:

Urquía A., Dormido S. DC, AC Small−Signal and Transient Analysis of Level 1 N−Channel MOSFET ...

The Modelica Association 105 Modelica 2002, March 18−19, 2002

• LOG_RESULTS (global parameter). It allows
specifying the required detail level at logging
results (see Table 7).

• HIDDEN_COMPONENT. This device-dependent
parameter classifies the circuit devices into two
types: those whose variables have to be logged
always (HIDDEN_COMPONENT==false), and those
whose variables have to be logged only in
special cases (HIDDEN_COMPONENT==true).

The complex AC small-signal voltages and currents
are logged in Cartesian and polar coordinates. In
addition, the polar magnitude is also expressed in
decibels (defined as 20log10()).

(File: interface.mo)
connector PowerDisipation

flow Power disipatedPower;

…
(File: source.mo)
model VSource

…
outer INTERFACE.PowerDisipation

 TotalPowerDisipation;
 INTERFACE.PowerDisipation powerDisipation;

…
equation
when ctrl_log_DC then

 powerDisipation.disipatedPower =
 vDC*(-iDC);
end when;
connect (powerDisipation,

 TotalPowerDisipation);

…
(File: analyses.mo)
partial model BiasPointCalculation
 inner INTERFACE.PowerDisipation

TotalPowerDisipation;

…
Table 6. Total power dissipation calculation.

HIDDEN_COMPONENT

False true

Voltage at resistor pins 0, 1, 2 2
Current through
independent voltage sources

0, 1, 2 2

Total power dissipation 0, 1, 2 2
Voltage drop at resistors 1, 2 2
Current through resistors 1, 2 2
Power dissipation of each
independent voltage source

1, 2 2

Table 7. LOG_RESULTS values producing the variable
log as a function of HIDDEN_COMPONENT value.

5. ANALYSES

PSpice OP, AC and TRAN analyses are translated
into Modelica language. Note that analysis models
force the simulation end when they have completed
their operations (terminate function is used). Large
simulation times should be selected in the Dymola
program window to avoid interfering with analysis
execution.

5.1. Bias point calculation

PSpice provides three alternative algorithms for
solving the circuit static model (OrCAD, 1999):
• static model iteration,
• static model ramping, and
• GMIN stepping.

PSpice first tries to solve the static model of the
circuit using the Newton-Raphson algorithm. If a
solution is not found and “GMIN stepping” is
enabled (using .OPTION STEPGMIN) then GMIN
algorithm is applied. If it also fails or it is not enabled
then “static model ramping” is applied. In addition to
these three algorithms, a fourth one is programmed in
the BiasPointCalculation model: the “dynamic
model ramping” algorithm, proposed in (Cellier,
1991). The SOLVE_STATIC parameter determines
which of the four algorithms to use.

Two control signals, internal to the analysis models,
are defined to synchronize the bias point calculation
with other analysis operations:
• biasPoint. Its transition from false to true

indicates that the static-model solution must
start.

• biasPointCalculated. When the static-model
solution is just finished, it becomes true.

The BiasPointCalculation model reads the value of
biasPoint signal and writes biasPointCalculated.

Next, the four algorithms are briefly discussed. The
control signal transitions required for algorithm
completion are shown, but for the sake of clarity,
their cause-effect relationships are omitted. Two
additional comments:
• ctrl_OP_value signal is not written by the bias

point calculation algorithms.
• Control signals evaluated at bias point

calculation (see Table 1) and hold to false during
the whole algorithm, are omitted.

Static model iteration (SOLVE_STATIC:=0)

The solution of the static problem is left in hands of
the modelling language. PSpice has two symbols to
provide an initial guess for Newton-Raphson
algorithm: NODESET1 and NODESET2 (OrCAD,
1999). These symbols have not been translated into
Modelica language because they do not represent any
advantage compared to Dymola Initial Calculation
methods (Elmqvist et al., 2001). The Modelica
implementation of the algorithm is shown in Fig. 5.

Figure 5. Static model iteration algorithm.

Static model ramping (SOLVE_STATIC:=1)

PSpice cuts back the power supplies to almost zero
(0.001%) so that all non-linearities are turned off.
When the circuit is linear, a solution can be found
(very near zero, of course). The initial condition of
this first step is zero for all voltages. Then, PSpice
works its way back up to 100% power supplies using

CLOCK

biasPoint

ctrl_DC

ctrl_log_DC

biasPointCalculated

ctrl_IC_clampDC

DC, AC Small−Signal and Transient Analysis of Level 1 N−Channel MOSFET ... Urquía A., Dormido S.

Modelica 2002, March 18−19, 2002 106 The Modelica Association

a variable step size (OrCAD, 1999). The process
relies heavily on the equation continuity with respect
to the power supplies.

This algorithm is translated into Modelica language
ramping the static-formulation value of the
independent sources from zero up to their target
values. The clamping voltages of the IC symbols and
the capacitor IC property are also adequately ramped.
The value of the parameter TIME_SCALE determines
the length of the ramping. The algorithm is
implemented by means of the signal transitions
shown in Fig. 6.

Figure 6. Static model ramping algorithm.

GMIN stepping (SOLVE_STATIC:=2)

GMIN stepping attempts to find a solution for the
static model (with power supplies at 100%) by
starting with a large value of GMIN, initially 1.0e10
times the nominal value. If a solution is found at this
setting, PSpice reduces GMIN by a factor of 10 and
tries again. This continues until either GMIN is back
to the nominal value, or a repeating cycle fails to
converge. This algorithm makes heavy use of
equation continuity with respect to GMIN model
parameters. The Modelica implementation of this
algorithm is shown in Fig. 7.

Figure 7. GMIN stepping algorithm.

Dynamic model ramping (SOLVE_STATIC:=3)

The initial condition to iterate the static model is
obtained by simulating the large-signal model
(Cellier, 1991). A transient analysis is performed: all
sources are ramped up from zero to the desired initial
value for the simulation and this value is held for
some time to allow the circuit to stabilise. Then the
large-signal formulation voltages are transferred to
the static model (using ctrl_RBREAK_Tran2DC and
ctrl_IS_inhibit). This static-circuit setting is held
for a clock cycle. Then, the power supplies are
connected to the circuit, the resistor voltage-
clamping circuits are disconnected, and the static
model is solved. The Modelica implementation of the
algorithm is shown in Fig. 8.

Figure 8. Dynamic model ramping algorithm.

5.2. Bias point analysis (OP)

The OP analysis (see Fig. 9):
• forces the biasPoint signal to become true,
• sets ctrl_OP_value signal to zero, and
• finish the simulation one clock cycle after the

biasPointCalculated signal becomes true.

Figure 9. OP analysis signals.

CLOCK

biasPoint

ctrl_DC

biasPointCalculated

ctrl_IC_mode

ctrl_IC_clampDC

ctrl_log_DC

ctrl_OP_mode

TIME_SCALE

1

CLOCK

biasPoint

ctrl_DC

biasPointCalculated

ctrl_IC_clampDC

ctrl_log_DC

scaleGMIN

11 CLOCK

1010

109

108

107

101

100

TIME_SCALE

biasPoint

ctrl_IS_TranOP

biasPointCalculated

ctrl_IC_clampTran

ctrl_log_DC

ctrl_OP_mode

ctrl_IS_inhibit

ctrl_RBREAK_Tran2DC

ctrl_DC

ctrl_CBREAK_resetTran

ctrl_IC_mode

ctrl_IC_clampDC

TIME_SCALE CLOCK

CLOCK

biasPoint

biasPointCalculated

terminate

Urquía A., Dormido S. DC, AC Small−Signal and Transient Analysis of Level 1 N−Channel MOSFET ...

The Modelica Association 107 Modelica 2002, March 18−19, 2002

+
-

D
C

=3
A

C
M

=1
A

C
P

=90

V
1

+ -
R=1

R1

+
-

R
=0.5

R
2

0

+
-

C
=3

C
1

Example

Consider the application of the OP analysis
algorithms to the trivial circuit shown in Fig 10.
Dymola’s experiment StopTime variable is set to an
arbitrary large value: 100. The TIME_SLOT,
TIME_SCALE and LOG_RESULTS parameters are left to
their by-default values: 10%, 1s and 0 respectively.

Figure 10. Simple example of a RC circuit.

• SOLVE_STATIC:=0. Once finished the simulation
(at T=0.1), dslog.txt file contains the results:
V1_iDC(1e-010) = -2
V1_vDC(1e-010) = 3
R1_n_vDC(1e-010) = 1
ctrlx_0logx_0DC(1e-010) = 1
V1_powerDisipation_disipatedPower(1e-010)=6

• SOLVE_STATIC:=1. The dslog.txt file contains the
results, logged at T=1. The simulation terminates
at T=1.1 (see Fig 11).

• SOLVE_STATIC:=2. The circuit does not contain
any device with the GMIN parameter, so this
algorithm is equivalent to SOLVE_STATIC:=0.
Results are logged at T=1.1 and the simulation
finishes at T=1.2 (see Fig. 12).

• SOLVE_STATIC:=3. Results are logged at T=2.2
and the simulation finishes at T=2.3. Large-
signal and static voltages at R1.n node are shown
in Fig. 13. At T=2.0: large-signal to static info.
transfer. At T=2.1: Static model solution.

0 0.4 0.8 1.2

0

2

4
R1.n.vDC V1.vDC

Figure 11. Voltage at circuit nodes.

0.8 1 1.2
0

50

100

150
scaleGMIN

Figure 12. GMIN scale factor

0 1 2

0

0.4

0.8

1.2
R1.n.vDC R1.n.vTran

Figure 13. Static and large-signal voltages.

5.3. AC sweep analysis (AC)

The TYPE_AC_SWEEP parameter defines the frequency
sweep type (LIN and DEC PSpice arguments):
• TYPE_AC_SWEEP==0: frequency linear sweep.
• TYPE_AC_SWEEP==1: the frequency is swept

logarithmically by decades.

AC small-signal analysis (see Fig. 14):
• forces the biasPoint signal to become true, and
• sets ctrl_OP_value signal to zero.
When biasPointCalculated becomes true, the AC
analysis:
• forces ctrl_AC to become true, enabling the AC

model.
• Starts the frequency sweep. The frequency

variation in time depends on the sweep type. In
both cases, the required log frequencies are
spaced at regular time-intervals of length
2*CLOCK. Therefore, the ctrl_log_AC signal is a
pulse train of period 2*CLOCK.

The simulation is finished one clock cycle after the
frequency reaches END_FREQUENCY. An AC analysis
of the Fig 10 circuit is shown in Fig 15.

Figure 14. AC analysis implementation.

5 10
-60

-40

-20

0

20
R2.vAC_phase(freq) R2.vAC_mag_dB(freq)

Figure 15. Example of AC small-signal analysis.

biasPoint

terminate

biasPointCalculated

ctrl_AC

freq

CLOCK

ctrl_log_AC

START

END

DC, AC Small−Signal and Transient Analysis of Level 1 N−Channel MOSFET ... Urquía A., Dormido S.

Modelica 2002, March 18−19, 2002 108 The Modelica Association

5.4. Transient analysis (TRAN)

When the transient simulation is started, the value of
the time variable is different of zero. For this reason,
a variable is defined to measure the transient
simulation time: timeTran. The length of the
transient simulation is set by the TRAN_STOP_TIME
parameter. The transient analysis depends on the
SKIP_INITIAL_TRAN_SOLUTION parameter.

SKIP_INITIAL_TRAN_SOLUTION:=false

When biasPointCalculated becomes true, the
circuit static model contains the transient initial
solution. Then (see Fig. 16):
• ctrl_CBREAK_Tran2DC becomes true. The large-

signal circuit state is initialised to the static-
circuit voltage values.

• ctrl_Tran becomes true. The large-signal device
models are enabled.

The simulation terminates when timeTran reaches
the value TRAN_STOP_TIME.

Figure 16. Transient analysis with initial calculation.

SKIP_INITIAL_TRAN_SOLUTION:=true

At initial time (see Fig. 17):
• ctrl_CBREAK_Tran2IC becomes true. The large-

signal circuit state is initialised to the IC-
property correspondent values.

• ctrl_Tran becomes true. The large-signal device
models are enabled.

Figure 17. Transient analysis w/o initial calculation.

6. SPICE2 LEVEL 1 NMOS

The SPICE2 level1 MOS model is basically the
model proposed by Shichman and Hodges
(Massobrio and Antognetti, 1993). The Dymodraw
diagram of the model is shown in Fig 18. Each
substrate junction is modelled as a voltage-controlled
current source (diode-like icon in Fig. 18) in parallel
with a voltage-controlled capacitor. DSI is a non-

linear current source controlled by the voltages DSV ,

GSV and BSV . The gate capacitance is modelled

using three voltage-controlled capacitors: GBC , GSC

and GDC .

Voltage-controlled capacitors have been modelled
extending the Capacitor model. Expressions for the
large signal capacitance are provided and the small-
signal capacitance is evaluated at the bias point (i.e.,
when ctrl_AC signal becomes true). Large-signal
and static formulations of controlled current sources
are equal (of course, each one is described by its own
set of variables). Their small-signal models
(conductance) are evaluated at bias point.

Figure 18. SPICE2 level1 NMOS

Conclusions

A reduced set of SPICE device models has been
successfully translated into Modelica language for
OP, AC and transient analyses.

References

Aström, K. J., H. Elmqvist and S. E. Mattsson
(1998). Evolution of Continuous-Time Modeling
and Simulation. 12th ESM, Manchester, UK.

Cellier, F. E. (1991). Continuous System Modeling.
Springer-Verlag.

Clauss, C., et al. (2000). Modelling of Electrical
Circuits with Modelica. Modelica Workshop
2000, Lund, Sweden.

Elmqvist, H., F. E. Cellier and M. Otter (1993).
Object-Oriented Modelling of Hybrid Systems.
ESS’93, Delft, The Netherlands.

Elmqvist, H., et al. (2001). Dymola. Dynamic
Modeling Laboratory. User Manual. Dynasim.

Kielkowski, R.M. (1998). Inside SPICE. McGraw-
Hill, Inc. Second Edition.

Massobrio, G and P. Antognetti (1993).
Semiconductor Device Modeling With SPICE.
McGraw-Hill, Inc.

Modelica (2000). Modelica, Language Specification
& Tutorial. Modelica Association.

OrCAD. (1999). OrCAD PSpice A/D. Reference
Guide & User’s Guide. OrCAD, Inc.

biasPoint

terminate

biasPointCalculated

ctrl_Tran

CLOCK

ctrl_OP_value

ctrl_CBREAK_Tran2DC

TRAN_STOP_TIME

CLOCK

ctrl_Tran

terminate

ctrl_CBREAK_Tran2IC

CLOCK

TRAN_STOP_TIME

CLOCK

initial

+

-

Ids

+-

Dbs

+-

Cbs

+-

Dbd

+-

Cbd

+ -
Cgd

+ -
Cgs

+ -
Cgb

+

-

R=
10Rs

+

-

R=
10

Rd

G

D

S

B

Ferretti G., Magnani G., Rocco P., Bonometti L., Maraglino M. Simulating permanent magnet brushless ...

The Modelica Association 109 Modelica 2002, March 18−19, 2002

Simulating permanent magnet brushless motors in DYMOLA

G. Ferretti, G. Magnani, P. Rocco
Politecnico di Milano, Dipartimento di Elettronica e Informazione,

Piazza L. da Vinci 32, 20133 Milano, Italy

L. Bonometti, M. Maraglino
C.M.S. S.p.A., Via A.Locatelli 49, 24019 Zogno (BG), Italy

Abstract

Multi-domain dynamic simulation is becoming an is-
sue in the design of high performance mechatronic
systems, where advances are foreseen only if the mu-
tual interaction of different parts of the system is well
understood. The modelling environment provided by
DYMOLA with Modelica language proved to be ideal
for studying the mutual effects of mechanics, elec-
tronics and control in a brushless motor, whose model
has been conceived as one of the building blocks of a
wider project, aimed at simulating a complete machin-
ing centre. Details on the model of the brushless motor
as well as on its simulation are given in the present pa-
per.

1 Introduction

The most common actuation systems adopted in
robotics, machine tools industry and machining cen-
ters are by far servomechanisms with permanent mag-
net brushless motors, connected to the loads by trans-
mission chains (or gearboxes).
In a brushless motor the electromechanical commu-
tation typical of brushed DC motors is replaced by
an electronic commutation of the currents in the three
phases of the stator windings. This should in principle
guarantee that the electromagnetical torque delivered
on the motor shaft is independent of the rotor posi-
tion. However some constructive imperfections in the
motor or in the drive, where electronic commutation
is implemented, produce an undulation (ripple) [4] on
the actual torque. While this problem could be consid-
ered minor in the static dimensioning of the actuation
system, it is of utmost importance for its dynamic per-
formance. Torque ripple might in fact excite the res-
onances of the mechanical system, usually associated
to the elastic couplings between motors and loads.

Dynamic simulation [2], or virtual prototyping in a
more recent jargon, is a valuable tool to study these
phenomena, and in particular to separate the effects of
the single sources of disturbances on the performance
of the system. Mechanics, electronics and control are
different domains involved in this truly mechatronic
problem. Multi-domain simulation environments are
required to simulate with a reasonable effort the sys-
tem, while the particular electrical configuration of the
stator windings (Y connected) calls for the adoption of
modelling languages where algebraic constraints on
state variables can be easily specified.
DYMOLA (with Modelica language [7, 5]) has been
found to fit easily both the above requirements. Me-
chanical, electrical and control systems can be com-
bined in a natural and physics-driven way, while the
acausal modelling based on DAE equations, proper of
this environment, allows to specify the constraint on
the phase currents as it is, avoiding reformulation of
the system’s equations in terms of two out of three cur-
rents, typical of procedural modelling languages.
In the present work DYMOLA has been used to sim-
ulate a brushless motor controlled with an analogue
driver and with a full digital driver. The simplified
model ([3]) of torque ripple has been validated through
these simulations. The model of the brushless motor
with its analogue or digital drivers has been actually
used as one of the building blocks of a wider project,
where the simulation of a complete machining center
(detailed simulation of the mechanical parts of the sys-
tem and of various features of the CN) has been imple-
mented.

2 Torque ripple modelling

The functional scheme of a sinusoidal PMAC ma-
chine is represented in Fig. 1. If a reference torque
τ̄ should be delivered by the motor, typically as re-

Simulating permanent magnet brushless ... Ferretti G., Magnani G., Rocco P., Bonometti L., Maraglino M.

Modelica 2002, March 18−19, 2002 110 The Modelica Association

� � � � � � � �

� � � � � � 	 	
 �

� � � �
 � �

�

 �
 � �

�

� � � �
 � � � �

 �
 � �

� � �

 � � � � �
 �
 � � � � �

� �

� �

� �

� � � �
 � �

�
 � � 	 � �
 � � � � �
 � �
 �

� � � � � �

� � � �

� � � � � �

� � � � � � � �

�
 � � � �

� � � �

Figure 1: Functional scheme of a brushless motor

quired by a position controller, the current reference
Ī has to be given the value Ī = τ̄/Kt , where Kt is the
torque constant. This scalar setpoint is then modulated
through three sinusoidal functions of the electrical an-
gle α = pqm, p being the number of pole pairs and qm

being the motor angle, that are offset by an angle 2π/3
one from each other. The three resulting signals be-
come the current references for the three phases. High
bandwidth current controllers make the currents track
their setpoints in each phase (actually two out of the
three Y connected phases are closed loop controlled).
If the current reference in each phase is given the same
dependence on the electrical angle characterizing the
back EMF (ideally sinusoidal or trapezoidal), a torque
τ is produced, approximately equal (in a band of fre-
quencies limited by the current loops) to the desired
torque τ̄, and thus proportional to the scalar current
reference Ī.
Brushless motors, however, introduce a disturbance in
the system in the form of a ripple on the torque. Sev-
eral constructive imperfections of the motor and the
servodrive sum up to form this pulsating disturbance.
Examples are cogging torque, offsets in the current
sensors, imperfections in the construction of the mo-
tor and the drive, implying that both the back EMF
profiles and the phase currents may be affected by un-
desired higher order harmonics.
As it is shown in [3], the following relation can be used
to represent in a compact form the effects of the dis-
turbances on the torque production:

τ = τ(α, Ī) = γ(α)+Kt Ī(1+δ(α)) (1)

The term γ(α) accounts for the disturbances due to the
cogging torque and to the current offset in the drives,
while the second term is responsible for the nominal
torque (with δ(α) = 0) and for the disturbances related
to the harmonic content. It is also possible to include
in δ(α) the effects of the amplitude imbalances and
the phase misalignments of the current and back EMF
shapes profiles [3].

Figure 2: Complete model of the system

3 Modelling the system in DYMOLA

The model of the system is obtained by the feed-
back connection of two sub-models, one representing
the brushless motor, the other one the driver (Fig. 2).
The two models are connected through three electrical
connectors (the three phases of the motor) as well as
through a control connector (the measure of the rotor
position).
The brushless model is shown in Fig. 3. The
three phases are Y connected in the block emf3,
that generalizes the EMF model in the Model-
ica.Electrical.Analog.Basic library. In the emf3 model
the back-emf profiles on the single phases are as-
signed. The nominal sinusoidal profiles can then be
modified to study ripple due to higher order harmon-
ics. The torque at the flange of the emf3 model de-
rives from the equilibrium with the sum of the prod-
ucts of currents and back emf profiles on the single
phases. Remarkably, the acausal modelling environ-
ment provided by DYMOLA allows to specify in the
most natural way the algebraic constraint on the cur-
rents (the sum of the currents must be zero). This con-
straint would obviously generate troubles in other sim-
ulation environments based on causal specifications of
the models, expressed with ODE systems. Just for
comparison, Fig. 4 shows the SIMULINK model of
the electrical part of a brushless motor, obtained by
resolving the algebraic constraint and expressing the
whole model in terms of two out of three currents. The
derivation of the model is time consuming and error
prone and the result lacks readability.
Modelling of the mechanical part of the motor is on
the other hand standard.
The analogue version of the current controller is
shown in Fig. 5. The current reference (usually the
output of a position/velocity controller) is modulated
through sinusoidal functions of the electrical angle, to
form the references for two of the three Y connected
currents. Current sensors are included in the drive and

Ferretti G., Magnani G., Rocco P., Bonometti L., Maraglino M. Simulating permanent magnet brushless ...

The Modelica Association 111 Modelica 2002, March 18−19, 2002

Figure 3: Model of the brushless motor

�

� �

�

� �

�

� 	
 �

�
 �

�
 � �

�
 � �

�
 � �

�
 �

�
 � �

�
 � �

�
 � �

�
 � �

�
 � �

�

� 	 � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� �
 �

� � !

� �
 �

� � �

� �
 �

� � �

�

�

�

�

� � � � � �

� � � � � �

� � � � � �

� � � � �

�

" # �

�

� $ �

�

% !

�

% �

�

" �

Figure 4: Model of the brushless motor in SIMULINK

possible offsets can be added to the measures, in order
to simulate their effects on the generation of torque rip-
ple. Two anti-windup PI controllers close the current
loops. Their outputs are then linearly amplified and
form the voltages to be applied to the single phases of
the motor.
A full digital version of the current controller has been
implemented as well (Fig. 6). A vector control scheme
[6] has been adopted, where the phase currents are
first transformed into direct and quadrature currents
through Park’s transformation. Two digital loops are
closed on these currents, the quadrature reference be-
ing the output of the outer position/velocity controller,
the direct reference being zero as usual. The volt-
age commands output of the two antiwindup PI con-
trollers are then back transformed to voltages on the
three phases through inverse Park’s transformation.
The PWM amplifier has not been simulated since, op-
erating with a frequency 10 or 20kHz and with a mod-
ulation of the pulse width of 1µs, it requires an integra-
tion step size less than 1µs, which might be acceptable
for the simulation of the electronics of a motor drive
but is far too small in the combined simulation of the
mechanics and the electronics. This is particularly true
if the model of the motor is instantiated several times,
for the simulation of a complete machine.

4 Simulating the motor without load

Simulations obtained with the analogue version of the
driver will be presented here, in order to show the util-
ity of the model. The input of the system is a step
on the current reference: the signal is expressed in
Volt and has been given the value 1V (correspond-
ing to 10% of the entire scale and to a current of
1.9A). The current-to-torque gain of the motor (Kt)
is equal to 1.1Nm/A, while the number of pole pairs is
equal to 3. Both the current loops have been tuned
for a bandwidth of 1kHz. The inertia of the motor
is equal to 0.012Kgm2 while the damping factor is
0.371Nms/rad.
Fig. 7 and Fig. 8 show, on different time scales, the re-
sponses of the electromagnetic torque and of the motor
velocity in nominal conditions. The responses match
the expectations 1 both from the transient point of view
and from the steady state one (no oscillations is pro-
duced).

1The negative sign of the torque is of no particular meaning,
being associated just to the way the balance of torques is written
in the block emf3.

Simulating permanent magnet brushless ... Ferretti G., Magnani G., Rocco P., Bonometti L., Maraglino M.

Modelica 2002, March 18−19, 2002 112 The Modelica Association

Figure 5: Model of the analogue driver

Figure 6: Model of the digital driver

Ferretti G., Magnani G., Rocco P., Bonometti L., Maraglino M. Simulating permanent magnet brushless ...

The Modelica Association 113 Modelica 2002, March 18−19, 2002

Figure 7: Electromagnetic torque in nominal condi-
tions

Figure 8: Motor velocity in nominal conditions

In a second simulation, an offset of 1% of the rated
current has been introduced on both the current sen-
sors. The resulting electromagnetic torque is shown in
Fig. 9. As the average velocity is equal to the value
obtained in nominal conditions Ω ≈ 5.6rad/s, the pe-
riodicity of the disturbance is consistent with theory
[3] (T = 2π/(3Ω) = 0.37rad/s).
The effect of higher order harmonics in the back e.m.f.
profiles has been simulated introducing the fifth har-
monic on all the three profiles, with amplitude 5% of
the main harmonic and no misalignments or unbal-
ances. The result in terms of electromagnetic torque is
reported in Fig. 10. Again the periodicity of the distur-
bance is consistent with theory [3] (T = 2π/(18Ω) =
0.062rad/s).

Figure 9: Electromagnetic torque with a current offset

Figure 10: Electromagnetic torque with a high order
back emf harmonic

Figure 11: Electromagnetic torque with both distur-
bances

The superimposition of the two disturbances (the off-
set on the current sensor and the high order back emf
harmonic) yields the electromagnetic torque reported
in Fig. 11.
It is not difficult to verify (for example exporting the
results of the simulation in Matlab) that the above
torque profile corresponds, apart from the sign inver-
sion, to (1), where:

γ(α) = 3KIo f f sin(α+
2
3

π) (2)

δ(α) = −K5

K
cos(6α) (3)

where Io f f is the current offset, K5 is the amplitude
of the fifth harmonic of the back emf profile, K is the
amplitude of the main harmonic (K = 2/3Kt).

5 Simulating the motor with a load

As already mentioned in the Introduction, one of the
reasons why torque ripple deserves accurate modelling
and possibly compensation is that it may act as an ex-
citation signal for the usually lightly damped dynamics
of the two-mass system made up by the motor coupled
with a load through an elastic transmission. As the
torque ripple frequency is proportional to the motor

Simulating permanent magnet brushless ... Ferretti G., Magnani G., Rocco P., Bonometti L., Maraglino M.

Modelica 2002, March 18−19, 2002 114 The Modelica Association

Figure 12: Model of the system including a load

Figure 13: Motor velocity with a load, without ripple

velocity, this problem is particularly critical at those
operating velocities when the multiple of the motor
velocity is comparable to the natural frequency of the
system. In order to confirm this analysis with simula-
tion results, the model of the motor has been coupled
to the models of an elastic transmission and a load,
both taken from the Modelica.Mechanics.Rotational
library (see Fig. 12).

The load has been given the same value as the iner-
tia of the motor while the elastic parameter has been
selected so as to have a resonance frequency approx-
imately equal to 70rad/s. In a first simulation, four
consecutive steps on the current command have been
given, corresponding to 20%, 30%, 40% and 50% of
the entire scale, in nominal conditions (i.e. with all
the sources of ripple disabled). The result, in terms
of the velocity of the motor is shown in Fig. 13, where
the natural oscillations due to elasticity are evident, but
also damped out by the natural damping on the system.

Then a ripple induced by the same offset on the current
sensor as in the previous Section has been introduced.
Notice that, as the natural frequency of the system is
about 70rad/s, major problems to the system are ex-
pected when the average velocity of the motor is about
one third (23rad/s) of this value, namely in the third
interval of the simulation. The result is confirmed in
the plot of Fig. 14, where the effect of the matching be-
tween ripple frequency and natural frequency is most
evident (once triggered in the third interval, the oscil-
lations remains also in the fourth one).

Figure 14: Motor velocity with a load, with ripple

Figure 15: Top view of the simulator of a machining
center

6 Use of the brushless motor in the
simulation of a machining center

As already mentioned in the Introduction, the model of
the brushless motor has been included in a library of
elements used to simulate a complete machining cen-
ter. Fig. 15 shows the top level of the simulator for a
three axes machine. The model is composed of three
parts: the simulation of the CN and the servodrive, en-
tirely realized with the DYMOLA blocks, the simu-
lation of the transmission chain for each axis, where
the brushless motor has been used, and the simulation
of the kinematic chain, realized with the blocks of the
ModelicaAdditions.MultiBody library.

Again the multi-domain nature of DYMOLA and the
physics driven assembly of the model turned out to be
essential elements to fulfill the task, namely to realize
a reliable simulation environment, easy to use for a
non specialist of dynamic modelling.

Ferretti G., Magnani G., Rocco P., Bonometti L., Maraglino M. Simulating permanent magnet brushless ...

The Modelica Association 115 Modelica 2002, March 18−19, 2002

7 Conclusions

DYMOLA proved to be a valuable tool to specify in
the most natural way the model of the three phase
brushless motor, in terms of a high index DAE sys-
tem [1]. Simulations have been run to test various non
nominal situations in brushless motors, where torque
ripple can occur.

8 Acknowledgements

The support of student A. Samarani in building the
model and performing simulations is acknowledged.

References

[1] Brenan, K.E., S.L. Campbell and L.R. Petzold:
Numerical solution of initial-value problems in
differential algebraic equations, North-Holland
(1989).

[2] Cellier, F.: Continuous system modelling,
Springer Verlag (1991).

[3] Ferretti, G., G. Magnani and P. Rocco: Mod-
elling, identification and compensation of pul-
sating torque in permanent magnet ac motors.
IEEE Transactions on Industrial Electronics, 46,
(1998), pp. 912–920.

[4] Jahns, T. M. and W. L. Soong: Pulsating torque
minimization techniques for permanent magnet
ac motor drives - a review. IEEE Transactions on
Industrial Electronics, 43 (1996),pp. 321–330.

[5] Mattsson, S.E., H. Elmqvist and M. Otter: Physi-
cal system modeling with Modelica. Control En-
gineering Practice, 6, (1998), pp. 501–510.

[6] Texas Instruments: Digital signal processing so-
lution for permanent magnet synchronous motor.
Application Note. Literature Number: BPRA044,
(1997).

[7] Tiller, M.: Introduction to physical modeling
with Modelica, Kluwer (2001).

Modelica 2002, March 18−19, 2002 116 The Modelica Association

Kalaschnikow S.N. A Modelica Library for Power Quality analysis in Networks

The Modelica Association 117 Modelica 2002, March 18−19, 2002

PQLib- A Modelica Library for
Power Quality analysis in Networks

Sergej N. Kalaschnikow
VA TECH ELIN EBG Elektronik GmbH
Ruthnergasse 1, A-1210 Vienna Austria
e-mail: s.kalaschnikow@eel.elinebg.at

Abstract

In power supply networks, the quality of the
voltage is becoming more and more of a
determining factor.
Non-linear loads such as diode or thyristor
converters contribute to the degradation of the
supply voltage quality. Non-sinusoidal currents of
the non-linear loads result in the distortion of the
supply voltage wave form at the point of common
coupling due to the finite supply impedance.

To improve the power quality of the supply voltage
active filters and reactive current compensators are
used. The optimal power rating and topology of
these units are very important, but also the
determination of the best compensation strategy for
a specific application is very important as well.
Different topologies and strategies can often
perform related compensation functions, resulting
in a situation where financial implications
determine the best solution. In this situation the
power quality analysis in network using simulation
tools is very useful.

This paper describes a Modelica library called
PQLib (Power Quality Library) designed for
power quality analysis in networks using
simulation tools written in Modelica.

The PQLib contains the following components:
• Definition of connectors for three phase

networks
• Models for:
• three phase passive electrical elements like

resistor, capacitor and so on.
• three phase electrical machines and

transformers
• three phase transmission lines
• semiconductor controlled dc and ac electrical

drives

• power factor correction devices (passive
filters)

• mains active restoring devices using
semiconductors (active filters)

• measuring instruments: true rms voltmeter and
amperemeter, digital frequency analyser

• Examples

1. Building of the PQLib

The PQLib is based on the package concept. The
package concept was introduced into Modelica to
help organize definitions of models, connectors,
etc. [1, 2]. Fig.1 shows the components of the
package PQLib.

1.1. Types

In the PQLib for currents, voltages and impedances
the per unit (p.u.) quantities with the definitions
according to [3] are used. Currents and voltages
are related to their rated peak- values:

Fig. 1. Components of the package PQLib

A Modelica Library for Power Quality analysis in Networks Kalaschnikow S.N.

Modelica 2002, March 18−19, 2002 118 The Modelica Association

NN I

tI
ti

U

tU
tu

⋅
=

⋅
=

2

)(
)(,

2

)(
)(. (1)

Impedances are referred in the same way as (1) to

N

N

U

IZ
z

⋅=)(
)(

ωω , (2)

with: NU and NI are nominal values of the

voltage and the current accordingly.

Consequently, the types in the PQLib are defined
as (for example for the first phase):

type Voltage1stPhase = Real (
 final quantity="Voltage",
 final unit="p.u.",
 displayUnit="p.u.");
type Current1stPhase = Real (
 final quantity="Current",
 final unit="p.u.",
 displayUnit="p.u.");
type Resistance = Real (
 final quantity="Resistance",
 final unit="p.u.",
 min=0,
 displayUnit="p.u.");
type Conductance = Real (
 final quantity="Conductance",
 final unit="p.u.",
 min=0,
 displayUnit="p.u.");
type Reactance = Real (
 final quantity="Reactance ",
 final unit="p.u.",
 min=0,
 displayUnit="p.u.");
type SignalAnalog = Real;
type SignalBoolean = Boolean;
type SignalDiscrete = Real;

1.2. Interfaces

Usually every package includes some interface
definitions which are used throughout the package.
In the PQLib package the basic interface definition
is the three phase pin, which is a connector. At the
pin the pin three phase voltages va, vb and vc and
the pin three phase currents ia, ib and ic are
defined. The positive pin is described in the
following way:

connector Pin3Ph
 Voltage1stPhase va;
 Voltage2ndPhase vb;
 Voltage3rdPhase vc;
 flow Current1stPhase ia;
 flow Current2ndPhase ib;
 flow Current3rdPhase ic;
end Pin3Ph

The negative pin differs in its graphical
representation only.

The TwoPin interface is defined as a partial model:

partial model TwoPin3Ph
 PQLib.Interfaces.Voltage1stPhase Vr;
 PQLib.Interfaces.Voltage2ndPhase Vs;
 PQLib.Interfaces.Voltage3rdPhase Vt;

 PQLib.Interfaces.Current1stPhase Ir;
 PQLib.Interfaces.Current2ndPhase Is;
 PQLib.Interfaces.Current3rdPhase It;

 PQLib.Interfaces.Pin3Ph P;
 PQLib.Interfaces.NegPin3Ph N;
equation
 Vr = P.va - N.va;
 Vs = P.vb - N.vb;
 Vt = P.vc - N.vc;
 P.ia + N.ia = 0;
 P.ib + N.ib = 0;
 P.ic + N.ic = 0;
 Ir = P.ia;
 Is = P.ib;
 It = P.ic;
end TwoPin3Ph

For the control package of the PQLib the analog
and digital as well as logical interfaces are defined
in the classical way of the Modelica interface
definition with the exception of the definition for
three phase vectors [3]. For example, the vector of
voltages u is derived from the instantaneous values
of the three phase voltages au , bu and cu as

follows:

βα

ππ

juueueuu
j

c

j

ba +=��
�

�
�
�
�

�
⋅+⋅+=

−
3

2

3

2

3
2

u (3)

Thus, the connectors for three phase vectors can be
described in the following way:

connector InAB
 input SignalAnalog alfa;
 input SignalAnalog beta;
end InAB

connector OutAB
 output SignalAnalog alfa;
 output SignalAnalog beta;
end OutAB

2. Main Components of the PQLib

Any network consists of passive electrical
elements like resistors, capacitors and so on. The
three phase transmission line itself can be

Kalaschnikow S.N. A Modelica Library for Power Quality analysis in Networks

The Modelica Association 119 Modelica 2002, March 18−19, 2002

represented as a circuit of passive electrical
elements. The passive shunt harmonic filter, which
is the traditional method of controlling harmonic
distortion levels, consists of a tuning reactor in
series with a capacitor bank.

At the same time, each network consists of active
electrical elements as well. These elements are:
generators, electrical motors, four quadrant
electrical drives, active harmonic filters and so on.
The PQLib packages imply both passive and active
electrical elements. Fig. 2 shows, for example, the
package of electrical elements which are based on
the TwoPin interface.

2.1 Passive electrical elements

The three-phase elements like resistors, capacitors
and inductors are equally defined. The three phase
capacitor, for example, is defined as:

class C
 extends PQLib.Interfaces.TwoPin3Ph;
 parameter PQLib.Interfaces.Reactance xc[3]={1,1,1};
equation
 1/w/xc[1]*der(Vr) = Ir;
 1/w/xc[2]*der(Vs) = Is;
 1/w/xc[3]*der(Vt) = It;
end C

In the same way the three phase switch can be
defined:

class SW
 extends PQLib.Interfaces.TwoPin3Ph;
 parameter Real OnTime(unit="[s]") = 0 "switch ON Time";
 parameter Real Ron(final min=0) = 1.E-5 "Closed switch
resistance";
 parameter Real Goff=1.E-5 "Opened switch conductance";
protected
 Real s1;
 Real s2;
 Real s3;
equation
 Vr = s1*(if time >= OnTime then Ron else 1);
 Ir = s1*(if time >= OnTime then 1 else Goff);
 Vs = s2*(if time >= OnTime then Ron else 1);
 Is = s2*(if time >= OnTime then 1 else Goff);
 Vt = s3*(if time >= OnTime then Ron else 1);
 It = s3*(if time >= OnTime then 1 else Goff);
end SW

To get the star connection of the three phase
elements the class Y can be used:

class Y
 PQLib.Interfaces.Pin3Ph v0;
equation
 v0.ia + v0.ib + v0.ic = 0;
 v0.va = v0.vb;
 v0.vb = v0.vc;
end Y

To use one-phase electrical elements of the
Modelica standard library the class Connector3Ph
(see Fig. 2 and Fig.3) is used. The class
Connector3Ph is described in the following way:

class Connector3Ph
 PQLib.Interfaces.Pin3Ph InOut3Ph;
 Modelica.Electrical.Analog.Interfaces.Pin Ph1;
 Modelica.Electrical.Analog.Interfaces.Pin Ph2;
 Modelica.Electrical.Analog.Interfaces.Pin Ph3;
equation
 InOut3Ph.va = Ph1.v;
 InOut3Ph.vb = Ph2.v;
 InOut3Ph.vc = Ph3.v;
 InOut3Ph.ia = -Ph1.i;
 InOut3Ph.ib = -Ph2.i;
 InOut3Ph.ic = -Ph3.i;
end Connector3Ph

The other passive elements like the three-phase full
wave converter, the three-phase transformers, the
passive harmonic filters and so on are created by
using graphical model editing tools. Fig. 3 shows,
for example, a model of the three-phase full wave
converter.

2.2 Active electrical elements

The voltage source is defined in the following way:Fig. 2. Components of the package Elements

A Modelica Library for Power Quality analysis in Networks Kalaschnikow S.N.

Modelica 2002, March 18−19, 2002 120 The Modelica Association

class VS
extends PQLib.Interfaces.TwoPin3Ph;
parameter Real N_harmonic[:]={0,0} "Array of

numbers of harmonics";
parameter Amplitude

V_harmonic[size(N_harmonic, 1)]={0,0};
parameter Phase Ph_harmonic[size(N_harmonic,

1)]={0,0};
parameter Amplitude V1=1.0;
parameter Phase Ph1=0;
parameter Amplitude V1_opposite=0.0;
parameter Phase Ph1_opposite=0;

equation

Vr = V1*cos(w*time + Ph1*pi/180) +
V1_opposite*cos(w*time + Ph1_opposite*pi/

180) + V_harmonic*cos(N_harmonic*w*time +
Ph_harmonic*pi/180);

Vs = V1*cos(w*time - 2*pi/3 + Ph1*pi/180) +
V1_opposite*cos(w*time + 2*pi/3

+ Ph1_opposite*pi/180) +
V_harmonic*cos(N_harmonic*(w*time - 2*pi/3) +

Ph_harmonic*pi/180);

Vt = V1*cos(w*time + 2*pi/3 + Ph1*pi/180) +
V1_opposite*cos(w*time - 2*pi/3

+ Ph1_opposite*pi/180) +
V_harmonic*cos(N_harmonic*(w*time + 2*pi/3) +

Ph_harmonic*pi/180);

end VS

This voltage course definition makes it possible to
simulate all possible kinds of the voltage distortion
in industrial supply systems.

The three-phase current source is defined in the
same way.

The very important part of the PQLib package are
the switch mode power devices such as four
quadrant frequency controlled electrical drives and
active harmonic filters. These devices use the
pulse-width modulation IGBT-inverter technology.
Fig. 4 shows basic configuration of a IGBT-
inverter .

Fig. 4. Basic configuration of a IGBT-inverter

Owing to the fact that the goal of the power quality
analysis is to study the network itself and in order
to simplify the model of the IGBT-inverter, the
following equivalent circuit for IGBT-inverters can
be used [3]:

Fig. 5. Equivalent circuit for IGBT-inverters

Assuming a balanced three-phase system without
the neutral connection and neglecting the
resistance of the power switches, the circuit in

Fig.3. Diagram of the three-phase full wave
converter

Kalaschnikow S.N. A Modelica Library for Power Quality analysis in Networks

The Modelica Association 121 Modelica 2002, March 18−19, 2002

Fig.5 with a voltage-source inverter can be
described as [3]:

()

L
d

dt
R

C
du

dt
n i

n

F
S W F

d
F

j n

L

i
u u i

i

= − −

= −

�

�
��

�
�
�

=
− −3

2

0 1 2 6
3

1
σ

π

Re()
, , ,...

()
e

(1)

with

uW d

j n
n u=

−2
3

3
1

σ
π

()
()

e ,

where the used symbols denote:

i F complex vector of the line currents;

uS complex vector of the mains voltage;
uW complex vector of the inverter voltage;
ud dc-link voltage;
id dc-link current;

iL dc-link load current;

L inductance of the line choke;
R resistance of the line choke;
C capacitance of the dc-link capacitor;
n switching- state of the converter (Fig.5)

σ switching function: σ ()n =
�
�
�

1, if n > 0

0, if n = 0
.

For more information about the control unit of
IGBT- inverters see [4]. The description of the
control system for the active filter for industrial
mains can be found, for example, in [5]. The
control system of the four quadrant adjustable
speed drives is described in [6].

2.3 Measuring instruments

Often the goal of the power quality analysis in
networks is to get a value of the total harmonic
distortion factor (THD) or values of harmonic
amplitudes at the point of common coupling
(PCC). In this case, it is very useful to use the
built-in measuring instruments.

Fig. 6 shows the components of the package
Instruments. There are instruments for voltages
and currents. Together with model RMS it is
possible to measure the rms-values of the three-
phase voltages and currents and the THD-factor as

Fig.6. Components of the package Instruments

well. To get the spectra for voltages and currents
the class DFT can be used. The class DFTG is very
useful for the measuring of single reference
number harmonics. The classes DFT and DFTG
are based on DFT-technique .

Several aspects of the PQLib-package usage are
demonstrated in the following example.

3. Examples

Non-linear loads such as diode or thyristor
converters contribute to the degradation of the
supply quality. Non-sinusoidal currents of the non-
linear loads result in the distortion of the supply
voltage wave form at the point of common
coupling due to the finite supply impedance.

In industrial mains, the passive filters have
traditionally been used to absorb harmonics
generated by the load, primarily due to their low
cost and high efficiency. This is a good approach
when power factor correction is needed too.
However, they have the following drawbacks:

- the mains impedance strongly influences the
compensation characteristics of the filter;

A Modelica Library for Power Quality analysis in Networks Kalaschnikow S.N.

Modelica 2002, March 18−19, 2002 122 The Modelica Association

- they result in new resonances and therefore
magnify the levels of the other harmonics;

Compared with the passive filter, the active
filters can be used to reduce harmonics in the
industrial mains without worrying about all the
problems associated with applying passive filters
Additionally they can not be overloaded by
harmonics from the power system. Due to the fact
that active filters use the same IGBT-inverter
technology that is used in adjustable speed drives,
their cost is not high.

The next Modelica model shows the utilization of
the active filter to achieve harmonic cancellation
for an adjustable speed drive (see Fig.7). The
simulation results are shown in Fig. 8-10.

Fig. 7. Using active filter connection to achieve
harmonic cancellation for adjustable speed drives

Fig. 8. Simulation results: one-phase current of the
adjustable speed drive

The current of the adjustable speed drive in one
phase is shown in Fig.8. Fig. 9 shows the current
of the active filter in the same phase.

Fig. 9. Simulation results: one-phase current of the
active filter

Fig. 10. Simulation results: one-phase current in
the mains

The current in the mains (sum current) is presented
in Fig.10. From Fig.10 it is seen that the sum
current has practically sinusoidal wave form. The
harmonics of the ac drive current are practically
eliminated.

4. Conclusion

The presented Modelica package PQLib is very
useful for power quality analysis in networks.
Using the library, the user can quickly create the
network with different kind of mains loads and
measuring instruments using the graphical editor of
the Dymola. The library has an open structure and
all models can be modified.

References

[1] Tiller, M.: Introduction to physical modeling with Modelica,
Kluwer Academic Publishers, 2001

[2] Otter, M.; Elmqvist, H.; Mattsson, S.E.: Objektorientierte
Modellierung physikalischer Systeme, Teil 1-8. at
Automatisierungstechnik, 1999.

[3] Kalachnikov, S.: Regelung des netzseitigen Puls-stromrichters
eines Vier-Quadranten-Spannungszwischenkreis-Umrichters,
ELIN-Zeitschrift , Heft 3/4 pp. 46-55, 1994 (in German)

[4] Mohan, N., Undeland T.M. und Robbins,W.P. Power Electronics,
John Wiley & Sons, Inc. 1995, pp.805

[5] Kalachnikov S., Berger, H.: AC-Drive with Three-Phase PWM-
Rectifier as a Reactive Power Compen-sator, IEEE Stockholm
Power Tech Conference, Stockholm, Sweden, June 18-22, 1995,
Electrical Machines and Drives, pp 426-431

[6] Kalachnikov, S., Wieser, R.: AC Drives with IGBT Recovery
Inverter System in the Power Range up to 500 kW, PEMC´96,
Budapest, Hungary, September, 1996, pp 3.151-3.155

The Modelica Association 123 Modelica 2002, March 18−19, 2002

Session 6a

Automotive Powertrains

Modelica 2002, March 18−19, 2002 124 The Modelica Association

Treffinger P., Goedecke M. Development of Fuel Cell Powered Drive Trains With Modelica

The Modelica Association 125 Modelica 2002, March 18−19, 2002

Development of Fuel Cell Powered Drive Trains With
Modelica

Peter Treffinger, Martin Goedecke
DLR Institute of Vehicle Concepts, Pfaffenwaldring 38-40, 70569 Stuttgart

peter.treffinger@dlr.de martin.goedecke@dlr.de , Tel: 0049-711-685-7468/58

Abstract
The DLR Institute of Vehicle Concepts uses
MODELICA in the area of fuel cell powered
vehicles, where multidisciplinary simulation is
required. The paper gives an overview of the
existing libraries of DLR Institute of Vehicle
Concepts and discusses our approach writing models
in MODELICA.
An investigation of hybrid concepts of fuel cell
powered vehicles is presented using the so called
hyzem cycle as reference cycle. The results show
that hybridisation of the energy supply, i.e.
combining fuel cell and battery, yields to lower fuel
consumption compared to vehicles only powered by
fuel cells.

Introduction
The DLR Institute of Vehicle Concepts is
investigating the potential and design of fuel cell
powered vehicles.
One of the main issues is the simulation of the
operational behavior in order to find suitable designs
and operational strategies. Basis of the vehicle
modeling is an appropriate block diagram, where the
vehicle is separated in several sub systems. Figure 1
shows a block diagram representing a fuel cell
hybrid vehicle.

Gear box

Drive
cycle

Driver

Vehicle
control

Battery

Fuel cell
system

Energy
management

Inverter+
Electric
engine

energy

supply

Gear box

Drive
cycle

Driver

Vehicle
control

Battery

Fuel cell
system

Energy
management

Inverter+
Electric
engine

energy

supply

Figure 1: Block diagram of a fuel cell hybrid
vehicle

It consists of the following sub systems: drive cycle,
driver, vehicle control, energy management, fuel cell
system, battery, inverter + electric engine, gear box
and driving resistance. The thin lines represent the
flow of data, the thick lines the flow of energy. The
drive cycle gives the requested velocity as function
of time. The driver model compares the actual
velocity of the vehicle with the requested velocity
and determines a request for acceleration or
deceleration, which is given to the vehicle control.
For safety reasons a direct mechanical or hydraulic
connection between brake pedal and mechanical
brake is mandatory. Therefore the vehicle control
gives priority to the mechanical brakes above a
certain level of deceleration. This approach should
be sufficient to evaluate the potential of regenerative
braking. However, our analysis does not cover the
final realization of the braking system.
Finally, the vehicle control determines the signal for
the inverter of the electric engine with respect to the
state of the energy supply system (i.e. battery and
fuel cell system). This state is determined by the
energy management module, which receives the
signals of the sensors installed in the battery and fuel
cell system. The state of the energy supply system is
also transferred to the vehicle control. For example,
regenerative braking is not possible with fully
charged battery. The state of the fuel cell system
depends on the state of the fuel cell itself and also
the state of several supply systems; e.g. air supply,
fuel supply and heat and water management. Details
to the fuel cell system are given below.
The short introduction should make clear that
modeling of fuel cell powered vehicles is a
multidisciplinary task, requiring electric,
mechanical, electrochemical (fuel cell, battery),
control, thermo-hydraulic models.

Development of Fuel Cell Powered Drive Trains With Modelica Treffinger P., Goedecke M.

Modelica 2002, March 18−19, 2002 126 The Modelica Association

Libraries
Table 1 gives an overview of the existing libraries.
Library Content
Property Thermal and caloric

properties of fluids (air,
water, hydrogen, glycol-
water, ..)

Piping Ducts, fans, compressors,
blowers, valves

Heatex Heat exchanger
Accu Battery models
Carmechanic Mechanical components of

cars
Control Control units
Power_electronics Inverters, DCDC-converters
Fuel cell Fuel cells
Tank Models of fuel tanks

compressed gas, metal
hydride

Table 1: Listing of libraries
Additionally, standard MODELICA libraries as
electric library and block library were used. As
simulation results were needed for ongoing
projects, the libraries were designed under a very
limited time scale. We felt that the hierarchical
layout of the libraries should not be too complex.
We therefore decided to limit the usage of base
models creating a usable model to only one base
model. Our general approach is outlined by two
examples of the property and piping library.
The following listing shows a property model for
wet air. Wet air describes a mixture of ideal gases
(O2 and N2) with one condensable component
(H2O). As we are working at moderate pressures
and temperatures, the ideal gas assumption lead to
sufficiently accurate results. General equations for
such a mixture have been put into the base class
base_prop_01 (extend statement) setting the
modifier n to three, which means the mixture is
composed of three components: water[1],
nitrogen[2] and oxygen[3]. The specific properties
of the components are given by functions.

We use the same base model for other mixtures of
gases with one condensable component. The
thermodynamic state of such a mixture is
determined by two state variables and n-1
compositions. After a period of refinement, we
achieved a very good robustness even with several
sets of input variables:

� Composition, p,T
� Composition, p,h.
� Composition, p,s
� Relative humidity, p,T

Key points to get this good performance have been
the appropriate formulation of the general
equations, i.e. structure of the equations. Molar or
mass specific state variable can be used, which
underlines the general formulation of this routine.

bzvt.property.air01.wet_air

see bzvt.property.bass_classes.base_prop_01

Modelica definition

model wet_air "siehe bzvt.property.bass_classes.base_prop_01"
 extends bzvt.property.bass_classes.base_prop_01(n=3);
equation
 //------------------properties-------------------------------
 ps = bzvt.property.h2o.satproperties.ps03(t);
 rhom_l_tp*mm_i[1] = bzvt.property.h2o.propfunctions.rho_l_oft(t);

 mm_i[1] = bzvt.property.h2o.constants.mm;
 mm_i[2] = bzvt.property.n2.constants.mm;
 mm_i[3] = bzvt.property.o2.constants.mm;

 hm_g_i[1]=xm_g_tp*bzvt.property.h2o.janaf.h_g(t+ 273.15)*mm_i[1];
 hm_g_i[2] = xm_i[2]*bzvt.property.n2.janaf.h(t + 273.15)*mm_i[2];
 hm_g_i[3] = xm_i[3]*bzvt.property.o2.janaf.h(t + 273.15)*mm_i[3];
 hm_l_tp=xm_l_tp*

bzvt.property.h2o.janaf.h_l_ofp(t+273.15,p)*mm_i[1];
 sm_g_i[1]=xm_g_tp*

bzvt.property.h2o.janaf.s_g(t+273.15,p)*mm_i[1];
 sm_g_i[2] = xm_i[2]*bzvt.property.n2.janaf.s(t + 273.15, p)*mm_i[2];
 sm_g_i[3] = xm_i[3]*bzvt.property.o2.janaf.s(t + 273.15, p)*mm_i[3];

 sm_l_tp = xm_l_tp*bzvt.property.h2o.janaf.s_l(t + 273.15)*mm_i[1];
 //---
end wet_air;

Treffinger P., Goedecke M. Development of Fuel Cell Powered Drive Trains With Modelica

The Modelica Association 127 Modelica 2002, March 18−19, 2002

Figure 2 shows the icon and object diagram of a
compressor. The fluid connectors inlet and outlet
contain the potential variables pressure p, enthalpy
h, composition x_i and the flow variable mass flow
rate mdot. The compressor is described by a
efficiency model with the isentropic efficiency as a
parameter. The calculation scheme is indicated in
the object diagram by means of a enthalpy, entropy
diagram. Three similar property models are
embedded into the model: prop1, prop2, isentrop.
Prop1 and prop2 are used to calculate the inlet and
outlet state. Isentrop calculates the state for a
isentropic compression.

Figure 2: Above: icon diagram of compressor;
below: object diagram of compressor.

Formulating our models we have taken special care
to handle cases like mass flow rates getting very
small values down to zero and to get a robust and
stable formulation. Therefore we tried several
formulations of heat exchangers: description by
piecewise discretisation, log mean temperature and
efficiencies.

In the beginning we had problems with robustness
of our models, e.g. the convergence of the
simulation run depended on the parameter values
used. Also the appropriate initialisation of the
model was difficult. To overcome the initialisation
problems we have written special initialisation
routines, which allow us to formulate the equations
with numerically appropriate state variables and
use common variables for parameterisation. For
example inside a volume the internal energy u is
used as state variable. However, by means of the
initialisation function temperature t is used to
parameterise the model.
As mentioned above we have restricted ourselves
primarily to alternative drive trains and fuel cell
systems due to time limitations. To simplify the
usage of models for people working in DLR
Stuttgart e.g. on solar thermal engineering our
colleague Wolf-Dieter Steinmann has generalized a
property and a thermohydraulic library [2].
In the following we will give some examples how
we are using the libraries.

Development of Fuel Cell Powered Drive Trains With Modelica Treffinger P., Goedecke M.

Modelica 2002, March 18−19, 2002 128 The Modelica Association

Modeling of Fuel Cell cars
Figure 3 shows the object diagram of a fuel cell
powered car composed from models of the
libraries listed in table 1. The object diagram
represents the layout of the scheme given in
figure 1, whereby the object dcsupply corresponds
to the gray lighted (energy supply) in figure 1.

Figure 3: Vehicle model as MODELICA object
diagram.

The object diagram consists of four main parts:
1. the overall control of the vehicle, which

includes the representation of the drive cycle
(object hyzem), which has specially been
derived for hybrid vehicles [1].
the driver model (object Fahrer) and the
control unit (object vcu02).

2. the supply of electrical energy (object
dcsupply), which includes the fuel cell system.

3. the inverter and electrical engine (object
elmotor), which convert the DC current to
mechanical energy.

4. the mechanical parts and driving resistance
of the car (object fahrzeug)

Our special interest is the energy supply, which
provides energy for elmotor, auxiliaries and for to
energy supply system itself (indicated by the two
additional electrical connectors of the object
dcsupply).
Figure 4 shows the object diagram of the object
dcsupply in detail.

Figure 4: Object diagram of energy supply
Fuel cell system and battery are combined to a
hybrid energy supply system. A bi-directional
DCDC-converter adjusts the battery voltage to the
fuel cell voltage. The DCDC-converter is
controlled by the energy control unit (object ecu),
which gets input from sensors installed in the
battery and fuel cell system.
DC power is supplied to the electrical engine by
the two electrical connectors p and n (right).
Compressors and pumps of the fuel cell system are
supplied with electrical energy by the two
additional electrical connectors (nversorg and
pversorg).
The dcsupply object can be parameterized in order
to generate three different hybrid fuel cell vehicle
designs.
1. Fuel Cell Vehicle: vehicle with a fuel cell

solely to supply energy
2. Fuel Cell Vehicle + Booster battery: a vehicle

with high power fuel cell and relatively low
power battery to recover brake energy and
provide additional peak power

3. Fuel cell as battery loader: high power
battery and low power battery. The fuel cell is
mainly used as a battery loader.

For the following examples we used a reference
vehicle with the following parameters: vehicle
mass 1240 to 1280 kg depending on option, drag
resistance times front area 0.6m2 and rolling
resistance 0.01. The total installed power in all
designs is 60 kW.
first design “Fuel Cell Vehicle” the fuel cell power
is 60 kW.
second design “Fuel Cell Vehicle + Booster” the
fuel cell power is 40 kW
third design “Fuel cell as battery loader” the fuel
cell power is 20 kW

Treffinger P., Goedecke M. Development of Fuel Cell Powered Drive Trains With Modelica

The Modelica Association 129 Modelica 2002, March 18−19, 2002

Figure 5 compares the requested velocity of the
hyzem cycle and the achieved velocity of the fuel
cell car for the third design “Fuel cell as battery
loader”. The first 500 s of the hyzem cycle
represent the urban part of the drive cycle, then up
to approximately 1500 s the extra urban part
follows. The last part is the motorway part.

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

140

 Hyzem Cycle
 Battery loader, #1

ve
lo

ci
ty

 /
(k

m
/h

)

time / s

Figure 5: Results of drive cycle simulation;
velocity as function of time

The battery loader can not follow the drive cycle at
higher velocities in contrast to the other designs.
Due to the relatively weaker voltage curve
compared to the other designs, which yields to
lower maximum torques of the electric engine.

Figure 6 compares the state of the battery for the
booster design and battery loader design. Over the
urban (first 500 s) and the extra urban part (to 1500
s) of the drive cycle the degree of discharge
decreases, which means the battery is loaded.
During the motorway part of the drive cycle, the
battery loader design needs a significant amount of
energy from the battery, whereas the state of the
battery for the booster design keeps almost stable.

0 500 1000 1500 2000 2500 3000 3500
0

20

40

60

80

100

120

140

ve
lo

ci
ty

 /
 (

km
/h

)

time / s

0.2

0.3

0.4

0.5

0.6

0.7

0.8

de
g

re
e

o
f d

is
ch

ar
ge

degree of discharge
 battery loader, #1
 booster, #1

Figure 6: Results of vehicle simulation; degree
of discharge as function of time.

Table 2 summarizes the results of the investigation.
It shows the energy consumption per km obtained
for the simulation of the three vehicle designs. The
energy content of hydrogen is approximately 120
MJ/kg. Thus the vehicles would consume around 1
kg hydrogen per 100 km.

The operation strategy reflects the control strategy
of the fuel cell system. Operation strategy #1
minimizes the auxiliary energy consumed to
operate the fuel cell system. The results show that
from the point of energy efficiency the second
design “Fuel Cell Vehicle + Booster” battery
combined with operation strategy #1 is the most
energy efficient. The results clearly show that the
energy consumption of the vehicle without battery
suffers from the lack of energy recovery.

Degree of
hybridisation

Operation
Strategy

Cons. Energy
(MJ/km)

#1 1.57
#2 1.65 Fuel Cell Vehicle
#3 1.75
#1 1.09
#2 1.15

Fuel Cell Vehicle
+ Booster Battery

#3 1.21
#1 1.17
#2 1.20

Fuel Cell as a
battery loader

#3 1.23

Table 2: Energy efficiency for Hybrid fuel cell
vehicles

Development of Fuel Cell Powered Drive Trains With Modelica Treffinger P., Goedecke M.

Modelica 2002, March 18−19, 2002 130 The Modelica Association

Modeling of Fuel Cell Systems
Figure 7 shows the object diagram of a fuel cell
system where two stacks are electrically connected
in series. The stacks have to be cooled and
supplied with fuel and oxygen. In this example
hydrogen is used as the fuel. The complete
hydrogen supply containing tank and pressure
reducer etc. is hidden in the object H2 (left in
figure 7).
Oxygen is taken from air. As hydrogen H2 the
components of air supply (compressor, pressure
control, mass flow control etc.) are hidden in the
air object (right in figure 7).
The fuel cell stacks (each with 120 cells) are

directly cooled with water. Each stack has separate
inlets for air and water. Inside the stacks air and
water are combined and dragged out at one single
outlet. Therefore a separator is needed to separate
air and water.
The water(dark blue) and glycol(green) modules
includes pumps, heat exchangers, ducts and control
valves. The glycol module additionally contains a
fan and an air – glycol heat exchanger to cool the
glycol.
An electric load, which is connected to the anode
and cathode of the fuel cells, is used to examine
the fuel cell system with different load profiles.

Figure 7: Object diagram of a fuel cell system

The description of the fuel cell systems shows
that,
� thermo-hydraulic components are important
� the system has several closed loops
� advanced property routines are needed e.g.

covering phase change
One main problem of fuel cell systems is that
water is dragged with the exhaust stream. Despite
of the production of water in the fuel cell a
negative water balance could occur. In such a
situation an additional water tank would be
needed. The water balance is influenced by a
number of parameters which influence each other,
e.g. air supply strategy, cooling strategy, pressure
drops, load profile. Beyond the task of layout and
design of the components of fuel cell system, we
use our simulation models to adjust the system in
order to achieve water neutrality.

Summary
The DLR Institute of Vehicle Concepts uses
MODELICA in projects, where components of
fuel cell powered cars are developed. During last
year a number of libraries for several disciplines
have been created. We find MODELICA a very
promising tool to analyse the complex interaction
in such systems. Our models have brought us a lot
of insight on how the design of fuel cell powered
cars should be. They are especially useful for the
design of the components of the fuel cell system
and for the definition of operation strategies. The
work with MODELICA will be continued in the
future.

Treffinger P., Goedecke M. Development of Fuel Cell Powered Drive Trains With Modelica

The Modelica Association 131 Modelica 2002, March 18−19, 2002

Literature
[1] Gossen, F., Grahl, M.: Vergleich von

Brennstoffzellen- und weiteren zukünftigen
Antrieben hinsichtlich Wirkungsgrad und
Wirtschaftlichkeit. 8. Aachener Kolloquium
Fahrzeug- und Motorentechnik, Aachen,
October 1999

[2] Steinmann, W-D.: 2nd MODELICA
Conference, Munich 2002

Modelica 2002, March 18−19, 2002 132 The Modelica Association

Newman C.E., Batteh J.J., Tiller M. Spark−Ignited−Engine Cycle Simulation in Modelica

The Modelica Association 133 Modelica 2002, March 18−19, 2002

Spark-Ignited-Engine Cycle Simulation in Modelica

Charles Newman, John Batteh, and Michael Tiller
Ford Motor Company, USA

Abstract
This paper details the use of the Modelica
modeling language for the cycle simulation of a
spark-ignited engine. After a brief overview of the
physical processes which must be modeled by a
predictive cycle simulation model, this work
emphasizes the two main challenges to the
developer of such a model in Modelica: zone
formation/destruction and calculation of realistic
thermodynamic properties of the cylinder contents.
The results illustrate that Modelica is capable of
handling the complex physical models required by
cycle simulation programs.

1 Introduction
Computer programs, which simulate the
thermodynamic cycle of an internal combustion
engine, have been developed over the last several
decades both to assist in understanding the
observed behavior of engines and to predict engine
performance and efficiency as functions of engine
design parameters (see [1], [2]). At Ford Motor
Company the internally-developed General Engine
Simulation (GESIM) program [3-6] has matured
sufficiently that it can accurately predict the effects
of intake and exhaust port design, combustion
chamber geometry, and valve timing on
combustion rate, fuel economy, and emissions for a
spark-ignited engine.

Although very useful, GESIM has some significant
limitations: it simulates only one cylinder of an
engine running at constant angular velocity and
reports the cycle averaged output torque. The
result is essentially a simulation of a dynamometer
test point for the engine. Currently, GESIM is
written in procedural languages (FORTRAN and
C), and its capabilities cannot readily be extended
to include the transient multi-cylinder behavior
required to simulate real engine operation in a
vehicle. An effort is now under way to capture
GESIM's physical models in Modelica [7, 8],

thereby retaining its current capabilities, while
removing the limitations on its applicability.
Previous work [9, 10] proved the feasibility of this
type of detailed powertrain modeling in Modelica.
This paper, after a brief overview of the physical
processes which must be modeled by a predictive
cycle simulation model, focuses on the two main
challenges to the developer of such a model in
Modelica: zone formation/destruction and
calculation of realistic thermodynamic properties
of the cylinder contents.

2 Overview of Cycle Simulation
Physics

The goal of a cycle-simulation program is to
perform a thermodynamic analysis of the engine
cylinder contents through each engine cycle, an
overview of which is shown in Figure 1:

a) The mixture is prepared during the gas
exchange period which extends from the
time the exhaust valve opens (EVO) until
the intake valve closes (IVC); during this
period the burned gases are expelled, and a
fresh mixture of fuel and air is inducted
into the chamber. The mixture is then
compressed until the piston reaches a
position near top dead center (TDC).

b) In a spark-ignited engine, combustion is
then initiated by the firing of the spark
plug.

c) The mixture is then burned, raising the in-
cylinder pressure and temperature
considerably. In contrast to the process in a
diesel engine, where combustion occurs
throughout the chamber simultaneously,
the mixture is consumed through the
propagation of a well-defined flame front
across the combustion chamber.

d) After the flame consumes all the
combustible mixture, usually some time
after TDC, the gas continues to expand,
transferring energy to the piston as it
continues its downward trajectory.

Spark−Ignited−Engine Cycle Simulation in Modelica Newman C.E., Batteh J.J., Tiller M.

Modelica 2002, March 18−19, 2002 134 The Modelica Association

e) When EVO is again reached, the process
begins anew.

Successful modeling of the cycle requires
capturing the essential physics of all the processes
described above. In this paper, however, we
concentrate on those processes critical to the
thermodynamic analysis: combustion by a
propagating flame and the computation of realistic
thermodynamic properties of the gases comprising
the in-cylinder mixture.

3 Combustion Modeling
The traditional approach taken to model the spark-
ignition combustion process is suggested by Figure
1: we divide the cylinder contents into two (or
more) thermodynamic zones, each with its own
temperature and composition. Behind the flame is
a zone comprised of only burned gases at high
temperature (the burned zone). Ahead of the flame
is the unburned zone, containing the remnants of
the original mixture at a much lower temperature.

Each zone is regarded as a homogeneous mixture
of N species (or pseudo-species), each modeled as
an ideal gas. The zone must then satisfy the First
Law of Thermodynamics,

dt

dV
PQ

dt

dU −= � , (1)

the ideal gas law,
MRTPV = , (2)

and the conservation of mass for each species

i
i S

dt

dm
C= (3)

where

wqHQ CCC += (4)

∑=
i

imM (5)

ii MXm = (6)

MuU = (7)

∑∑ ==
i i

i

i
ii

X
RRXR

µ
 (8)

and
U is the total internal energy of the

zone

QD is the total energy flow into the zone

P is the cylinder pressure
V is the volume of the zone

H� is the total flow of enthalpy entering
the zone

wqD is the heat transferred from the
chamber walls to the zone

M is the total mass in the zone
R is the overall (mass-specific) gas

constant for the zone
T is the temperature of the zone

im is the mass of species i in the zone

iX is the mass fraction of species i in
the zone

iS� is the total flow of species i of the
mass flow entering the zone

u is the specific internal energy of the
zone

),(TPui
is the specific internal energy of
species i and is a known function of
P and T

R is the universal gas constant

),(TPiµ is the average molecular weight of
species i and is a known function of
P and T

In addition to a set of equations (1)-(8) for each
zone z, a constraint on the total volume must be
added:

∑=
z

zT VV (9)

where

TV is the total volume of the chamber

The task of the modeler is to complete the system
of equations by supplying conditions to specify the
flows appearing in equations (1)-(8) for all zones.

(a) Gas exchange (b) Just after spark (c) TDC (d) Just before EVO (e) Just after EVO

Figure 1. Modeling of cylinder contents at various points in engine cycle

Newman C.E., Batteh J.J., Tiller M. Spark−Ignited−Engine Cycle Simulation in Modelica

The Modelica Association 135 Modelica 2002, March 18−19, 2002

3.1 GESIM Implementation
GESIM makes two modifications to the above
approach:

1. During mixture preparation (gas exchange
and compression), the contents are treated
as a single zone. No solution is sought for
the quantities in the burned zone.

2. After combustion is initiated and as soon
as the flame front makes contact with the
surface of the chamber, the burned zone is
further subdivided into an adiabatic core
and a thermal boundary layer between the
core and the wall.

GESIM implements the engine cycle of Figure 1 as
follows:

a) The system to be solved consists of
equations (1)-(9) for a single (unburned)
zone, supplemented by the following
relationships for the flows:

∑=
v

vivui XmS
~

DD (10)

∑=
v

vvu hmH
~

DD (11)

where

vmD is the mass flow into the zone
through valve v

vh
~ is the specific enthalpy of the mass

flow entering the zone through
valve v

viX
~ is the fraction of species i of the

mass flow entering the zone
through valve v

b) At spark, the solution is interrupted and a
kernel (diameter ~ 1 mm) of burned gases
is instantly created from the unburned
mixture. This forms the initial state for the
adiabatic zone. Equations (1)-(8) for the
adiabatic zone are added to the system, and
flows for both zones are now specified by

uibui XmS �� −= (12)

ubu hmH �� −= (13)

for the unburned zone and

})({ uibbi XBmS �� = (14)

ubb hmH �� = (15)

for the burned zone where

bm� is the burn rate as calculated
by the flame propagation
model

})({ ui XB is the fraction of species
remaining after a mixture of
composition uiX is burned.

uh is the specific enthalpy of
the unburned zone

c) When the flame contacts the wall, the
solution is interrupted and a thin boundary
layer is initialized and the system of
equations altered in a manner similar to b)
above. The details are omitted here.

d) At EVO, the solution is again interrupted.
All zones are mixed together instantly to
form a single zone, which represents the
initial state for the unburned zone for the
next cycle.

e) The set of equations is reduced to those of
a) above and the solution is resumed.

3.2 Modelica Implementation
As GESIM is an in-house product written in
FORTRAN, it has complete control over the
solution method- it can interrupt the solution at
will to expand or shrink the system of equations,
reinitialize, and resume. In Modelica, however,
where the number of equations is fixed, we adopt
two modifications to GESIM's approach:

1. The burned zone (i.e. the adiabatic zone
and boundary layer) exists throughout the
simulation. Each zone satisfies equations
(1)-(8), and equation (9) is imposed on the
volumes. During the mixture preparation
period, when the burned zone does not
exist in GESIM, we require that it have a
small mass (less than the initial spark
kernel) and have temperature and
composition equal to that of the unburned
zone. The solution for the two zones
degenerates to an equivalent single-zone
simulation during this portion of the cycle.

2. GESIM effects the transitions between 1-
zone and multi-zone behavior essentially
by simulating impulses. In the absence of a
stable and mature impulse capability in
Modelica, we choose to perform these
transitions over a finite, but short time.

Since all zones are always mathematically active,
enough conditions must be supplied to specify all
the flows. While our model includes all three
zones, in this paper we discuss only the aspects of
modeling two zones in order to illustrate the
approach. Adding the boundary layer is a relatively
straightforward extension of the technique.

During mixture preparation, the "burned" zone is
just a dummy placeholder, containing a small

Spark−Ignited−Engine Cycle Simulation in Modelica Newman C.E., Batteh J.J., Tiller M.

Modelica 2002, March 18−19, 2002 136 The Modelica Association

amount of mass in its unburned state, which will be
the first mass to be burned in forming the initial
kernel after spark. We require that both zones have
identical temperature and composition. Since (5)

and (6) imply that ∑ =
i

iX 1, only N-1

components of the composition vector can be
independently constrained. Hence, our condition
can be expressed as

0=−=∆ bu TTT (16)

0=−=∆ biuii XXX , 11 −≤≤ Ni (17)

0=−=∆ Kb VVV (18)

where

KV is a volume small compared to that
of the initial spark kernel

Denoting the time of EVO as 0t , we achieve the

transition from combustion to the above conditions
by mixing the contents of the two zones over a
short time ss µτ 100~ ; i.e., for

sF tttt τ+=≤≤ 00 :

)(0 tTT σ∆=∆ (19)

)(0 tXX ii σ∆=∆ , 11 −≤≤ Ni (20)

)(0 tVV σ∆=∆ (21)

where the subscript 0 denotes the value of a
quantity at EVO and

2)()(
s

Ftt
t

τ
σ −

= . (22)

Referring again to Figure 1, the Modelica
implementation of the cycle is as follows:

a) During mixture preparation, a dummy
burned zone (shown in black) exists.
Except for the transition time at EVO, its
volume is KV . Otherwise it is
indistinguishable from the main unburned
zone. To specify the flows, we first
introduce modified forms of (10)-(11):

∑=+
v

vivbiui XmSS
~

DDD (23)

∑=+
v

vvbu hmHH
~

DDD (24)

The constraints (16)-(18) or (19)-(21) are
sufficient to complete the specification for
the transition at EVO or the main portion
of mixture preparation, respectively.
Differentiating both of the above sets of

equations, we can combine them into a
single set. Between EVO and spark, then

)(0 tT
dt

Td λ∆=∆
 (25)

)(0 tX
dt

Xd
i

i λ∆=
∆

, 11 −≤≤ Ni (26)

)(0 tV
dt

Vd λ∆=∆
 (27)

where

),0min(
2

)(
s

F

s

tt
t

ττ
λ −

= . (28)

b) The transition at spark from mixture
preparation to combustion is accomplished
in two steps.
1. Denoting the time of spark as It , we

first burn the contents of the "burned"
zone over a time sµτ 1~1 ; i.e., for

1τ+=≤≤ IMI tttt , the flows are
specified by

0=uiSD (29)

uuH 0=D (30)

]})({[
1

IiIi
bI

bi XXB
M

S −=
τ

D (31)

0=bHD (32)

where the subscript I denotes a value at
ignition.

2. At Mtt = , two-zone combustion
begins. Equations (12)-(15) are used
unchanged, just as in GESIM, with the
burn rate bmD initially set high enough

to assure that, by stt M µ1+= , a
burned zone volume will be achieved
equal to that of GESIM's initial spark
kernel. As soon as the required volume
is attained, the flame propagation
model is used to calculate the burn
rate.

c) The main phase of combustion is identical
to that of GESIM.

d) At EVO, expansion ends. The current time
is assigned to 0t , and we change over to

the mixture preparation phase.
e) The next cycle begins.

Newman C.E., Batteh J.J., Tiller M. Spark−Ignited−Engine Cycle Simulation in Modelica

The Modelica Association 137 Modelica 2002, March 18−19, 2002

Figure 2 shows schematics for successive levels of
the instance hierarchy in the Modelica
implementation of a single-cylinder version of this
model. The engine itself is shown in Figure 2(a).
Its cylinder component appears in Figure 2(b);
it has been designed to facilitate construction of
multi-cylinder configurations through its
replication. The contents component of the
cylinder, shown in Figure 2(c), models the
thermodynamics of all gases residing in the
cylinder. Finally, in Figure 2(d) we see the
combustion component, the main focus here.

The combustion component controls the
creation, evolution, and destruction of the burned

zone in the manner discussed above by
coordinating the activities of a parallel
configuration of three subcomponents:
mix_zones to mix burned and unburned together
at EVO by specifying the flows according to a)
above; kernel_burn to create the initial spark
kernel as described in b) above; flameadv to
grow the burned zone according b) and c). Each of
these components supplies non-vanishing
contributions to the total flow only during the
portion of the cycle that it is meant to control.
Figures 6-9, included at the end of the paper,
contain code fragments that provide some insights
into how the models described in this section have
been implemented.

(a) single cylinder engine (b) one cylinder

(c) cylinder contents (d) combustion model

Figure 2. Schematic representations of the engine model hierarchy

Spark−Ignited−Engine Cycle Simulation in Modelica Newman C.E., Batteh J.J., Tiller M.

Modelica 2002, March 18−19, 2002 138 The Modelica Association

4 Thermodynamic Properties

4.1 The "MediumModel" Idiom
Different engine simulation applications require
different levels of detail. One of the important
determinations to be made is what level of detail is
required in computing the thermodynamic
properties of the cylinder contents. In some cases,
we can treat the medium flowing through the
engine as simply air but in other cases we might
need to allow for changes in composition of the
gas that would require tracking several chemical
species.

At first glance, it would appear that different
component models (e.g. valves, control volumes)
would be required for each of the possible media.
But if we look carefully at the issue, we find that
the properties of the selected medium are
orthogonal to the equations of the various
thermodynamic processes. In other words, if the
models are formulated correctly, the choice of
media can be made independently of the
components used to model the engine cycle.

In practice, this is achieved by using what we refer
to as the MediumModel idiom. The basic idea
behind this idiom is to define a partial
package that describes the interfaces of the
various models, connectors, etc. that will be
required to implement all of our component
models. However, no implementation is provided
by this partial package. This is essentially a
Modelica adaptation of the "Kit" or "Abstract
Factory" pattern found in [13]. In the same way
that a "Kit" might be used as a means of
instantiating compatible GUI toolkit components
such as scrollbars, menus, etc., the
MediumModel is used to instantiate consistent
sets of property models, connectors, etc.

The complete definition of the MediumModel
package definition is too lengthy to include here,
but it consists mainly of three things. First, it
contains a partial model definition that
defines the interface for computing medium
properties. Second, it contains partial
connector definitions that include the
appropriate number of chemical species flowing
between components. Finally, it contains several
partial function definitions for computing
useful quantities (e.g. air fuel ratio) using medium
composition information.

4.2 Property Calculations
As discussed previously, the conservation of
energy for the various combustion zones in the
cylinder is at the heart of the cycle simulation tool.
In addition, a specific medium model is needed to
determine the thermodynamic properties (e.g.
specific enthalpy, h, and specific internal energy, u)
of the cylinder contents used in Eqs. (4), (7).

In simple combustion simulations the cylinder
contents can be treated as a single ideal gas.
Constructing a medium model for a single ideal
gas is relatively easy. Since the thermodynamic
properties vary as a function of temperature only,
they can be calculated from a look-up table or a
polynomial regression of tabulated data. However,
for detailed combustion systems the medium is
assumed to be a reacting mixture of ideal gases
(e.g. the fuel vapor, air, and combustion products).
Therefore, in order to compute the contribution of
each species to the mixture property we must first
determine the relative amounts of the various
species in the mixture. This calculation requires the
solution of the nonlinear system of equations that
define chemical equilibrium for the mixture.

The steps required for the property calculation are
detailed in [11] and can be summarized as follows:

1. Solve the nonlinear system of equations that
defines chemical equilibrium for the
combustion mixture to yield the mixture
composition

2. Calculate the contribution of each species to
the mixture property

3. Calculate the mixture property from the
individual species contributions and the
mixture composition

While the calculations in steps 2 and 3 above are
simple evaluations, the nonlinear solution of the
chemical equilibrium problem is certainly
nontrivial. In the GESIM property models the
combustion products are comprised of twenty-one
species; thus, obtaining the mixture composition
requires the solution of a set of twenty-two
nonlinear equations for chemical equilibrium.
Furthermore, recall that h and u are functions of P,
T, and φ (the equivalence ratio of the combustion
products). Therefore, the property calculations,
including the determination of the equilibrium
composition, must be computed for each
thermodynamic zone in the engine model
whenever there is a change in the pressure,

Newman C.E., Batteh J.J., Tiller M. Spark−Ignited−Engine Cycle Simulation in Modelica

The Modelica Association 139 Modelica 2002, March 18−19, 2002

temperature, and/or composition of any of the
thermodynamic zones.

While this method for calculating the mixture
properties could be implemented directly in
Modelica, it would require the cycle simulation
tool to repeatedly compute the solution of the
chemical equilibrium problem, a formulation that
has several drawbacks. First, the repeated solution
of the nonlinear equations used to determine the
equilibrium chemistry is computationally
demanding when compared to the other behavior
equations involved, a formulation which would
result in slower simulation times. In addition, the
chemical systems introduce other issues such as
robustness of the nonlinear solution method and
scaling of the chemical concentrations. So, rather
than calculate the needed properties on-demand
during the simulations, an alternative approach is
to pre-compute the properties throughout the
expected domain of operation and simply
interpolate as needed during the simulations. The
ModelicaAdditions package contains a
Tables package that includes models for linear
interpolation in one and two dimensions,
CombiTable1D and CombiTable2D
respectively. However, the mixture properties are
functions of three variables (P, T, and φ). Even tri-
linear interpolation would not suffice as continuity
of the mixture properties and gradients could not
be insured. It can be shown [11] that this
continuity in gradients is important for fast and
accurate simulation. Furthermore, maintaining
continuous gradients allows for index reduction in
Modelica and would certainly be of benefit to the
numerical integration schemes in Dymola [12].

As a result, higher order interpolation schemes are
required to provide the desired continuity. They
involve the construction and evaluation of
polynomials to yield the interpolated values and
are more difficult to implement since more
information is needed about the function other than
simply its value at each grid point (i.e. the
derivatives of the function, additional function
values at adjoining cubes, etc.).

Though not detailed in this work, a flexible
modular scheme has been developed to
automatically formulate the chemical equilibrium
problem and solve for the equilibrium chemistry
and mixture properties over a wide range of engine
operating conditions (P, T, and φ). The remainder
of this section discusses the implementation of a
higher order interpolation scheme in Modelica with

the assumption that a file has been created that
contains all the necessary data to perform the
interpolation.

4.3 Hermite Interpolation
Based on the requirements detailed in the previous
section, the interpolation scheme must be three-
dimensional and provide continuity of the
interpolated function value and its derivative. One
scheme that satisfies those criteria is Hermite
interpolation [14]. The Hermite interpolating
function for a generic property p is defined in
standard tensor notation as follows:

() () () () lmnbwFvFuFwvup nml=,, (33)

where the following vectors define the cubic
blending functions:

()
()
()
() 23

4

23
3

23
2

23
1

2

32

132

uuuF

uuuuF

uuuF

uuuF

−=

+−=

+−=

+−=

 (34)

and similarly for Fm(v) and Fn(w). The blending
functions clearly show the cubic nature of the
interpolating polynomial and are evaluated based
on the point within the cube at which the
interpolated value is sought, denoted by the star in
Figure 3.

Figure 3. Hermite interpolation cube

The tensor blmn is comprised of externally-
provided data about the function p and its
derivatives, data that is required at the eight cube
vertices shown and labeled in Figure 3. The data
consists of eight pieces of information at each of
the eight vertices, a total of 64 pieces of
information for a single cube: the function value,
three tangent vectors, three twist vectors, and a
vector defined by the third-order mixed partial

(i,j+1,k)

(i+1,j,k+1)

(i+1,j,k)
u

v
w

(i,j,k)

(i+1,j+1,k)

(i+1,j+1,k+1)
(i,j+1,k+1)

(i,j,k+1)

Spark−Ignited−Engine Cycle Simulation in Modelica Newman C.E., Batteh J.J., Tiller M.

Modelica 2002, March 18−19, 2002 140 The Modelica Association

derivative of the function. See [14] for a complete
description of the Hermite interpolation scheme
and data required.

Clearly a significant amount of data is required for
the interpolation of the thermodynamic properties
h and u. With some symbolic manipulation of the
property equations, it is possible to derive all the
necessary function and derivative data analytically
without resorting to numerical differentiation. This
data is available to Modelica in the form of a
Matlab .mat file. A typical 30 x 45 x 45 data file
is approximately 7.6 MB.

4.4 Modelica Implementation
Once we have decided on an appropriate
interpolation scheme and collected all the property
data required, the next step is to implement the
interpolation scheme so that it can be used from
within our Modelica models. In our
implementation, the interpolation and gradient
calculations (associated with the interpolation
function via the derivative annotation) were
written in "C". These functions are then called as
external functions by native Modelica
functions.

While the steps required are straightforward, there
are several implementation details worth
discussing. For example, in order to perform the
interpolation, the property data must be loaded and
made available to the "C" language routines.
Rather than load the data (which is quite
voluminous) into Modelica arrays and pass it as an
argument to the various functions, we chose
instead to load the data into memory and simply
refer to it using an integer identification number.
As a result, the only data passed around in the
Modelica models is the unique ID number that
identifies where the data can be found in memory.
In the future, the interpolation routines will be
upgraded to use the newly adopted
ExternalObject class in Modelica 2.0 [8] that
was introduced to provide more direct support for
these kinds of applications.

Another issue with the interpolation routines is to
improve performance by implementing some form
of caching mechanism. There are two reasons to
implement a cache mechanism. First, the
simulation tool may not entirely optimize away
redundant function calls (i.e. calls with the same
arguments and therefore the same results). In such
cases, a cache can be used to store previous results

and avoid expensive recalculations. Another
reason to implement a cache is to allow for
common calculation to be shared among the
various interpolation-related functions. For
example, calculating the gradient of the
interpolating function requires much of the same
data as the function evaluation itself. These
common quantities can also be stored in a cache
and reused across calculations.

Once we have implemented the interpolation
routines, we can move on to implementing a
medium model that utilizes these interpolation
routines. This calculation involves two different
interpolations. First, the properties of the gaseous
air-fuel mixture (which is treated as a non-reacting
mixture of ideal gases) can be computed via
interpolation in temperature. Then, the properties
of the reacting combustion products are computed
using interpolation in pressure, temperature and
equivalence ratio. These two sets of properties are
then combined to form a single set of properties for
the entire air, fuel and combustion products
mixture.

Although we implemented our own interpolation
routines for this purpose, we will work toward
incorporating similar functionality into the
Modelica Standard Library so that the routines can
be more fully optimized and so that future users
will be able to simply reuse what is in the library
rather than having to create their own.

5 Cycle Simulation Results
The single-cylinder Modelica model was run for 1
second of simulation time at 1500 rpm at slightly
lean conditions. By the end of the tenth engine
cycle, approximately 0.8 seconds, the model has
effectively converged to "steady-state"; i.e., each
cycle is a repeat of its predecessor. Some results
for the tenth cycle are shown in Figures 4-5.

Figure 4 plots the temperature of all three zones.
During mixture preparation the temperatures are
equal, as is required. At spark, they separate, with
the adiabatic temperature exceeding 2600 K, the
unburned zone peaking at around 900 K, and the
boundary layer achieving a value in between.
These temperatures agree well with those
computed in GESIM and are typical of those
encountered in spark-ignited engines. At EVO,
when the zones are remixed, all temperatures again
quickly collapse to a single value, as expected.

Newman C.E., Batteh J.J., Tiller M. Spark−Ignited−Engine Cycle Simulation in Modelica

The Modelica Association 141 Modelica 2002, March 18−19, 2002

The volumes of the three zones, along with the
total chamber volume, are plotted in Figure 5.
Since some of the zones during parts of the cycle
are artifices of our modeling approach, we cannot
use measurements or GESIM to gauge their
accuracy. However, they do behave as anticipated.
During mixture preparation, when the adiabatic
zone and the boundary layer do not appear in
GESIM, their volumes are indeed insignificant.
When combustion begins those two zones grow
rapidly at the expense of the unburned zone,
eventually reducing the size of the latter to
insignificance at the end of combustion. At EVO,
when the zones are remixed, all zones quickly
revert to their values for mixture preparation.

6 Conclusions
This paper outlines the handling of zone
formation/destruction and calculation of realistic
thermodynamic properties of the cylinder contents
in Modelica for engine cycle simulation. The
results illustrate that Dymola and Modelica are
capable of handing the complex physical models
required for predictive cycle simulation.
Furthermore, the techniques used provide
illustrative examples for the handling of similar
behavior in different applications.

Acknowledgements
The authors would like to acknowledge Dr. Anne
Marsan at Ford Research Laboratories for the
helpful discussions on geometry and interpolation.
In addition, we would also like to acknowledge the
support provided by Dynasim AB during the
development of these models.

References
1. Heywood, J.B., 1988, Internal Combustion Engine

Fundamentals. McGraw-Hill.
2. Tiller, M. M., 2001, Introduction to Physical

Modeling with Modelica. Kluwer.
3. Borgnakke, C., et al., 1980, "A Model for the

Instantaneous Heat Transfer and Turbulence in a
Spark Ignition Engine," SAE-80-0287, Society of
Automotive Engineers.

4. Newman, C.E., et al., 1989, "The Effects of Load
Control with Port Throttling at Idle---
Measurements and Analyses", SAE-89-0679,
Society of Automotive Engineers.

5. Brehob, D. D., and C. E. Newman, 1992, "Monte
Carlo Simulation of Cycle by Cycle Variability,"
SAE-92-2165, Society of Automotive Engineers.

6. Miller, R., et al., 1998, "Comparison of
Analytically and Experimentally Obtained Residual
Fractions and NOx Emissions in Spark-Ignited
Engines", SAE-98-2562, Society of Automotive
Engineers.

7. Modelica Association, 2000, "Modelica Language
Specifications (Version 1.4)", www.modelica.org.

8. Modelica Association, 2002, "Modelica Language
Specifications (Version 2.0)", www.modelica.org.

9. Tiller, M.M., et al., 2000, "Detailed Vehicle
Powertrain Modeling in Modelica", Modelica
Workshop 2000 Proceedings, pp. 169-178.

10. Bowles, P., et al., 2001, "Feasibility of Detailed
Vehicle Modeling", SAE-2001-01-0334, Society of
Automotive Engineers.

11. Olikara, C. and Borman, G. L., 1975, "A Computer
Program for Calculating Properties of Equilibrium
Combustion Products with Some Applications to
I.C. Engines", SAE-75-0468, Society of
Automotive Engineers.

12. Dymola. Dynasim AB, Lund, Sweden,
www.dynasim.se.

13. Gamma, E., 1995, Design Patterns. Addison-
Wesley.

14. Mortenson, M.E., 1985, Geometric Modeling. John
Wiley and Sons.

0.76 0.77 0.78 0.79 0.8 0.81 0.82 0.83 0.84
0

500

1000

1500

2000

2500

3000

Time [s]

T
em

pe
ra

tu
re

 [K
]

Unburned zone
Boundary layer (burned)
Adiabatic core (burned)

Figure 4. Zone temperatures (converged cycle)

0.76 0.77 0.78 0.79 0.8 0.81 0.82 0.83 0.84

0

1

2

3

4

5

6
x 10

−4

Time [s]

V
o
lu

m
e
 [

m
3
]

Chamber (total)
Unburned zone
Boundary layer (burned)
Adiabatic core (burned)

 Figure 5. Zone volumes (converged cycle)

Spark−Ignited−Engine Cycle Simulation in Modelica Newman C.E., Batteh J.J., Tiller M.

Modelica 2002, March 18−19, 2002 142 The Modelica Association

Code Fragments
This section contains code fragments to illustrate
some of the points raised during discussion of zone
formation and destruction.

constant Integer mixprep=1;
constant Integer ignstep1=2;
constant Integer ignstep2=3;
constant Integer propagating=4;
constant Integer expanding=5;
parameter Modelica.SIunits.Time tau=1e-4;
parameter Modelica.SIunits.Time ign_delta=1e-6;
Integer status;
discrete Modelica.SIunits.MassFlowRate

ignition_rate "Combustion rate during ignition";
discrete Modelica.SIunits.Time endstep(start=tau);

equation
mix_zones.mix.signal[1] = status == mixprep;
mix_zones.tfinal.signal[1] = endstep;
kernel_burn.burn.signal[1] = status == ignstep1;
kernel_burn.burn_rate.signal[1] = burn_rate;
flameadv.burn.signal[1] = status == ignstep2 or

status == propagating;
flameadv.burn_rate.signal[1] = burn_rate;

.

.

.

if status == ignstep1 or status == ignstep2 then
burn_rate = pre(ignition_rate);

elseif status == propagating then
// post_ignition_rate is computed by flame
// propagation model
burn_rate = post_ignition_rate;

else
burn_rate = 0.0;

end if;

algorithm
when status == mixprep and spark.signal[1] then

status := ignstep1;
endstep := time + ign_delta;
kernel_mass := pre(burned_mass);
ignition_rate := kernel_mass/ign_delta;

end when;

when status == ignstep1 and time > endstep then
status := ignstep2;
endstep := time + ign_delta;
ignition_rate := pre(burned_mass)*

(2.0*initial_kernel_size/pre(burnedV) -
1.0)/ign_delta;

end when;

when status == ignstep2 and
(time > endstep or
burnedV/initial_kernel_size > 1.0) then

status := propagating;
end when;

when status <> mixprep and
endofexpansion.signal[1] then

status := mixprep;
end when;

when status == mixprep then
endstep := time + tau;

end when;

Figure 6. Excerpt from the combustion model

parameter Modelica.SIunits.Volume Vbtarget
"Unburned kernel size";

constant Integer nindep=MediumModel.nspecies - 1
"Number of independent species fractions";

discrete Modelica.SIunits.Time endstep;
Modelica.SIunits.MassFraction dX[nindep];
Modelica.SIunits.Temperature dT=a.T - b.T;
Real dV=1.0 - Vbnorm;
Real Vbnorm(start=5, fixed=true);
discrete Modelica.SIunits.Temperature deltaT;
Modelica.SIunits.MassFraction deltaX[nindep];
discrete Real deltaV
discrete Real r;
Real rate_expr;

.

.

.

equation
// component a refers to the unburned zone, b to
// the burned zone
a.P = b.P;
a.q + b.q = 0.0;
a.mdot = -b.mdot;
// volume_b.signal[1] is the volume of the
// burned zone
Vbnorm = volume_b.signal[1]/Vbtarget;
rate_expr = 2.0*r^2*min(0.0, time - pre(endstep));
dX = a.X[1:nindep] - b.X[1:nindep];
if mix.signal[1] then // true at EVO

der(dV) = pre(deltaV)*rate_expr;
der(dX) = pre(deltaX)*rate_expr;
der(dT) = pre(deltaT)*rate_expr;

else
a.q = 0.0;
a.mdot = zeros(MediumModel.nspecies);

end if;

algorithm
when mix.signal[1] then

deltaX := dX;
deltaT := dT;
deltaV := dV;
endstep := tfinal.signal[1];
r := 1.0/(endstep - time);

end when;

Figure 7. Excerpt from the mix_zones model

equation
// Component medium is the burned zone
if burn.signal[1] then

// MediumModel.BurnMixture computes the
// composition after a given mixture is burned
medium.mdot = burn_rate.signal[1]*

(Xbase - MediumModel.BurnMixture(Xbase);
else

medium.mdot = zeros(MediumModel.nspecies);
end if;
medium.q = 0.0;

algorithm
when burn.signal[1] then

Xbase := medium.X;
end when;

Figure 8. Excerpt from the kernel_burn model

equation
a.q + b.q = 0;
if burn.signal[1] then

a.q = burn_rate.signal[1]*a.h;
a.mdot = burn_rate.signal[1]*a.X;
// MediumModel.BurnMixture computes the
// composition after a given mixture is burned
b.mdot = -burn_rate.signal[1]*

MediumModel.BurnMixture(a.X);
else

b.q = 0;
a.mdot = zeros(MediumModel.nspecies);
b.mdot = zeros(MediumModel.nspecies);

 end if;

Figure 9. Excerpt from the flameadv model

The Modelica Association 143 Modelica 2002, March 18−19, 2002

Session 6b

Thermodynamic Systems I

Modelica 2002, March 18−19, 2002 144 The Modelica Association

Pfafferott T., Schmitz G. Modeling and Simulation of Refrigeration Systems with the Natural ...

The Modelica Association 145 − 1 Modelica 2002, March 18−19, 2002

Modeling and Simulation of Refrigeration
Systems with the Natural Refrigerant CO2

Torge Pfafferott� Gerhard Schmitz†

Technical University Hamburg–Harburg (TUHH)
Department of Technical Thermodynamics (6-08)

March 2002

Abstract

This papers presents the current results of the develop-
ment of a ModelicaTM library for CO2-Refrigeration
systems based on the free Modelica library Ther-
moFluid.
The development of the library is carried out in a re-
search project of EADS Airbus and the TUHH and is
focused on the aim to get a library for detailed numer-
ical investigations of refrigeration systems with the re-
discovered, natural refrigerant carbon dioxid (CO2).
A survey of the CO2-Library is given and the modeling
of CO2-Heat exchangers is described in detail. A com-
parison with steady state results of heat exchangers is
presented and results of a transient simulation run are
discussed with respect to plausibility.

1 Introduction

The fact of climate changes due to ozone depletion and
globale warming has been directed to significant re-
search activities on the field of refrigeration and air-
conditioning since the 1990s [7]. The objective of
the investigations may yield to a long-term solution.
Therefore so called natural, resp. alternative refriger-
ants with no Ozone Depleting Potential (ODP) and no
or a very low Global Warming Potentail (GWP) are in-
vestigated and new technical developments are driven.
Carbon dioxid (CO2, R 744) as a natural refrigerant
was rediscovered and has recently a very high potential
to substitute currently used refrigerants in the area of
mobile/automotive air-conditioning and refrigeration.
This development is caused by the excellent thermody-
namic, transport and environmental properties of CO2.
Due to the critical data of CO2 the process must be re-

�pfafferott@tu-harburg.de
†schmitz@tu-harburg.de

alized as a transcritical cycle, which requires special
control strategies.
In order to obtain a better understanding of the com-
plex thermodynamic and hydraulic behaviour of CO2-
Refrigeration processes under steady and dynamic
boundary conditions the modeling of components of a
CO2-System has been realized. A CO2-Model library
in ModelicaTM was built up by using base classes
of the free Modelica library ThermoFluid [14]. The
scope of the CO2-Library is the modeling of the sys-
tem behaviour by consideration of the most important
physical effects like compressible flow, heat transfer,
pressure drop, large capacities and time delays.
The development of a CO2-Library is carried out in a
research project of European Aeronautic Defence and
Space Company (EADS) Airbus and the Department
of Technical Thermodynamics of the Technical Uni-
versity Hamburg–Harburg (TUHH). The main objec-
tive of the project is a proof of concept of a CO2 based
integrated cooling system on board of future airliners.
For this purpose numerical and experimental investi-
gations are in progress.

2 Carbon dioxid as refrigerant

Carbon dioxid was used as a refrigerant until the
1930s, but was then replaced by the synthetical refrig-
erants (HCFCs) that offered lower absolute pressures,
simpler techniques and higher efficiencies in conven-
tional vapor compression cycle. Due to the ODP and
the GWP of the synthetical refrigerants substantial re-
search activities on the field of refrigerants are initiated
since the 1990s. Recent research on carbon dioxid is
pushed for mobile, resp. automotive air-conditioning
and refrigeration and has focused on the development
of a transcritical cycle [2]. Figure 1 illustrates the
GWP for the three refrigerants R 12, R 134a and CO2;
the use of R 12 is forbidden in europe since the be-

Modeling and Simulation of Refrigeration Systems with the Natural ... Pfafferott T., Schmitz G.

Modelica 2002, March 18−19, 2002 145 − 2 The Modelica Association

ginning of 1990s. The refrigerant R 134a today is
the most common refrigerant in mobile and automo-
tive air-conditioning systems.

Figure 1: GWP of three different kind of refrigerants;
GWP is standarised to 1 for CO2

2.1 CO2-Refrigeration cycle

The temperature and pressure at the critical point of
CO2 are 304,13 K and 73,77 bar. Therefore, the re-
frigerant cycle has to be operated transcritically when
the ambient temperature is near or higher than the crit-
ical temperature. In this case the evaporation takes
place at subcritical pressure and temperature and the
heat rejection at supercritical state. At the supercriti-
cal status area pressure and temperature are not cou-
pled anymore; so a CO2-System has one more degree
of freedom than conventional vapour compression cy-
cles.

Cooling
Medium

Valve
Expansion

Evaporator

Ambient Air

M

21

34

5

6

Heat Exchanger
Internal

Receiver

Gas Cooler

Compressor

Figure 2: Schematic diagram of a CO2-Refrigeration
cycle

As shown in figure 2, the main components of a CO2-
Refrigeration cycle are compressor, gas cooler (instead
of a condenser because of the supercritical heat rejec-

tion, that occurs sometimes), internal heat exchanger,
expansion valve, evaporator and low-pressure receiver.
The process path of a transcritical CO2-Cycle is shown
in figure 3. The path represented by 1-2-3-4-5-6 shows
compression (1-2), isobaric heat rejection at gas cooler
(2-3), isobaric cooling in the internal heat exchanger
(3-4), adiabatic expansion (4-5), isobaric evaporation
(5-6) and isobaric superheating at internal heat ex-
changer (6-1). In steady state the low-pressure receiver
has no influence of the process. For more detailed ex-
planation of the CO2-Cycle see [6], [5].

150 200 250 300 350 400 450 500 550
20

30

40

50

60

70

80

90

100

110

120

130

Enthalpy in kJ/kg

P
re

ss
ur

e
in

 b
ar

50kg/m
3

10
0k

g/m
3

20
0k

g/
m

3

30
0k

g/
m

3

40
0k

g/
m

3

50
0k

g/
m

3

60
0k

g/
m

3

80
0k

g/
m

3

90
0k

g/
m

3

10
00

kg
/m

3

30
°C

20
°C

10
°C

0°
C10

°C

13
0°

C
12

0°
C

11
0°

C

10
0°

C

90
°C

80
°C

70
°C

60
°C

50
°C

40
°C

x=
0.

1

x=
0.

2

x=
0.

3

x=
0.

4

x=
0.

5

x=
0.

6

x=
0.

7

x=
0.

8

x=
0.

9 1

234

5
6

Figure 3: p,h-Diagram with states of a CO2-
Refrigeration cycle

3 CO2-Library

The aim of the modeling is to create a library with
physical based models of the above mentioned com-
ponents. Such a library with models of these com-
ponents and of additional components for testing, like
sinks and sources, can be used for investigations of
both, single components and complete refrigeration
cycles. Furthermore it is of great interest to make dy-
namic simulation as well as steady state simulation of
CO2-Systems and single components, especially heat
exchanger. Up to now, there is no commercial or free
available simulation tool enabling dynamic and steady
state simulation of CO2-Cycle and -Components with
only physical based models. There are some tools for
steady state simulation but they need measured chara-
teristics of the heat exchangers as an input.
The numerical investigation of heat exchanger com-
ponents is of particular interest to find optimized heat
exchangers for limited space. On the other hand the

Pfafferott T., Schmitz G. Modeling and Simulation of Refrigeration Systems with the Natural ...

The Modelica Association 145 − 3 Modelica 2002, March 18−19, 2002

concept of connectors in Modelica provides the oppor-
tunity using the same heat exchanger models for single
component simulation as well as for a complex cycle
simulation.
There are different backgrounds for modeling and
simulation of complex, closed CO2-Refrigeration cy-
cles. The first aim is a better understanding of the
complex, coupled thermodynamic, fluidmechanic and
heat transfer effects in a transcritical operating CO2-
System. Here the influence of some typical sys-
tem parameters like compressor speed, heat exchanger
and receiver geometry and refrigerant filling can be
tested. Furthermore aspects of the control of the sys-
tem should be investigated. Finally, the library is used
for simulation and evaluating of different system de-
sign in various applications.
The library is based on free Modelica library Ther-
moFluid. The ThermoFluid library, especially the
base classes and partial components, is in regard to
the implementation of the three balance equations (en-
ergy, mass, momentum) and the method of discretiza-
tion (finite volume) very well suited for modeling of
CO2-Systems. In cooperation with the developers
of ThermoFluid a high accuracy medium model for
CO2 based on an equation of state was implemented
for the whole fluid region [9].

3.1 Survey of CO2-Library

So far, the following models and classes have been im-
plemented:

� Heat transfer and pressure loss relations for
the whole fluid region:
This constitutive equations are used for the calcu-
lation of heat flux and pressure drop due to fric-
tion, which are added to the balance equations of
energy and momentum [10], [11].

� Models for the air side of heat exchangers:
The balance equation of energy is implemented
by the finite volume method [8]; well suited heat
transfer correlations for the air side have been im-
plemented [4].

� Pipes and heat exchangers:
Based on the medium model, classes of Ther-
moFluid, the heat transfer and pessure drop cor-
relations and the air side models pipes and heat
exchangers have been modelled. The pipes are
modelled with discretized parameters.

� Compressor:
The model is made for a reciprocating compres-
sor. Therefore, the mass flow is calculated by
the general equation of a reciprocating compres-
sor and enthalpy change is calculated according
to the isentropic efficiency. The compressor is
modelled with lumped parameters.

� Expansion valve:
The throttling process is treated as isenthalpic and
the pressure drop is calculated according to the
flow coefficient of the valve [1]. The flow coeffi-
cient results by the specific valve contruction and
the opening ratio of the valve. Therefore, the flow
characteristic of the valve has to be known and
the model has to be parameterized with the cor-
responding values. For the valve model lumped
parameters are used.

� Receiver:
Up to now, a simple receiver model is imple-
mented. The model seperates the incoming two
phase flow into its vapour and liquid phase. As
long as the liquid level of the receiver is lower
than the outlet height saturated vapour leaves;
if the liquid level reaches the outlet height a
two phase flow leaves up to a height only liq-
uid leaves. Due to the sophesticated construction
of CO2-Receivers in most of the operating modes
a two phase flow leaves the receiver even if the
liquid level is much lower the outlet height. It
seems to be not easy to model this components
with physical correlations; so the modelling is in
progress.

� Flow splits and junctions:
For this models classes of ThermoFluid are used;
for the pressure drop in the momentum equation
special correlations for splits and junctions have
been implemented taking the ratio of mass flow
into account [3]. The change of mass flow direc-
tion is taken under account in the implementation.

4 Examples of Modeling

4.1 Modeling of heat exchangers

So far, available heat exchangers for CO2-
Refrigeration systems are compact prototype
components from the automotive application, see
figure 4. The heat exchangers are built up as follows:
The CO2-Flow is splitted in different streams through
so called Flat-Tubes (or Multiport-Micro-Tubes),

Modeling and Simulation of Refrigeration Systems with the Natural ... Pfafferott T., Schmitz G.

Modelica 2002, March 18−19, 2002 145 − 4 The Modelica Association

see figure 5. The Flat-Tubes consists of a number of
parallel bores in which the CO2 flows. The refrigerant
is splitted and collected at the feeder and manifold
of the heat exchangers. Outside the heat exchanger
air passes over slitted fins enhancing the air side heat
transfer area and heat transfer coefficient, see figure 6.

Figure 4: CO2-Gas cooler

Figure 5: Cross section of a Flat-Tube

In a heat exchanger different flow pathes for the
CO2 are possible; usually gas coolers are constructed
as crossflow and evaporators are built up as cross-
counterflow heat exchangers. In figure 7 the schematic
flow path of CO2 through a crossflow heat exchanger
is shown; e.g. here the CO2has three transits through
the heat exchanger. At every transit the CO2-Flow is
splitted in a number of parallel Flat-Tubes, the bores
of every Flat-Tube are flowed through concurrent.
For the modeling of the CO2-Flow a homogenous dis-
tribution of the flow is supposed. By this assump-
tion the flow is modelled by one single pipe. The

Figure 6: Slitted fins

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

Mass flow air

CO

CO Inlet2

2 Outlet

Figure 7: Flow path through a cross flow heat ex-
changer

heat transfer area and the flow cross section are deter-
mined by the geometry and the number of all concur-
rent flowed pipes; whereas the heat transfer coefficient
and the pressure loss is calculated with the mass flow
rate and the geometry of a single bore.

The assumption of homogenous mass flow and tem-
perature distribution is also made for the air side.
Therefore, it is possible to model the air flow through
one air channel. In the modeling can be assumed that
the slitted fins and the Flat-Tubes create a triangular
channel, see figure 6. So the total mass flow of air is
scaled down to the mass flow through one channel by
division through the total number of air channels of the
heat exchanger. At the air side only the energy balance
equation is implemented by the finite volume method.
The medium properties are introduced by polynomi-

Pfafferott T., Schmitz G. Modeling and Simulation of Refrigeration Systems with the Natural ...

The Modelica Association 145 − 5 Modelica 2002, March 18−19, 2002

nales fitting the properties well in the temperature in-
tervall of 253.15 K to 342.15 K. Because the air side
heat transfer is much lower than on the refrigerant side,
a detailed physical model based on characteristic num-
bers and geometry parameters and validated on exper-
imental investigation has been found by a literature re-
view and is implemented [4].
The wall model is taken from the ThermoFluid library.
It is modeled as a capacitive, cylindric wall.
This specific models of CO2-Pipe, wall and air have
to be connected in the right way to get a reasonable
model of a heat exchanger. For the connection the heat
connectors of ThermoFluid can be used; the conneting
variables are temperature and heat flux. The imple-
mentation, especially the connection is as follows:
First the same number of air channel objects is created
like the dicscretization number of the pipe and wall.
The air channel model itself can be discretized in air
flow direction with another number. At the connection
to the air side the calculation of the heat flux for one
single air channel has to be taken into consideration.
Therefore it has to be scaled up by a factor of the
numbers of total air channels and the discretization
number. In the modeling a class is programmed
where the air channel objects are declared and where
the scaling is programmed. Furthermore, every air
channel object is connected with the wall temperature
of the equivalent, discretized wall element. So every
volume of a discretized air channel gets the same wall
surface temperature. The following code example
shows this implementation; here geoHX.pipe n means
the discretization of pipe and wall and geoHX.AC
means the discretization of air flow:

model AirChannelDCrossFlow
....
Co2Flow.Air.DiscAirChannelDDry
AirChannels[geoHX.pipe_n] ;
ThermoFluid.Interfaces.HeatTransfer.HeatFlowD
AirHT(n=geoHX.pipe_n) "Heat connector";

equation
for ac in 1:geoHX.pipe_n loop

for i in 1:geoHX.AC_n loop
AirChannels[ac].T_W[i] = AirHT.T[ac];

\\ Air surface temp. connected
\\ with heat connector

end for;
...
AirHT.q[ac] = AirChannels[ac].Q_dot_total*

geoHX.total_channels/geoHX.pipe_n;
\\ Heat flow at the connector is scaled

end for;
....

end AirChannelDCrossFlow;

A schematic illustration of the modeling idea and the
connections is shown in figure 8. The implementation

of a heat exchanger in Modelica is shown in figure 9 as
the graphical representation in the modeling and sim-
ulation tool DymolaTM.
The implementation of a cross counter heat exchanger
can be realized now easily. Only the connections of
temperature and heat flow have to change in the class
AirChannelDCrossFlow in a specific way.

����
����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

����
����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

����
����
����

����
����
����

���
���
���
���

�������������������������
�������������������������
�������������������������
�������������������������

CO2-Pipe

HeatConnector

Wall

Air channel

T_W[1:3] = AirHT.T[1] T_W[1:3] = AirHT.T[2] T_W[1:3] = AirHT.T[3]

AirChannelDCrossFlow

m
2CO

.

m
.

air, total

HX-Airchannels

,total

Figure 8: Schematic illustration of the modeling of
heat exchangers

Figure 9: Graphical representation of the heat ex-
changer model

4.1.1 Comparison of steady state simulation and
measurement

With these models simulations in a test configuration
have been run. The test configuration consists of a
source providing pressure and enthalpy at the heat ex-
changer inlet and a mass flow sink generating a defined
mass flow at the outlet. The source and sink are used

Modeling and Simulation of Refrigeration Systems with the Natural ... Pfafferott T., Schmitz G.

Modelica 2002, March 18−19, 2002 145 − 6 The Modelica Association

to set the boundary conditions resulting from the mea-
sured data at the component.

The following comparison is made for a crossflow
gas cooler and cross-counter flow evaporator from the
CO2-Experimental system built up at the Department
of Aircraft Systems Engineering of the TUHH. The
geometry parameters of the components are known. In
the tables 1 and 2 the measured data and the results of
the simulations at the point of steady state are shown.

The comparison of experimental data and simulation
results shows a very good correspondence, especially
if you take under account that the printed experimental
data are taken as is. The tolerance of the sensors has
not been taken into account, yet.

Table 1: Comparison of measured data at a gas cooler
with simulation results in steady state

Boundary conditions from measured data
ṁair ṁCO2 p̄CO2 TCO2�in hCO2�in Tair�in

[kg/s] [kg/s] [bar] [K] [kJ/kg] [K]

0,605 0,013 96,0 395,4 538,5 308,9
0,593 0,032 87,5 355,0 487,2 312,9
0,598 0,036 88,3 373,4 513,8 312,9

Measured data Simulation
TCO2�out Tair�out Q̇CO2 TCO2�out Tair�out Q̇CO2

[K] [K] [kW] [K] [K] [kW]

309,5 315,7 -3,02 312,7 313,5 -2,85
314,7 320,2 -3,45 316,2 318,0 -3,14
315,3 323,3 -4,99 317,4 320,0 -4,37

Table 2: Comparison of measured data at an evapora-
tor with simulation results in steady state

Boundary conditions from measured data
ṁair ṁCO2 p̄CO2 TCO2�in hCO2�in Tair�in

[kg/s] [kg/s] [bar] [K] [kJ/kg] [K]

0,21 0,032 49,1 286,7 295,3 301,6
0,21 0,036 40,3 278,7 281,3 294,7
0,21 0,013 34,6 272,9 222,1 285,2

Measured data Simulation
hCO2�out Tair�out Q̇air hCO2�out Tair�out Q̇CO2

[kJ/kg] [K] [kW] [kJ/kg] [K] [kW]

372,8 289,85 -2,48 374,8 289,6 2,54
357,4 281,95 -2,74 357,4 282,0 2,75
378,2 277,65 -2,03 380,3 275,6 2,04

4.2 Implementation of constitutive equations

In order to obtain a most physical modeling of
CO2 flow through pipes and any kind of heat exchang-
ers constitutive equations for pressure drop and heat
transfer for the whole fluid region are implemented ac-
cording to [11], [10]. A comparison of implemented
relations with experimental data from the SINTEF
[12] shows a good correspondence [13]. The pressure
drop and heat transfer correlations are empirical equa-
tions which only are exactly valid for steady state. Due
to the fact that such correlations for dynamic state are
not available it seems to be the best and a very com-
mon method for describing these effects in a dynamic
simulation.
The correlations have been implemented with regard
to numerical robustness and simulation time. At
the foldover between laminar and turbulent flow the
describing empirical equations of heat transfer and
pressure drop have no steady transition. By avoiding
event iterations in this case a function for the smooth
transition has been implemented. The unsteady tran-
sition of the pressure drop coefficient at a Reynolds
number of 2300 is shown in figure 10 with a solid line.
The dashed line between Reynolds numbers of 2000
and 3000 shows the run of the interpolated pressure
drop coefficient. The interpolation function fullfills
the following requirments:

� The gradient inbetween the limits of validity is
always smaller than infinity.

� The gradient near the limits of the intervall is
nearly zero.

� Exactly at the limits of validity the interpolation
function calculates the exact value of the current
function.

The interpolation function is implemented by using
the tanh- and the tan-function as follows:

function Stepsmoother
//Interpolationsfunction to avoid event iterations

input Real func;
//value, where function value becomes 100%

input Real nofunc;
//value, where function value becomes 0%

input Real x;
//Variable generating the event

output Real result;
protected

Real m;
Real b;

algorithm
m := Pi/(func - nofunc);

Pfafferott T., Schmitz G. Modeling and Simulation of Refrigeration Systems with the Natural ...

The Modelica Association 145 − 7 Modelica 2002, March 18−19, 2002

b := -Pi/2 - m*nofunc;
result := (tanh(tan(m*x + b)) + 1)/2;

end Stepsmoother;

10
3

10
4

10
5

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Re

ξ

Re
krit

=2300

turbulent

laminar

Figure 10: Example for the unsteady transition of the
pressure drop coefficient (solid line) and the imple-
mented interpolation function (dashed line)

5 Simulation results of a CO2-System

In the following simulation results of the start up of a
CO2-System are presented. The results are discussed
with respect to plausibility since reliable data of tran-
sient processes from a test rig are only available for a
few weeks. The simulated model is shown in object di-
agram in figure 11. This configuration does not consits
a receiver since the receiver model is not implemented
in the right way, see subsection 3.1.
In table 3 the boundary conditions and initial values
are listed. The following boundary conditions are
changed during the simulation run:

� Start up of compressor speed n � 120 � 1000
rpm in 2 seconds;

� Variation of flow coefficient Kv � 0�03 �

0�02m3�h in 0,1 seconds starting at 60 seconds
simulation time.

5.1 Results

In figure 12 the pressure at compressor inlet and out-
let is plotted versus time. What can be seen from
the results is the divergent run of the pressures and a
typicall overshoot, resp. undershoot at the beginning.

Figure 11: Object diagram of simulated CO2-Cycle

Table 3: Boundary conditions and initial values of the
simulation run

Compressor λ� 0�75, ηis � 0�75
Gas cooler ṁair � 3200 kg/h, Tair�in � 305 K
Evaporator ṁair � 580 kg/h, Tair�in � 305 K
System volume Vtot � 1�13 l
Refrigerant filling 200 kg/m3

Initial value p0 � 66 bar, h0 � 420 kJ/kg

This system behaviour is plausible as well as the di-
vergent run of pressure after changing the flow coeffi-
cient of the valve. This can be made clear by looking
at the mass flow rates at the compressor and the ex-
pansion valve in figure 13. At the beginning the com-
pressor mass flow rate is much higher than the mass
flow at the valve. The compressor mass flow increases
proportional with the compressor speed, whereas the
flow rate at the valve just increases with the increasing
pressure difference at the valve. The difference be-
tween both mass flows effects a shifting of refrigerant
mass from the low pressure section to the high pres-
sure section of the system. The decreasing density of
the sucked refrigerant at the compressor causes in the
strong decreasing of the compressor mass flow after 2
seconds. The valve mass flow rate is mostly affected
by the pressure difference, so the mass flow does not
decrease; the system time delay causes a higher valve

Modeling and Simulation of Refrigeration Systems with the Natural ... Pfafferott T., Schmitz G.

Modelica 2002, March 18−19, 2002 145 − 8 The Modelica Association

flow rate for a few seconds resulting in the shown over-
and undershooting of pressures. The same effect of
displaced mass explains the divergent run of the pres-
sures after changing the flow coefficient.

0 20 40 60 80 100 120
30

40

50

60

70

80

90

P
re

ss
ur

e
in

 b
ar

Time in s

Compressor In
Compressor Out

Figure 12: Pressure run at compressor in- and outlet

0 20 40 60 80 100 120
0.01

0.02

0.03

0.04

0.05

0.06

M
as

s
flo

w
 in

 k
g/

s

Time in s

Compressor
Valve

Figure 13: Mass flow rate at valve and compressor

This model contains about 2600 nontrivial scalar equa-
tions. The simulating of the start up and the chang-
ing of flow coefficient was performed on a PC with
a Pentium 1000 MHz and 256 MB of main memory
and took 5 minutes. The length of time of simulation
is very sensitive due to the initial values. To realize a
simulation of 5 minutes for this model you have to pro-
vide very suitable initial values; furthermore up to now
the initialization in the two phase region needs wide
experience. To get suitable initial values for the gas
region we are using matlabTM based script to predict
the steady state pressure drop for the initalized mass

flow rate. Starting a simulation with a mass flow rate
of zero and equal pressure in every object increases the
executing time extremely or generates a termination of
simulation.
Nevertheless, the simulation results show that Mod-
elica, the free Modelica library ThermoFluid and the
CO2-Library are very well qualified for the simulation
of the complex processes in a CO2-Refrigeration cy-
cle.

6 Conclusion

A developed CO2-Library based on free Modelica
library ThermoFluid was presented, which contains
models for all important components of a CO2-
Refrigeration system. The intention is to create a
library for the simulation of single components and
complete cycles. Such a library can be used to get
a better understanding of the thermodynamic, fluid-
mechanic and heat transfer effects in a CO2-System.
Furthermore, it can be used for the optimization of
specific heat exchangers, for the evaluating of optimal
system configuration and for the layout and optimiza-
tion of the system control.
The presented simulation results for the steady state
of two different types of CO2-Heat exchangers show
a very correspondence with measured datas. The re-
sults of transient simulation show a plausible system
behaviour due to the thermodynamic and hydraulic ef-
fects. Up to now a validation with transient measured
datas was not possible since an available CO2-Test rig
operates just for a few weeks.
Future work contains the validation of the models and
the improvement of the initialization due to new fea-
tures in Modelica. If the models are verified the con-
trol of the system will implemented.

6.1 Acknowledgement

This work is carried out in a research project financed
by EADS Airbus in Hamburg, Germany.
The presented results and efforts would not have been
possible without the help and the work of some people
apart from the authors. We would like to thank Huber-
tus Tummescheit for providing ThermoFluid and the
given support. Thanks to Stefan Wischusen, Guido
Ströhlein, Till Gundlach, Torsten Meyer and Jörg Ei-
den for the implementation of various models in mas-
ter thesis and project works. Thanks to Dirk Limperich
for providing a lot of parameters of CO2-Components,
for the support of the implementation of CO2-Medium

Pfafferott T., Schmitz G. Modeling and Simulation of Refrigeration Systems with the Natural ...

The Modelica Association 145 − 9 Modelica 2002, March 18−19, 2002

model, for the testing of several models and for con-
structive discussions and several ideas. Thanks to
Oliver Schade for providing first data from his CO2-
Experimental system.

References

[1] DIN EN 60534-2-1:
Stellventile für die Prozeßregelung Teil 2-1: Durch-
flußkapazität und Bemessungsgleichungen für Flu-
ide unter Einbaubedingungen Deutsches Institut für
Normung e.V., Beuth Verlag, Berlin, 2000 (in ger-
man)

[2] Haffner, A., Pettersen, J., et al.:
An automotive HVAC system with CO2as refrig-
erant IIR Conference Natural Working Fluids -
Preprints, pp. 289-298, Oslo, 1998

[3] Idelchick, I.E.:
Handbook of Hydraulic Resistance CRC Press,
Florida, 1994

[4] Kakac, S. et al.:
Handbook of Single-Phase convective Heat Trans-
fer John Wiley & Sons Inc., New York, 1987

[5] Kauffeld, M., Hesse, U., Pettersen, J.:
Kohlendioxid in der Kälte-, Klima- und
Wärmepumpentechnik Die Kälte- und Kli-
matechnik, No. 11, pp. 768-781, 1993

[6] Lorentzen,G.:
Revival of carbon dioxid as refrigerant Int. Journal
of Refrigeration, Vol. 17, No. 5, 1994

[7] McMullan, J.T.:
Refrigeration and the environment - issues and
strategies for the future Int. Journal of Refrigera-
tion, Vol. 25, No. 1, pp. 89-99, 2002

[8] Patankar, S. V.:
Numerical Heat Transfer and Fluid Flow Hemi-
sphere Publ. Corp., Washington, 1980.

[9] Span, R., Wagner, W.:
A New Equation of State for Carbon Dioxide Cov-
ering the Fluid Region from the Triple–Point Tem-
perature to 1100 K at Pressures up to 800 MPa Jour-
nal of Physical and Chemical Reference Data, Vol.
25, No. 6, pp. 1509–1596, 1996.

[10] Stephan, K.:
Wärmeübergang beim Kondensieren und beim
Sieden Springer-Verlag, Berlin, 1988 (in german)

[11] N.N.: VDI-Wärmeatlas - Berechnungsblätter
für den Wärmeübergang VDI-Verlag, 7. Edition,
Düsseldorf 1994 (in german)

[12] Pettersen, J., Rieberer, R., Munkejord, S.T.:
Heat transfer and pressure drop for flow of super-
critical and subcritical CO2in microchannel tubes
Technical Report A5127, SINTEF Energy Re-
search, Trondheim 2000

[13] Pfafferott, T, Schmitz, G.:
Numeric Simulation of an integrated CO2Cooling
System Proceedings of the Modelica Workshop
2000, Lund, 2000

[14] Tummescheit, H., Eborn, J., Wagner, F.:
Development of a Modelica Base Library for Mod-
eling of Thermo-Hydraulic Systems Proceedings of
the Modelica Workshop 2000, Lund, 2000

Modelica 2002, March 18−19, 2002 145 − 10 The Modelica Association

Felgner F., Agustina S., Cladera Bohigas R., Merz R., Litz L. Simulation of Thermal Building Behaviour ...

The Modelica Association 147 Modelica 2002, March 18−19, 2002

Simulation of Thermal Building Behaviour in Modelica

F. Felgner, S. Agustina, R. Cladera Bohigas, R. Merz, L. Litz (felgner@eit.uni-kl.de)
Fachbereich Elektrotechnik und Informationstechnik, Universität Kaiserslautern,

 Erwin-Schrödinger-Straße, D 67663 Kaiserslautern,
March 2002

1. Abstract

During the past decades heating and air conditioning
systems were usually designed and consequently
oversized according to simplified, mostly static cal-
culating procedures. The increase in primary energy
costs, rising cost pressure felt by private and public
clients as well as increased demands on comfort
forced engineers to change the customary procedure.
Thus the dynamic simulation of building and system
behaviour plays an increasingly important role in
planning and dimensioning heating and air condi-
tioning systems. This change is supported by the
growing performance of personal computers in use.
This means that calculating methods which used to be
too expensive and time-consuming became practica-
ble and could even be improved.

Building and system simulation aims at emulating the
thermal and energetic behaviour of an existing or a
fictitious building and of its HVAC system as well as
their interaction. For this purpose the external influ-
ences through the outdoor climate, user behaviour
and internal loads are to be taken into account. The
comprehensive building design requires the adequate
description of real processes within a broad spectrum
of mathematical, physical and engineering disci-
plines. The model of just an uncomplicated heating
system includes various components from thermody-
namics, fluid dynamics, mechanics, electrical and
control engineering.

It is true there is a great variety of simulation tools -
mostly conceived for architects and building engi-
neers - varying according to the methods they use, the
effects they consider as well as to their objectives.
Such simulation tools pretend to offer a high trans-
parency and flexibility through their menu-guided
modelling but can often not be completely over-
looked by the user as to their numeric methods, the
effects considered and approximations applied. Op-
erations going beyond what is provided by the menu
are either not possible or can only be realized at great
expense.

Therefore we intended to take another way. Using an
open simulation system, which provides the mathe-
matical formalism, the model specification is done by
the description of basic physical laws describing the

relevant properties [Fel-01], [Mer-01], [Sit-01]. An
object-oriented, non calculation-causal simulation
language like Modelica offers perfect conditions for
this concept.

In the context of our work a model library for the
simulation of thermal building behaviour has been
developed in Modelica. Due to the interdisciplinary
character of building simulation this domain is an
ideal application of Dymola/Modelica. We used Dy-
mola 4.1a from Dynasim (http://www.dynasim.se).

The new model library is divided into four sublibrar-
ies:

• Building (chapter 2),
• Weather (chapter 3),
• Heating (chapter 4),
• controller (chapter 5).

The building models have been validated in exem-
plary configurations with the building simulation
system TRNSYS [Trn-02], [Kle-00], [Kie-01].

In the following chapters the most interesting com-
ponents or those sublibraries will be presented.

2.1 Basic Building Elements

The characteristic thermal behaviour of a building
structure is determined by the storage and the con-
duction of heat within walls, ceilings, floors and the
air inside and outside the building as well as the heat
transmission between those components [VDI-01].
The processes of heat storage and transmission are
described by basic building elements, which are the
primary components of a thermal building model.

Heat storing elements (fig. 2.1a, b) correspond to
electrical capacitors, where electrical current is re-
placed by heat flow j and the place of the electrical
potential is taken by the temperature T:

jTcm =⋅⋅ � (2.1)

(m: mass of heat storing body, c: specific heat ca-
pacity).

Simulation of Thermal Building Behaviour ... Felgner F., Agustina S., Cladera Bohigas R., Merz R., Litz L.

Modelica 2002, March 18−19, 2002 148 The Modelica Association

Fig. 2.2: Heat
conductor

Fig. 2.4: Radiation
to a black body

Heat conducting elements (fig. 2.2) correspond to
electrical conductors:

)(21

econductanc

12
21 TT

xx

A
T

d

A
j

G

−
−
⋅=∆⋅=→

���

λλ
 (2.2)

(λ: heat conductivity, A:
area perpendicular to heat
flow j, d: distance between
two heat storing elements
with the temperatures T1 and
T2).

Convection (fig. 2.3) is described with the same
mathematical structure if the convective heat transfer
coefficient α is supposed to be a constant:

)(2121 TTAj −⋅⋅=→ α . (2.3)

Convection takes place
between the air and walls,
floors and ceilings inside
the building as well as
outside.

Radiation – the third way of heat transfer – plays an
important role, too, especially as far as solar radia-
tion, the emission from radiators and the heat ex-
change between walls are concerned. The

power radradrad jjP
�

== , emitted from a surface with

the temperature T, is given by Stefan-Boltzmann’s
Law,

4
rad TAj ⋅⋅⋅= εσ (2.4)

(σ : Stefan Boltzmann constant, ε : emission coef-
ficient of surface),

which is implemented in a model class (fig. 2.4) de-
scribing the exchange of ra-
diation between a surfaces A
with the temperature T1 (e.g.
the surface of a wall) and a
fictive black body with the
same surface and the tem-
perature T2:

�
)(4

2
4

1

1

2121 TTAj −⋅⋅⋅⋅=
=

→ εεσ . (2.5)

Those components will be used for the so-called two-
star room model (see ch. 2.2).

The library also contains components simulating the
radiation between two parallel or two perpendicular
surfaces (fig. 2.5a, b). For this purpose the equation
(2.5) has to modified by an additional factor taking

into account the surfaces’ dimensions and relative
site.

2.2 Composed Building Model Classes
(walls, windows, doors, rooms)

The basic building elements presented in ch. 2.1 serve
to compose models of more complex parts of a
building. As a first instance the model of a wall be
considered:

Within solid matter heat transport is provided by
conduction. This means that in case of one-
dimensional heat flow in x-direction the temperature
T (x) is given by the well-known partial differential
equation

2

2

x

T

t

T
c

∂
∂⋅=

∂
∂⋅⋅ λρ , (2.6)

which cannot be implemented directly in Modelica as
there is only one independent variable (time) pro-
vided. But the derivation in x can be approximated by
discretizing the coordinate x into xi (i = 1, 2, 3, ...)
with ∆x := xi − xi−1 = const. ∀ i:

2
11

2
11

2

2

)(

2
:

)(

)()(2)(

x

TTT

x

xTxTxT

x

T iiiiii

∆
+−=

∆
+−≈

∂
∂ −+−+

(2.7)
Thus the equation (2.6) can be approximated by

�
()

�
() .

)(

2

11

2
11

+−

−+

−
∆

−−
∆

=⋅∆⋅

⇔
∆

+−
=

ii

G

ii

G
m

iii

TT
x

A
TT

x

A
TxAc

x

TTT
Tc

λλρ

λρ

�
���

�

 (2.6’)

Using the components for heat storage and conduc-
tance introduced in ch. 2.1 the equation (2.6’) can

a stone b air

Fig. 2.1: Heat storing components of a building

Fig. 2.3: Convection
with constant α

a parallel
 surfaces

b perpendicular
 surfaces

Fig. 2.5: Radiation between two surfaces

Felgner F., Agustina S., Cladera Bohigas R., Merz R., Litz L. Simulation of Thermal Building Behaviour ...

The Modelica Association 149 Modelica 2002, March 18−19, 2002

be implemented by the Modelica model in fig. 2.6,
which is a simple thermal model of a wall with mass
m, specific heat capacity c, surface A and thickness
2∆x.

A more precise model of a wall is achieved by divid-
ing the wall into several layers – at least two – and
adding the convection model from fig. 2.4:

The model in fig. 2.7 is of course suitable for floors
and ceilings, too.

Before constructing the thermal model of a room the
radiative heat transmission between its walls, floor,
ceiling and other radiating surfaces (e.g. radiator
surface) shall be considered first. Using the models
from fig. 2.5 would lead to a complicated network of
connections between each surface and all the others.
A room of a simple rectangular geometry would de-
mand three instances of the parallel surfaces model
(fig. 2.5a) and 12 instances of the perpendicular sur-
faces model (fig. 2.5b). A non-rectangular room ge-
ometry and the radiation from a radiator surface
would demand very special additional model classes
which are much more complex or even do not exist in
a parameterised form, respectively.

For this reason the building library presented here
makes use of a certain approximation – the so-called
two-star model (see for example [Fei94]). In this
model all radiating surfaces are connected to a fictive
massless black body, which has an infinite heat con-
ductivity and fills in the whole volume of the room.
In the model diagram this body is simply a nodal
point. Each long wave radiation emitting surface is
connected to that nodal point via a radiation junction
component from fig. 2.4 (ch. 2.1). A second nodal
point provides the convective connection of the sur-

faces to the air via convective junction components
(fig. 2.3). Fig. 2.8 shows the two-star model of a
room with four walls (plus floor and ceiling). Only
one half of each wall is represented in the model of a
room, the second half is part of a neighbouring room.

Additionally models for internal gains (with a light
bulb in the icon) as well as the model of a window
(fig. 2.8) describing air exchange and heat transmis-
sion by conduction, convection and radiation. There
is a special cut in the window model and in the room
model (“G” in fig. 2.8) providing a connection be-
tween the window and a model from the solar radia-
tion library (see ch. 4). A radiator (as an external
model) can be connected to the room via two cuts:
Cut “A” provides the connection to the radiation
nodal point, cut “F” transmits convective heat trans-
port from the radiator to the air.

Fig. 2.6: Model of conduction within a wall

1−iT iT 1+iT

G G

C = mc
x∆ x∆

Fig. 2.7: Two-layer model of a wall (or floor / ceiling)
 with convective heat transmission to air

=

“halfwall”“halfwall”

A

BCD

E

F

G

Fig. 2.8: Two-star model of room with four walls.
 External cuts: 1 – 6 walls, floor, ceiling;
 A radiation from external model (radiator);
 B signal for air exchange through window;
 C signal for internal gains;
 D Radiation to sky through window;
 E convection on the outside of the window;
 F convection from or to external model;

G connection to solar radiation model.

=

Fig. 2.9: Model of a window with controlled air ex-
 change and heat transmission by conduction,
 convection and radiation (including solar
 radiation)

Simulation of Thermal Building Behaviour ... Felgner F., Agustina S., Cladera Bohigas R., Merz R., Litz L.

Modelica 2002, March 18−19, 2002 150 The Modelica Association

3. Solar Radiation Models

3.1 Introduction

Comprehensive modelling of thermal building dy-
namics requires considering the influence of nature.
In order to simulate the impact solar radiation has on
energy consumption and controller behaviour in a
realistic manner a highly refined solar radiation li-
brary has been developed. With its models it is possi-
ble to calculate the solar radiation on a tilted surface
at any location [Duf-74]. The models are very user-
friendly since simulation periods can be defined by
entering date and local clock time. Moreover, real
weather data can be integrated in the simulation
model by reading external ASCII files and interpo-
lating the data in different ways. The models repro-
duce the broad spectrum offered by modern building
simulation tools (e.g. TRNSYS [Trn-02], [Kle-00],
[Spr-01]).

3.2 The Models

The solar radiation models contain a large number of
algorithms, which cannot be explained within the
limitations of this article.
In the following a brief
overview of some impor-
tant components will be
described.

The encapsulated model
in fig. 3.1 calculates the
solar radiation on surfaces
of any orientation. Two
versions of that model
will be presented now:

The diagram layer of version I is shown in fig. 3.2
(without the cuts on the highest hierarchy level).
There are eight important components performing the
calculation:

(1) distributes the information about location (lon-
gitude and latitude) and time zone to all components
that need this data.

(2) calculates the time variables that are needed in
addition to the (physical) simulation time: solar time
and standard meridian time. (Switching to daylight
time is possible, too.)

(3) produces the declination angle.

(4) calculates the position of the sun determined by
zenith angle and azimuth angle.

(5) calculates the solar radiation on an extraterres-
trial horizontal surface.

(6) determines the atmospheric attenuated solar
radiation. For this a so-called clearness index kT is
used. The calculation with a constant kT is an ap-
proximation, which should be used only for clear
days. (And even in that case kT is not exactly con-
stant.) In a further model (version II) this component
is replaced by importing real or fictive weather data
from an external file.

(7) divides the total radiation on a horizontal terres-
trial surface into beam radiation and diffuse radia-
tion.

(8) transforms the results of component (7) into total
radiation on a tilted surface.

In version II (fig. 3.3) the disadvantage of component
6 (only suitable for clear days) has been removed by
importing radiation data from an external file. The
radiation data may be based on measurements of a
weather station or a typical climatic conditions of the
location. The radiation data (total radiation on a hori-
zontal surface) is imported by a new ASCII table
reader (component 6A). Table readers from the
Modelica standard libraries could not be used for they
perform a linear interpolation using a C function. The
new table reader makes use of a special C function
without linear interpolation. As tables contain sam-
pled values – official weather data for a German test
reference year are available at hourly intervals (DIN
4710) – a linear interpolation would produce big
mistakes during the hours of sunrise and sunset. To
avoid such mistakes the table data has to be read in

Fig. 3.1: calculation of
solar radiation on tilted
surfaces

1

2

3
4 5 6 7 8

Fig. 3.2: Aggregation pattern of solar radiation model (Version I)

Felgner F., Agustina S., Cladera Bohigas R., Merz R., Litz L. Simulation of Thermal Building Behaviour ...

The Modelica Association 151 Modelica 2002, March 18−19, 2002

advance. In this way sunrise and sunset are detected
in time. Afterwards an appropriate interpolation is
performed (component 6B). The library offers a se-
lection of different interpolation methods.

4. Models of Heating Systems

4.1 Introduction

The heating library allows composing models of
electrical heating systems as well as hot-water heat-
ing systems. In view of physical modelling hot-water
heating systems (HWH) are more interesting than the
electrical ones, which produce almost immediately a
certain heat flow prescribed by the controller. Yet the
dynamics of an HWH is determined by transient
processes caused by the thermal inertia of various
components. Those are the water, the pipes, the ra-
diators and – especially in case of floor heating sys-
tems – the stone of the floor. In addition slow trans-
port of water through long pipe systems in large
buildings bring about dead time. All those character-
istics complicate controlling an HWH for its delayed
reactions may have a negative influence on stability.

In the following chapter a dynamic pipe model will
be presented.

4.2 Pipes and Radiators

A universal model of a water pipe must combine
mechanical and thermal aspects of flowing water.
Both aspects are interdependent: The temperature
profile depends on the mass flow rate, whereas the
mass flow rate is influenced by the viscosity, which is
rather strongly depending on temperature. The impact
viscosity has on a pipe’s flow resistance is deter-
mined by the form of flow.

In case of steady laminar flow Hagen-Poiseuille’s
Law is valid for cylindrical pipes:

()21

4

128
pp

L

D
m −=

η
ρπ

� (4.1)

(m� : mass flow rate, D: diameter, L: length of
pipe, η: dynamic viscosity,

21 pp − : pressure

drop).

If the Reynolds Number Re = ρvD/η is greater than
Recrit. ≈ 2300 the flow becomes turbulent, and pres-
sure drop is usually approximated by

2

2

21

v

D

L
pp

ρλ ⋅⋅=− (4.2)

(v : average speed, λ : pipe friction coefficient).

If Re < 100 000, the factor λ is given by

4

3164.0

Re
=λ (formula of Blasius). (4.3)

In the pipe model developed here λ is approximated
by pieces of straight lines – as well as the viscosity
η(T).

The thermal dynamic of a fluid within a cylindrical
pipe can be described by the partial differential equa-
tion (PDG)

�� ��� ��
��� ���� ���������

�

meter)(per wallpipe to
convectionbymittedheat trans

wall

meter)(perheat
ofreleaseunsteady

2

meter)(perheat
ofreleasesteady

)(
4

TTD
t

TD
c

x

T
mc

xt

−⋅⋅=






∂
∂−







∂
∂⋅− παρπ

(4.4)

(c: specific heat capacity of water, ρ: density of
water, α: convective heat transfer coefficient),

1

2

3

4 5 6B 7 8

6A
Fig. 3.3: Aggregation pattern of solar radiation model with table reader and interpolator (Version II)

Simulation of Thermal Building Behaviour ... Felgner F., Agustina S., Cladera Bohigas R., Merz R., Litz L.

Modelica 2002, March 18−19, 2002 152 The Modelica Association

where heat conduction in x-direction within the water
has been neglected. To solve this problem the PDG
has to be transformed to a system of ordinary differ-
ential equations by a discrete coordinate x: A long
pipe is composed out of short pipe elements, each of
the length L := ∆x:

).(
d

d

4 wallout
out

2
inout TTD

t

TD
c

L

TT
mc −⋅⋅=−

−
⋅− παρπ�

(4.4’)

As an approximation of α one might take for instance
Schack’s formula [Rec-97]:

Km
W

m/sC
014.013370 2

85.0

out 












°
+⋅= vTα (4.5)

(D = 15 ... 100 mm).

That formula is, however, not suitable for v = 0 as
water being at standstill would release no heat at all
in such a model.

The equations (4.1) to
(4.5) are implemented in
model class describing a
cylindrical water element
(of Length L) flowing
through a pipe (fig. 4.1).
The cut variables are
pressure, temperature and mass flow rate (blue cuts)
or temperature and heat flow rate (red cut), respec-
tively.

A model describing the
conductance and storage of
heat within the pipe’s wall
and heat insulation mate-
rial is composed out of
heat capacitors and cylin-
drical special heat con-
ductors (fig. 4.2).

With the help of a for-loop a series connection of n
water elements, each connected to a wall and insula-
tion component, is generated. The complete pipe
model (fig. 4.3) can be
connected to a tempera-
ture source or another
(big) heat capacitor (e.g.
a wall or a floor in
which the pipe is em-
bedded), which absorbs
steady heat loss.

Fig. 4.4 shows a circuit with a 20 m-pipe (consisting
of 20 pipe elements, i.e. n = 20), a pump producing a
constant pressure and a boiler switched on at t = 600s.
At t = 0 all components have the temperature T0 =
10°C. The boiler has a two-state controller with a

hysteresis between 90°C and 95°C. The results of the
DYMOLA simulation are shown in diagram 4.1.

By analogy with the pipe model a radiator model can
be designed by leaving out the heat insulation (fig.
4.5). The radiator can be connected to the two-star
room presented in ch. 2 via two cuts: one cut for
convective heat transmission to air and another cut
for a connection to the room’s radiation nodal point.

5.1 Standard Controllers

The first part of the controller library contains several
components simulating standard control algorithms.
Some components, however, have extended func-
tions. There are two sublibraries, one with continuous
and one with discrete controllers.

Fig. 4.1: Water element
 within a pipe

Fig. 4.2: Pipe wall and
 insulation

Fig. 4.3: Long water pipe
 with insulation

Fig. 4.4: Circuit with long pipe, boiler and pump

Diagram 4.1: Results of DYMOLA simulation of
model in fig. 4.4: water temperatures
at different positions in the pipe

0 1000 2000 3000
0

20

40

60

80

100
Pipe.In.T Pipe.Out.T

T(0 m)
T(5 m)
T(10 m)
T(15 m)
T(20 m)

t / s

T / °C

=

Fig. 4.5: Hot-water radiator

Felgner F., Agustina S., Cladera Bohigas R., Merz R., Litz L. Simulation of Thermal Building Behaviour ...

The Modelica Association 153 Modelica 2002, March 18−19, 2002

The continuous controller sublibrary contains PI and
PID controllers with an anti-wind-up reset function
and a pulse width modulator.

The discrete controller sublibrary contains special PI
and PI controllers emulating the signal processing of
digital controllers. In this way the influence of im-
portant quantities such as the number of bits or the
sampling period can be included in the simulation.

5.2 Fuzzy Control

The Heating, air-conditioning and ventilation of a
building requires the control of many interdependent
quantities belonging to rather complex physical proc-
esses. Therefore, Fuzzy Control is an appropriate
alternative to standard control strategies. With the
new Modelica Fuzzy Control library to design a
Fuzzy Controller and to test different rule bases,

methods etc. on a Modelica model.

The Fuzzy Control library has a modular structure. A
Modelica Fuzzy Controller (FC) has to be composed
by the user out of special blocks for the linguistic
input and output variables and for the rules. Due to

the large variety of settings defining an FC (numbers
of inputs and outputs, fuzzy sets, rules, methods of
inference and defuzzification) a modular structure
supports the clarity of the FC model. Fig. 5.1 shows
the assignment of the FC-processing steps to in-
stances of different model classes: input blocks, out-
put blocks and rule blocks.

The fuzzy sets for each input variable and each output
variable are defined by choosing an input or output
block, respectively, and entering the blip abscissas of
the predefined membership functions (fig. 5.2). Cur-
rently there are input and output blocks with three or
five membership functions. The linguistic values
have predefined names.

As fuzzy implication, accumulation and defuzzifica-
tion are performed in the output block of each lin-
guistic output variable, the library contains different
output blocks according to the methods used for im-
plication, accumulation and defuzzification and ac-
cording to the number of fuzzy sets.

Two different versions of the FC library have been
developed so far. In the first place the two version
vary in the way the rules are formulated. Fig. 5.3
shows the Modelica diagram layer of an FC accord-

ing to Version I of the library. The methods of impli-
cation, accumulation and defuzzification are
sum/product/centre of gravity. The diagram is similar
to a circuit diagram of Boolean logic: There is a rule
block for each rule that has to be connected to the
input and output blocks. This means that the rules are
visualised by the connections the user must draw.
There are various types of rule blocks in the library
according to the numbers of input values and output
values appearing in a rule. Each input value can be
negated by entering a certain parameter into the rule
block concerned.

Fig. 5.4 is the diagram layer of the same FC com-
posed in Version II: In this case, only one central rule
block is needed. The rules are entered into its pa-
rameter table as text using a special syntax. The rule
block is prepared for up to ten input variables, five
output variables and fifty rules. It interprets the ag-
gregation by comparing the components of each rule
vector with the predefined linguistic values “vsmall”,
“small”, “medium”, “big”, “vbig” and “nvsmall”,

Fig. 5.2: Predefined fuzzy sets for input or output
 variable (e / u) with parameters of corre-
 sponding input or output block

emin emaxe1 e2e3 e4 e5 e6e7 e8

umin umaxu1 u2u3 u4 u5 u6u7 u8

e
(u)

1
msmall mmedium mbig

parameters

Fig. 5.1: The five steps of FC processing and their
 assignment to input, output and rule blocks

Fuzzi-
fication

Aggre-
gation

Impli-
cation

Accumu-
lation

Defuzzi-
fication

e u

input
blocks

rule
block(s)

output
blocks

Fig. 5.3: FC according to Version I with the rules:
1. If In_1 small, then Out_1 medium.
2. If In_1 big and In_2 small, then

Out_2 very small.
3. If In_1 big and In_2 not big, then

Out_1 big and Out_2 very big.

Simulation of Thermal Building Behaviour ... Felgner F., Agustina S., Cladera Bohigas R., Merz R., Litz L.

Modelica 2002, March 18−19, 2002 154 The Modelica Association

“nsmall”, “nmedium”, “nbig”, “nvbig” (v = “very”,
n = “not”, output values in capital letters for better
readability).

6. References

[Duf-74]
Duffie J.A., Beckman W.A.: Solar Energy thermal
process, Wiley, New York (1974)
[Fei-94]
Feist W.: Thermische Gebäudesimulation Kritische
Prüfung unterschiedlicher Modellansätze, Verlag C.F.
Müller, Heidelberg (1994) pp.135
[Fel-01]
Felgner F.; Merz R.: Thermohydraulische Simulati-
onsmodelle für Heizungsanlagen ASIM 2001,
15.Sym. Sim.tech. Paderborn 2001
[Kie-01]
Kienzlen K. und da Silva P.: Das Haus im Entwick-
lungslabor, TAB (Technik am Bau), Bertelsmann
Fachzeitschriften GmbH, Gütersloh, 10 (2001) p. 35-
39
[Kle-00]
Klein, S.A., Duffie, J.A., Mitchell, J.C., Kummer,
J.P., Thornton, J.W., Beckman W.A., Duffie, N.A.,
Braun J.E., Urban, R.R., Blair, N.J., Mitchell, J.W.,
Freeman T.L., Evans B.L., Fiksel A.: TRNSYS, a
transient system simulation program, Solar Energy
Laboratory University of Wisconsin, Madison 1996

[Mer-01b]
Merz R., Litz, L.: Objektorientierte mathematische
Modellbildung zur Simulation thermischen Gebäude-
verhaltens, ASIM 2001, 15.Sym. Sim.tech. Paderborn
2001
[Rec-97]
Recknagel, Sprenger, Schramek: Taschenbuch für
Heizungs- und Klimatechnik. 68.Auflage. Olden-
bourg Verlag. München, Wien, 1997.
[Sit-01]
Sitompul E., Merz R.: Anwendung objektorientierter
Entwurfsmethoden zur generischen Entwicklung von
Regelungsalgorithmen in der Anwendungsdomäne
Gebäudeautomation ASIM 2001, 15.Sym. Sim.tech.
Paderborn 2001
[Spr-01]
Sprengard C. Merz R.: Simulation des energetischen
und thermischen Verhaltens eines Niedrigenergiehau-
ses mit dem Gebäudesimulationsprogramm TRNSYS
ASIM 2001, 15.Sym. Sim.tech. Paderborn 2001
[Trn-02]
TRNSYS, www.transsolar.de, Homepage der Fa.
Transsolar Energietechnik GmbH. Stuttgart 2001
[VDI-01]
VDI Richtlinie 6020: Anforderung an Rechenverfah-
ren zur Gebäude- und Anlagensimulation, VDI, Düs-
seldorf, Beuth Verlag GmbH, Berlin (2001)

input
values

output
values

Fig. 5.4: FC in Version II
 (corresponding to FC in fig. 5.3)

The Modelica Association 155 Modelica 2002, March 18−19, 2002

Session 7

Poster session

Modelica 2002, March 18−19, 2002 156 The Modelica Association

Bunus P., Fritzson P. Methods for Structural Analysis and Debugging of Modelica Models

The Modelica Association 157 Modelica 2002, March 18−19, 2002

Methods for Structural Analysis and Debugging of
Modelica Models

Peter Bunus, Peter Fritzson
PELAB, Programming Environment Laboratory, Department of Computer and Information

Science, Linköping University, SE-581 83, Linköping, Sweden
{petbu,petfr}@ida.liu.se

Abstract
A significant part of the simulation design effort is spent
on detecting deviations from the specifications and
subsequently localizing the source of errors.
Employment of debugging environments that control the
correctness of the developed source code is an
important factor in reducing the time and cost of
software development in classical programming
languages. Currently, few or no tools are available to
assist developers when debugging declarative equation
based modeling languages. To begin to address this
need we have developed an efficient debugging
framework for Modelica and have adapted traditional
debugging techniques and algorithms to it. The
developed algorithms and methods help to statically
detect and repair a broad range of errors without
having to execute the simulation model. Several
simulation models and examples are given in this paper
in order to illustrate the main situations when over and
under-constraining equations can appear in the system.
Error detection and error solving strategies for those
cases are also given.

1 Introduction
Obviously, each simulation problem is associated with a
corresponding mathematical model. In dynamic
continuous simulation the mathematical model is
usually represented by a mixed set of algebraic
equations and ordinary differential equations. A typical
problem which appear in physical system modeling and
simulation is when too many (or few) equations are
specified in the system inevitably leading to an
inconsistent state of the simulation model. In such
situations numerical solvers fail to produce correct
solutions to the underlying system of equations.

For example, a physical system simulation model
specified in a declarative object-oriented equation based
modeling language may consist of several hundreds of
classes resulting in over 100 000 flattened equations. If
one of these equations over-constrains the overall
system it cannot be simulated. It can be easily imagined
that, if a subset of six over-constraining equations can
be provided by a static debugger from where the user
can choose one equation to eliminate, in order to form a
structurally well posed simulation problem, it would be

extremely useful. This could greatly reduce the amount
of time required to get the simulation working.

Our goal is to contribute to the methodology of
algorithmic debugging and automated debugging of
object-oriented equation based modeling languages and
to develop programming environments to support it.
Although, what we present in this paper applies to the
whole area of equation based debugging, our primary
target is debugging of Modelica models and more
specifically static analysis techniques for diagnosability
of physical system models specified with Modelica.

The simulation models presented in this paper are
so trivial as to be almost beneath consideration, but they
serves as a straightforward vehicle for the introduction
of several fundamental debugging concepts with the
purpose of illustrating concepts of structural analysis.
These models are extremely useful from that point of
view because they keep the associated structural graphs
to a minimum size and complexity, but in the meantime
exposing interesting structural and debugging problems.

This paper is organized as follows: Section 2
provides graph theoretical preliminaries necessary to
understand the algorithms used in this paper together
with the canonical decomposition algorithm. In Section
3 simple over constrained simulation models are
diagnosed and debugged with the help of graph
decomposition techniques and our algorithmic
debugging approach. Details are briefly presented about
the structures used to annotate the underlying equations
of the simulation model, in order to help the debugger to
eliminate the heuristics when multiple choices are
available to fix an error. In Section 4 the particulars of
debugging an under-constrained systems are given.
Implementation details of the debugger are given in
Section 5. Finally, Section 6 concludes and summarizes
the work.

2 Preliminaries
Many practical problems are examples of a model of
interaction between two different types of objects and
can be phrased in terms of problems on bipartite graphs.
The expressiveness of the bipartite graphs in concrete
practical applications has been demonstrated many
times in the literature (Dolan and Aldous [2]), (Asratian
et al. [1]). We will show that the bipartite graph
representations are general enough to efficiently
accommodate several numeric analysis methods in order
to reason about the solvability and unsolvability of the

Methods for Structural Analysis and Debugging of Modelica Models Bunus P., Fritzson P.

Modelica 2002, March 18−19, 2002 158 The Modelica Association

flattened system of equations and implicitly about the
simulation model behavior. Another advantage of using
the bipartite graphs is that it offers an efficient
abstraction necessary for program transformation
visualization when the equation based declarative
specifications are translated to procedural form.

The bipartite graph representation and the
associated decomposition techniques are widely used
internally by compilers when generating the procedural
form from the declarative equation based description of
the simulation model (Elmqvist [4]) (Maffezzoni et. al.
[9]) but none of the existing simulation systems use
them for debugging purposes or expose them visually
for program understanding purposes.

Definition 1: A bipartite graph is an ordered
triple),,(21 EVVG = such that 1V and 2V are sets,

=∩ 21 VV Ø and },};,{{ 21 VyVxyxE ∈∈⊆ . The

vertices of G are elements of 21 VV ∪ . The edges of
G are elements of E .

Definition 2: Amatching is a set of edges from graph G
where no two edges have a common end vertex.

Definition 3: A matching M of a graph G is maximal if
it is not properly contained in any other matching.

Definition 4: A vertex v is saturated or covered by a
matching M if some edge of M is incident with v. An
unsaturated vertex is called a free vertex.

Definition 5: A perfect matching P is a matching in a
graph G that covers all its vertices.

Definition 6: A path },,,{ 10 kvvvP L= in a graph G is
called an alternating path of M if it contains alternating
free and covered edges.

In Figure 1 all the possible perfect matchings of a
simple bipartite graph are presented. It should be noted
that a maximum matching and the perfect matching of a
given bipartite graph is not unique.

eq1

eq2

eq3

var1

var2

var3

eq1

eq2

eq3

var1

var2

var3

eq1

eq2

eq3

var1

var2

var3

Figure 1. An example bipartite graph with all the
possible perfect matchings marked by thick lines.

A structural decomposition of a bipartite graph
associated with a simulation model which relies on the
above presented vertex coverings is due to (Dulmage
and Mendelsohn [3]) and canonically decomposes any
maximum matching of a bipartite graph in three distinct
parts: over-constrained, under-constrained, and well-
constrained part.

eq1 eq2 eq3 eq4 eq5 eq6 eq7

var1 var2 var3 var4 var5 var6 var7

over-constraint well-constraint under-constraint

















=
=

=
=

=
=

=

0)var,var,(var

0)var,var,var,(var

0)var,(var

0)var,var,(var

0)var,(var

0)var,(var

0)(var

765

6543

54

432

21

21

1

f

f

f

f

f

f

f

Figure 2. Dulmage Mendelsohn’s canonical
decomposition of a bipartite graph.

The canonical decomposition algorithm is given below:

Algorithm: Dulmage and Mendelsohn canonical
decomposition

Input Data: A biparpartite graph �

Result: Three subgraphs: well-constrained � � , over-

constrained � � and under-constrained � � .
begin:

– Compute the maximum matching � � of � .

– Compute the directed graph � ’ by replacing each

edge in � � by two arcs and orienting all other
edges from the equations to the variables.

– Let be � � the set of all descendants of sources of the

directed graph � ’.

– Let be U� the set of all ancestors of sink of the

directed graph � ’.

– Calculate � � = � -� � -� � .
end.

The over-constrained part: the number of equations in
the system is greater than the number of variables. The
additional equations are either redundant or
contradictory and thus yield no solution.

The under-constrained part: the number of variables
in the system is greater than the number of equations. A
possible error fixing strategy would be to initialize some
of the variables in order to obtain a well-constrained
part or add additional equations to the system.

Over and under-constrained situations can coexist
in the same model. In the case of over-constrained
model, the user would like to remove the over-
constraining equations in a manner which is consistent
to the original source code specifications, in order to
alleviate the model definition.

The well-constrained part: the number of equations
in the system is equal to the number of variables and
therefore the mathematical system of equations is
structurally sound having a finite number of solutions.
This part can be further decomposed into smaller
solution subsets. A failure in decomposing the well-
constrained part into smaller subsets means that this part
cannot be decomposed and has to be solved as it is. A
failure in numerically solving the well-constrained part
means that no valid solution exists and there is
somewhere a numerical redundancy in the system.

Bunus P., Fritzson P. Methods for Structural Analysis and Debugging of Modelica Models

The Modelica Association 159 Modelica 2002, March 18−19, 2002

3 Debugging of Over-
Constrained Models

A typical problem which appears in physical system
modeling and simulation is when too many equations
are specified in the system inevitably leading to an
inconsistent state of the simulation model. In such
situations numerical solvers fail to compute correct

solutions to the underlying system of equations.

In Figure 3 the Modelica source code of a simple
simulation model consisting of a resistor connected in
parallel to a sinusoidal voltage is given. The
intermediate form is also given for explanatory
purposes. The Circuit model is represented as an
aggregation of the Resistor, Source and Ground
model instances, R1, AC and G connected together by
means of physical ports.

Figure 3. Modelica code of a simple electrical circuit and the associated flattened equations

During the first stage of the static analysis the
associated bipartite graph of the intermediate flattened
form of the equations is constructed and the maximum
cardinality matching is computed as it is shown in
Figure 4.

eq1 eq2 eq3 eq4 eq5 eq6 eq7 eq8 eq9 eq10 eq11 eq12 eq13 eq14

var1 var2 var3 var4 var5 var6 var7 var8 var9 var10 var11 var12 var13 var14

Figure 4. Associated bipartite graph and the
corresponding perfect matching (thicker lines) to the
simple electrical circuit.

It's worth noting, that in this case, the maximal
matching is also a perfect matching of the associated
bipartite graph. In this case all the vertices are covered

by a matching and the canonical decomposition
algorithm will yield to only one well-constrained
component without any under or over-constraining part.
The well-constrained part can be safely sent to the
numerical solver and the simulation can be successfully
performed if no other numerical redundancies are
present in the system of equations..

Let us now consider the same electrical circuit
where an additional equation (i=23) was intentionally
introduced inside the Resistor component in order to
obtain a generally over-constrained system. The D&M
canonical decomposition will lead to two parts: a well-
constrained part and an over-constrained part (see
Figure 5). Equation “eq11” is a non-saturated vertex of
the equation set so it is a source for the over-constrained
part. Starting from “eq11” which is the non-saturated
vertex, the directed graph can be derived from the
undirected bipartite graph as is illustrated in Figure 6.
by exchanging all the matching edges in bi-directional
edges and orienting all other edges from equations to
variables. An immediate solution of fixing the over-
constrained part is to eliminate “eq11” which will lead

connector Pin
 Voltage v;
 Flow Current i;
end Pin;

model TwoPin
 Pin p, n;
 Voltage v;
 Current i;
equation

v = p.v - n.v; 0 = p.i + n.i; i = p.i
end TwoPin;

model Resistor
extends TwoPin;
parameter Real R;

equation
R*i == v;

end Resistor;

model VsourceAC
extends TwoPin;
parameter Real VA=220; parameter Real f=50;
protected constant Real PI=3.141592;

equation
v=VA*(sin(2*PI*f*time));

end VsourceAC;

model Ground
 Pin p;
equation

p.v == 0
end Ground;

model Circuit
 Resistor R1(R=10); VsourceAC AC; Ground G;
equation

connect(AC.p,R1.p); connect(R1.n,AC.n);
connect(AC.n,G.p);

end Circuit;

Flat equations
1. R1.v == -R1.n.v + R1.p.v

2. 0 == R1.n.i + R1.p.i

3. R1.i == R1.p.i

4. R1.i*R1.R == R1.v

5. AC.v == -AC.n.v + AC.p.v

5. 0 == AC.n.i + AC.p.i

7. AC.i == AC.p.i

8. AC.v == AC.VA*Sin[2*time*AC.f*AC.PI]

9. G.p.v == 0

10. AC.p.v == R1.p.v

11. AC.p.i + R1.p.i == 0

12. R1.n.v == AC.n.v

13. AC.n.v == G.p.v

14. AC.n.i + G.p.i + R1.n.i == 0

Flat Variables

1. R1.p.v 2. R1.p.i 3. R1.n.v

4. R1.n.i 5. R1.v 6. R1.i

7. AC.p.v 8. AC.p.i 9. AC.n.v

10. AC.n.i 11. AC.v 12. AC.i

13. G.p.v 14. G.p.i

Flat Parameters
R1.R -> 10
AC.VA -> 220
AC.f -> 50

Flat Constants
AC.PI -> 3.14159

Methods for Structural Analysis and Debugging of Modelica Models Bunus P., Fritzson P.

Modelica 2002, March 18−19, 2002 160 The Modelica Association

to a well-constrained part and therefore the equation
system becomes structurally sound.

eq1

eq4

eq5

eq6

eq9

eq10

eq11

eq13

eq14

var1

var3

var5

var6

var7

var9

var11

var13

eq2

eq3

eq7

eq8

eq12

eq15

var2

var4

var8

var10

var12

var14

"eq1” R1.v == -R1.n.v + R1.p.v
"eq2" 0 == R1.n.i + R1.p.i

"eq3" R1.i == R1.p.i
"eq4" R1.i R1.R == R1.v
"eq5" R1.i == 23
"eq6" AC.v == -AC.n.v + AC.p.v
"eq7" 0 == AC.n.i + AC.p.i

"eq8" AC.i == AC.p.i
"eq9" AC.v == AC.VA*sin[2*time*AC.f*AC.PI]
"eq10" G.p.v == 0
"eq11" AC.p.v == R1.p.v
"eq12" AC.p.i + R1.p.i == 0
"eq13" R1.n.v == AC.n.v

"eq14" AC.n.v == G.p.v
"eq15" AC.n.i + G.p.i + R1.n.i == 0

"var1" R1.p.v

"var2" R1.p.i
"var3" R1.n.v
"var4" R1.n.i
"var5" R1.v
"var6" R1.i
"var7" AC.p.v

"var8" AC.p.i
"var9" AC.n.v
"var10" AC.n.i
"var11" AC.v
"var12" AC.i

"var13" G.p.v
"var14" G.p.i

over-constrained part

well-constrained part

Figure 5. Canonical decomposition of the over-
constraining system.

However, examining the equation “eq11” one can note
that the equation is generated by a connect statement
from the Circuit model, and the only way to remove
the equation is to remove the connect(AC.p, R1.p)
statement. But removing the above-mentioned statement
will remove two equations from the flattened model
which is unacceptable.

In order to support an automatic reasoning about
the equations the flattened equations from the
intermediate code are annotated by a structure which
resembles the one presented in Table 1.

Table 1. The structure of the annotated equation

Attribute Value
Equation R1.i * R1.R == R1.v

Name “eq4”
Description “Ohm’s Law for the resistor

component”
Nr. of associated eq 1
Class Name “Resistor”
Flexibility Level 3
Connector generated no

The Class Name tells from which class the equation is
coming. This annotation is extremely useful in exactly
locating the associated class of the equation and
therefore providing concise error messages to the user.

The No. of associated eqs. parameter specify the
number of equations which are specified together with
the annotated equation. In the above example the No. of
associated eqs. is equal to one since there are no
additional equations specified in the Resistor
component. In the case of the TwoPin component the
number of associated equations is equal to 3. If one

associated equation of the component need to be
eliminated the value is decremented by 1. If, for
example, during debugging, the equation R1.i *
R1.R == R1.v is diagnosed to be an over-
constraining equation and therefore need to be
eliminated, the elimination is not possible because the
model will be invalidated in that way (the No. of
associated eqs. cannot be equal to 0) and therefore other
solutions need to be taken into account.

The flexibility level, in a similar way as it is defined
in (Flannery and Gonzales [5]), allows the ranking of
the relative importance of the constraint in the overall
flattened system of equations

The Connector generated is a Boolean attribute
which tells whether the equation is generated or not by a
connect statement. Usually these equations have a
very low flexibility level.

It is worth nothing that the annotation attributes are
automatically initialized by the static analyzer,
incorporated in the front end of the compiler, by using
several graph representations.

 Having the equations annotated, the next step is to
traverse the associated directed graph, shown in Figure
6, to the over-constraining part, obtained from the D&M
decomposition.

eq11

eq6eq1

var1 var7

var11

eq9

var3

eq13

var9

eq14

var13

eq10

G.p.v == 0

var5

eq4

var6

eq5
R1.i == 23

AC.v == AC.VA*
 sin[2*time*AC.f*AC.PI]

Figure 6. The associated directed graph of the ove-
constraining subgraph.

One important property of the over-constrained bipartite
graph is that it only contains alternating paths because it
is constructed from perfect matchings and a
supplementary free edge. We can easily obtain all the
maximal matchings in the over-constrained graph by
exchanging matching edges with other edges along an
alternating path. Therefore eliminating any of the
constitutive nodes that represent an equation we can
easily find a corresponding matching of the sub-graph
will yield to a well-constrained subsystem. But
eliminating some of the constitutive nodes that represent
equations will disconnect the sub-graph as it is
illustrated in Figure 7 where eq1 was eliminated. Even
if this situation, when two disconnected graphs are
obtained, are mathematically sound they are not very
common from the modeling point of view and therefore
they are not further considered.

Bunus P., Fritzson P. Methods for Structural Analysis and Debugging of Modelica Models

The Modelica Association 161 Modelica 2002, March 18−19, 2002

var3

eq13

var9

eq14

var13

eq10

G.p.v == 0

var5

eq4

var6

eq5

R1.i == 23

eq11

eq6

var7

var11

eq9

Figure 7. Disconnected graph obtained by eliminating
eq1.

 In our case the set of equivalent over-constraining
equations is {“eq11”, ”eq13”, ”eq10”, ”eq5”, ”eq9”}
after eliminating those equations which disconnect the
bipartite graph. “eq11” was already analyzed and
therefore can be eliminated from the set. “eq13” is
eliminated too for the same reasons as equation “eq11”.
Analyzing the remaining equations {”eq10”, ”eq5”,
”eq9”} one should note that they have the same
flexibility level and therefore they are candidates for
elimination with an equal chance. But analyzing the
value of the No. of associated eqs. parameter, equation
“eq10” and “eq9” have that attribute equal to one, which
means that they are singular equations defined inside the
model. Eliminating one of these equations will
invalidate the corresponding model, which is probably
not the intention of the modeler.

Examining the annotations corresponding to
equation “eq5” one can see that it can be safely
eliminated because the flexibility level is high and
eliminating the equation will not invalidate the model
since there is another equation defined inside the model.
After choosing the right equation for elimination the
debugger tries to identify the associated class of that
equation based on the Class name parameter defined in
the annotation structure. Having the class name and the
intermediate equation form (R1.i=23) the original
equation can be reconstructed (i=23) indicating
exactly to the user which equation needs to be removed
in order to make the simulation model mathematically
sound. In that case the debugger correctly locates the
faulty equation previously introduced by us in the
simulation model.

We now construct a simple electrical circuit model
(Figure 8) by connecting two resistors in parallel with a
voltage source as is shown in Figure 9. The Modelica
definition of the Ground, VsourceAC and
Resistor component are reused from the previous
examples. The TwoPin class is modified by introducing
an additional over-constraining equation (i=10) in the
model definition. This extra equation will be inherited

by all the classes which extends the TwoPin class.
Therefore each instance of the Resistor and
VsourceAC models will contribute to one extra over-
constraining equation to the final flattened system of
equations.

R1 R2AC

G

model TwoPin
 Pin p,n;

Real v,i;
equation
 v=p.v-n.v;
 0=p.i+n.i;
 i=p.i;
 i=10;
end TwoPin

Figure 8. An electrical circuit with an over-constraining
equation in the TwoPin component.

During the model translation the corresponding
flattened set of equations from the simulation model is
derived and the associated bipartite graph G is
constructed. The overall flattened model corresponding
to the simple electrical circuit contains three extra over
constraining equations (eq9, eq18, eq7). Therefore three
vertices from the equations sets are not covered by a
matching, as it is illustrated in the derived directed
graph in Figure 9.

eq16

eq20

eq21

eq22

var9

var15

var19

var3

eq18 eq17

var7 var1 var13

eq6 eq1 eq11

var5 var17var11

eq10 eq5 eq15eq9

var12 var6

var8

var2 var14

var18

eq4eq8

eq13eq3

eq14

eq19

R1.i = R1.p.i

AC.i = 10

G.p.v = 0
0

R1.i = 10

R2.i = 10

R1.p.v = R2.p.v AC.p.v = R1.p.v

R1.n.v = R2.n.v

R2.n.v = AC.n.v

Figure 9. The over-constrained directed graph

While traversing the directed graph, after eliminating all
the equations that disconnect the graph and performing
reasoning based on the equation annotations we found
that the equations eq9 eq14, eq15 need to be eliminated
from the intermediate form which are generated from
the equation i=10 in the TwoPin partial component.
The elimination of eq9, eq14 and, eq15 is safe because
they can be made free vertices by exchanging the
matching edges with non matching edges along the
paths indicated with dashed lines in Figure 9.

Methods for Structural Analysis and Debugging of Modelica Models Bunus P., Fritzson P.

Modelica 2002, March 18−19, 2002 162 The Modelica Association

4 Debugging of Under-
Constrained Models

The issue of under-constrained simulation models
considered in an object-oriented declarative equation-
based frameworks, has been discussed in (Ramirez
[10]). The work presented in (Ramirez [10]) is
particularly concerned with the issues involved in the
modeling and solutions of conditional models where the
system of equations in the model is different for each of
the alternatives.

Let us consider the number of equations m from a
model and the number of variables incident in those
equations n. For a typical under-constrained situation
the number of variables is greater than the number of
equations (n>m).

Definition 7: We call the degree of under-constraining
the difference between the number of variables and the
number of equations mnDu −= . In a similar way in

(Ramirez [1]) uD is called the number of degrees of
freedom of the problem.

In the following we are going to illustrate the
possible error fixing solutions for a typical under-
constraining situation and the reasoning involved in the
graph transformation system. Let us consider the
following system of equations with the corresponding
bipartite graph presented in Figure 11 and with the
degree of under-constraining 1=uD .

eq1

eq2

eq3

eq4

eq5

var1

var2

var3

var4

var5

var6














=
=

=
=
=

0)var,(var

0)var,var,var,(var

0)var,(var

0)var,(var

0)var,(var

65

6432

32

21

21

f

f

f

f

f

Figure 10. A simple system of equations with the
associated bipartite graph.

One possible corresponding maximal matching
(represented by thicker edges) to the bipartite graph and
the D&M canonical decomposition is presented below:

eq1

eq2

eq3

eq4

eq5

var1

var2

var3

var4

var5

var6

under-constrained
part

well-constrained
part

Figure 11. Maximum matching and canonical
decomposition of the bipartite graph

In performing the canonical decomposition algorithm
the associated directed graph to the bipartite graph was
constructed by exchanging all the edges which are part
of the maximal matching by bi-directional edges and
orienting all other edges from equations to variables.
The obtained directed graph is shown in Figure 12:

eq1

eq2
eq3 eq4 eq5

var1 var2

var3 var4 var5var6

Figure 12. Directed graph associated with the system of
equations.

The variables contained in an under-constrained part
constitutes the eligibility set. In our small example the
elibility set is {var4, var5, var6} which means that any
of these variable can be taken away and the remaining
associated graph will be well constrained.

Variable var6 is not covered by the maximal
matching and therefore is a free vertex. In the directed
graph, it can be seen that these are two alternating paths
to the free vertex var6 (indicated by the dashed arrows
in Figure 12):

)}var,(),,{(var 6444 eqeq and)}var,(),,{(var 6555 eqeq .
Exchanging the matching edges with normal edges

and the normal edges with matching edges along an
alternating path a new matching can be obtained which
cover the free vertex var6 but will uncover another
vertex from the eligible set. Therefore for an error fixing
strategy all the possible combinations should be taken
into account.

During the first stage of the error fixing process
only those solutions which involve the elimination of a
variable from the eligibility set are taken into account.
We have the following possible solutions illustrated in
Figure 13 .

eq4

eq5

eq4

eq5

eq4

eq5

var4

var5

var5

var6

var4

var6

eq4

eq5

var4

var5

var6

eliminate
var6

eliminate
var4

eliminate
var5

Figure 13. Error fixing solution when one variable is
taken away from the eligibility set.

Bunus P., Fritzson P. Methods for Structural Analysis and Debugging of Modelica Models

The Modelica Association 163 Modelica 2002, March 18−19, 2002

By removing var6 from the under-constrained sub
system the considered maximum matching becomes a
perfect matching of the associated bipartite graph and
therefore the associated system of equations is
structurally sound. However, by removing var6 the
bipartite graph will be disconnected and an independent
edge (eq5,var5) appears in the system, which is not
connected to the main bipartite graph. This situation is
extremely unusual in physical system modeling and it
means that some variables are computed locally inside a
component without contributing to the general behavior
of the simulated system. As an example the following
Modelica Resistor component integrated in a circuit
model will produce two disconnected sub-graphs.

model Resistor
extends TwoPin;
parameter Real R;
Real s;

equation
 R*i=v;

s=10;
end Resistor

The variable s and the equation s=10 are redundant in
the system. Therefore the situation when an extra
variable is eliminated and the remaining bipartite graph
is disconnected needs to be further analyzed. In our
case, for example, a solution which involves the
elimination of variable var6 and the presence of an extra
variable var1, var2, var3 or var4 in equation eq5 might
be acceptable.

It should also be noted that multiple error fixing
strategies are possible in the case of an under-
constrained subsystem. Another error fixing situation
for the under-constrained systems is to add one extra
equation to the system and link the free variable to the
added equation instead of eliminating the free variable.
This strategy applied for the free variable var6 is
presented in Figure 14.

eq4

eq5

eq6

var4

var5

var6

eq4

eq5

var4

var5

var6

var4

var5

var6

eq4

eq5

eq6

?

?

?

Figure 14. Error fixing strategy involving adding an
extra equation.

This strategy involves two steps: at the first step an
extra equation is added and linked together with the free
variable and then at the second step is checked if other
variables from the system might be present in the
recently added equation. This last step turns out to be
very useful from the users point of view because is

helps them to reconstruct missing equations from
simulation models.

Let us again analyze the simple circuit model when
the Resistor component is changed again by
declaring an extra variable (Real s) and introducing
this variable into the Resistor component constitutive
equation.

model Resistor
extends TwoPin;
parameter Real R;
Real s;

equation
 R*i=v*s;
end Resistor

The directed graph obtained from the associated
bipartite graph of the flattened underlying system of
equations and a corresponding maximum cardinality
matching, is given below:

eq1

var1

eq10

var8

eq5

var12

eq8

var10

eq13

var14

eq9

var3

eq12

var5

eq4

var7 var6

eq3

var2

eq2

var4

eq14

var11

eq6

var9

eq11

var15

eq7

var13

Well-constrained
part

Under-constrained
part

Figure 15. Directed graph corresponding to the under-
constrained simple electrical circuit.

The uncovered variable by the considered maximum
cardinality matching is var15, the eligibility set being:

}var,var,var,var,var,var,var,{var 13911762415

with the corresponding variables:

Methods for Structural Analysis and Debugging of Modelica Models Bunus P., Fritzson P.

Modelica 2002, March 18−19, 2002 164 The Modelica Association

{G.p.i, R.n.i, R.p.i, R.i, R.s, AC.n.i,
AC.p.i, AC.i}

From the under-constrained subgraph we can derive the
following alternating paths (indicated in Figure 15 by
the dashed arrows) to the uncovered variable:

)}var,(),,(var),var,(),,(var

)var,(),,(var),var,(),,{(var

74466332

22244141415

eqeqeqeq

eqeqeqeq

)}var,(),,(var),var,(),,(var

)var,(),,(var),var,(),,{(var

11669911112

22244141415

eqeqeqeq

eqeqeqeq

)}var,(),,(var),var,(),,(var

)var,(),,(var),var,(),,{(var

13779911112

22244141415

eqeqeqeq

eqeqeqeq

By following each alternating path and eliminating the
variables from the eligibility set it can be noticed that
eliminating only the variables

}var,var,var,{var 137415 will not disconnect the bipartite
graph. Therefore only this reduced set will be further
analyzed at this stage. Based on a similar reasoning as
in the over-constrained situations and on variable
associated annotations, the results is that only var7 can
be safely removed from the Modelica code in order to
obtain a well specified underlying equation system. We
call the set of variables obtained after performing the
reasoning based on annotations the reduced eligibility
set

In the above presented situation the fault was
detected during the first stage of the debugging of
under-constrained equations. But if the user is not
satisfied with the given solution or the reduced
eligibility set is empty, the debugger can enter in the
second stage when possible connections of the adjacent
equations to those variables that disconnect the bipartite
graph are checked. If a possible coupling of a variable
to those equations is found the adjacent disconnecting
variable might be also considered for elimination. The
possible coupling of variables with equations is
performed by a variable reachability analysis based
algorithms applied to the inheritance graph of the
underlying simulation system. The variable reachability
analysis computes the list of variables which can be
inserted into certain equations. The description of the
variable reacheability analysis algorithm is not the
subject of this paper.

A third stage in the debugging process of the
under-constraining equations is when extra equations
need to be added and coupled to the free equation. For
example, in our case, adding an extra equation s=10 in
the Resistor component is a mathematically sound
solution even it might not reflect the modelers intent. In
a similar way extra equations can be added to each
variable from the eligibility set.

The user has the possibility of specifying which
level of debugging he/she would like to perform on the
erroneous model, in that way, filtering out some of error
messages and performing an incremental error fixing on
the modeling source code.

5 Prototype Implementation
A prototype debugger has been built and attached to the
MathModelica simulation environment as a testbed for
evaluating the usability of the above presented graph
decomposition techniques for debugging declarative
equation based languages. MathModelica is an
integrated problem-solving environment (PSE) for full
system modeling and simulation (Fritzson et. al.[6])
(Jirstrand [7]) (Jirstrand et. al.[8]). The environment
integrates Modelica-based modeling and simulation
with graphic design, advanced scripting facilities,
integration of code and documentation, and symbolic
formula manipulation provided via Mathematica
(Wolfram [11]). Import and export of Modelica code
between internal structured and external textual
representation is supported by MathModelica . The
environment extensively supports the principles of
literate programming and integrates most activities
needed in simulation design: modeling, documentation,
symbolic processing, and transformation and formula
manipulation, input and output data visualization.

In order to attach the debugger it was absolutely
necessary to have access to the intermediate form of the
code because the presented algorithm makes use of the
intermediate flat form of the equations. The
implemented debugger was successfully tested on
Modelica models involving several hundreds of
algebraic and differential algebraic equations.

The general architecture of the implemented
debugger is presented in Figure 16. The debugging
algorithm proceeds as follows: based on the original
declarative source code the intermediate representation
is generated. From the intermediate representation the
overall system of equations is extracted and transformed
into bipartite graph form. The associated bipartite graph
is canonically decomposed. Error-fixing strategies are
applied if the decomposition leads to over- or under-
constrained components. The debugger will try to solve
the errors automatically without explicit intervention of
the user. If automatic error solving is not possible due
to missing information the user will be consulted
regarding the repair strategy.

When the user is interrogated, all valid options that
will lead to a structurally sound underlying system of
equations are presented. As was mentioned earlier, the
error fixing strategies for over- and under-constrained
subcomponents might involve several stages, especially
for under-constrained situations. Due to the equation
and variable annotations the error messages output by
the debugger are understandable relative to the user
perception of the simulation source code, in our case the
Modelica code.The information output by the debugger
will of course lead to a mathematically sound system of
equations. However, some of the solutions might not be
acceptable from the modeling language point of view or
from the physical system model perspective. The
debugger focuses on those errors whose identification
would not require the solution of the underlying system
of equations.

Bunus P., Fritzson P. Methods for Structural Analysis and Debugging of Modelica Models

The Modelica Association 165 Modelica 2002, March 18−19, 2002

..................
model Resistor

extends TwoPin;
parameter Real R;

equation
 R * i = v;
end Resistor;
..................

Modelica source
code specification

Graphical model
specification

Model flattening

..
R1.v == -R1.n.v + R1.p.v
0 == R1.n.i + R1.p.i,
R1.i == R1.p.i,
R1.i R1.R == R1.v
C.v == -C.n.v + C.p.v
 0 == C.n.i + C.p.i, C.i == C.p.i,
..

Flatened set of equations
(Constraints store)

Intermediate code
annotating

<R1.v == -R1.n.v + R1.p.v,“eq11”,“ “,2,“TwoPin”,1,no>
.....
<AC.p.v == R1.pv,“eq11”,“ “,2,“Circuit”,1,yes>
.....

Annotated flattened
equations

eq1 eq2 eq3 eq4 eq5 eq6 eq7

var1 var2 var3 var4 var5 var6 var7

Corressponding
bipartite graph
representation

D&M
decomposition

Bipartite graph
generation

eq5

var4

eq1 eq2 eq3 eq4 eq5 eq6 eq7

var1 var2 var3 var4 v a r 5 var6 var7

over-constraint well-constraint under-constraint
eq1 eq2 eq3

var1 var2

eq6 eq7

var5 var6 var7

Error correcting strategies
based on annotations

analysis and user-interaction

under-constrained
subsytem

over-constrained
subsytem

Static Debugging
(Structural Analysis)

eq2 eq3 eq4 eq5 eq6 eq7

var1 var2 var3 var4 var5 var6

eq2 eq3

var1 var2

eq4 eq6 eq7

var3 var5 var6

var1,var2
var3,var5,

var6

Decomposition into
irreductible parts

Dynamic Numerical
Debugging

well-constrained
general system

Figure 16. Debugger architecture.

6 Conclusions
Determining the cause of errors in models of physical
systems is hampered by the limitations of the current
techniques of debugging declarative equation based
languages. We have presented a new approach for
debugging such languages by employing graph
decomposition techniques and have given several usage
examples for debugging erroneous models. It has also
been demonstrated that it is possible to create a tool
with an enhanced user interaction capability that can be
used explicitly in understanding complicated simulation
models.

The contributions of this paper are twofold: the
proposal of integrating graph decomposition techniques
for debugging declarative equation based languages and
an efficient equation annotation structure which helps
the debugger to eliminate some of the heuristics
involved in the error solving process. The annotations
also provide an efficient way of identifying the
equations and therefore helps the debugger in providing

error messages consistent with the user’s perception of
the original source and simulation model. The
implemented debugger helps to statically detect a broad
range of errors without having to execute the simulation
model. Since the simulation system execution is
expensive the implemented debugger helps to greatly
reduce the number of test cases needed to validate a
simulation model.

The merits of the proposed debugging technique
are as follows:
• The user is exposed to the original source code of

the program and is therefore not burdened with
understanding the intermediate code or the
numerical artifacts for solving the underlying
system of equations.

• The user has a greater confidence in the correctness
of the simulation model.

• The error fixing strategies are also prioritized by
the debugger, which benefits the user in choosing
the right error fixing solution.

References
[1] Asratian A.S.; Denley T. and Häggkvist R. Bipartite

Graphs and their Applications. Cambridge University
Press 1998.

[2] Dolan A. and Aldous J. Networks and algorithms – An
introductory approach. John Wiley & Sons 1993
England.

[3] Dulmage, A.L., Mendelsohn, N.S. Coverings of bipartite
graphs, Canadian J. Math., 10, 517-534.

[4] Elmqvist, H. A Structured Model Language for Large
Continuous Systems. PhD thesis TFRT-1015, Department
of Automatic Control, Lund Institute of Technology,
Lund, Sweden. 1978.

[5] Flannery, L. M. and Gonzalez, A. J. Detecting Anomalies
in Constraint-based Systems, Engineering Applications
of Artificial Intelligence, Vol. 10, No. 3, June 1997,
pages. 257-268.

[6] Fritzson P.; Gunnarsson J; Jistrand M.;. "MathModelica -
An Extens ible Modeling and Simulation Environment
with Integrated Graphics and Literate Programming". In
Proceedings of the 2nd International Modelica
Conference (March 18-19, Munich, Germany, 2002)

[7] Jirstrand, M.; Gunnarsson J. and Fritzson P.
“MathModelica – a new modeling and simulation
environment for Modelica. ” In Proceedings of the Third
International Mathematica Symposium (IMS’99, Linz,
Austria, Aug), 1999.

[8] Jirstrand, M.“MathModelica – A Full System Simulation
Tool”. In Proceedings of Modelica Workshop 2000
(Lund, Sweden, Oct. 23-24),2000.

[9] Maffezzoni C.; Girelli R. and Lluka P. Generating
efficient computational procedures from declarative
models. Simulation Practice and Theory 4 (1996) pages
303-317.

[10] Vicente Rico Ramirez. Representation, Analysis and
Solution of Conditional Models in an Equation-Based
Environment. PhD Thesis, Carnegie Melon University,
Pittsburgh, Pennsylvania, August 1998.

[11] Wolfram S. The Mathematica Book . Wolfram Media Inc.
(February 1996)

Modelica 2002, March 18−19, 2002 166 The Modelica Association

Torrey D.A., Selamogullari U.S. A Behavioral Model for DC−DC Converter using Modelica

The Modelica Association 167 Modelica 2002, March 18−19, 2002

A Behavioral Model for DC-DC Converters using Modelica

David A. Torrey Ugur Savas Selamogullari
Department of Electrical, Computer and Systems Engineering

Rensselaer Polytechnic Institute
Troy, NY 12180-3590 USA

Email: torred@rpi.edu, selamu@rpi.edu

Abstract

This paper describes the development of a behavioral
model of a dc/dc converter. The focus is on devel-
oping a model that simulates quickly, yet retains the
behavioral features of a physical converter. Based on
a physically motivated behavioral circuit model, the
model is then implemented in the Modelica modeling
language and simulated using the Dymola simulation
environment. Simulation results are given. A theoreti-
cal method for tuning the simulation model to a phys-
ical converter is presented.

1 Introduction

Dc/dc converters are power electronic circuits that
convert a dc voltage to a different regulated dc volt-
age level. In this respect, ideally a dc/dc converter
can be considered as a dc transformer that provides
lossless transfer of energy between circuits at different
voltage or current levels. There are several topological
variations of dc converters; the converter is generally
described in terms of its voltage conversion character-
istics. For example, a Buck Converter generally pro-
duces an output voltage that is lower than the input
voltage.

The main objective of the dc/dc converter is to control
one or more power semiconductor switches to trans-
from dc input from one level to another. This is usually
accomplished by controlling the on and off durations
of the semiconductors; filters are then used to remove
the associated ac components of the input current and
the output voltage [1, 2, 3, 4].

Our objective here is in describing the macroscopic
dynamic behavior of the dc/dc converter without get-
ting caught up in the control and switching operations
taking place within a physical converter. We are trying

to create a simulation model that faithfully emulates
the behavior of a commercial dc/dc converter. The
next section motivates the behavioral model.

2 The Behavioral Model

To model the true behavior of a dc/dc converter, a de-
tailed model of the converter and its controller has to
be built where every switching cycle is taken into ac-
count. However, the goal of our modeling effort is
to emulate the behavior of a commercial dc/dc con-
verter where the dynamics at the switching frequency
are barely perceptible at the two ports of the converter.
Modeling the cycle to cycle operation within the con-
verter merely adds to the execution time of the model
and potentially introduces numerical issues.

A more efficient way to simulate the behavior of a
dc/dc converter is to use a circuit model that produces
dynamic voltages and currents, but without consider-
ing internal converter quantities on an instantaneous or
averaged basis [4]. The equivalent circuit contains no
switching or switching ripple, and only the important
macroscopic components of the waveforms are mod-
eled [2]. With this approach, a behavioral model (input
current, output voltage changes) of a dc/dc converter
is obtained. The circuit and Modelica implementation
are shown in Fig. 1 and Fig. 2, respectively.

Figure 1: A behavioral model for a dc/dc converter.

A reflected load current is used on the input side of the
converter. Any change in output voltage, load, and in-
put voltage is reflected in this current since these are

A Behavioral Model for DC−DC Converter using Modelica Torrey D.A., Selamogullari U.S.

Modelica 2002, March 18−19, 2002 168 The Modelica Association

Figure 2: A schematic of the dc/dc converter behav-
ioral model.

variables of the current equation f (vin,vout, iout). At
the output stage, a controlled current source is used to
simulate the output current supplied by the converter.
This current is controlled to regulate the output volt-
age. The model emulates the current limiting function
of a practical dc/dc converter design that uses current-
mode control. In order to control the output current,
output voltage feedback is used. This is exactly what
would be done in a physical converter. The output
voltage is compared with the nominal voltage of the
converter (Vref) and an error is fed to a proportional
plus integral (PI) controller. The output of this con-
troller is used to drive a limiter with a limit value of
Iout = Pout/Vref. The output of the limiter drives a sig-
nal current source and defines the current drawn by the
load.

On the input side there is a resistor (Rhk) to account
for internal power needs of the converter. The power
consumed by this resistor models the internal power
consumed by the control circuitry; the power lost to
switching, conduction and other parasitic losses within
the converter are reflected in the efficiency used to de-
termine the load current reflected to the input. The in-
put capacitor is to provide energy storage for the input
side and to simulate the input capacitance of a typical
dc/dc converter. The output of the converter is only
active if the input voltage is in within a valid range of
input voltages [Vinmin ,Vinmax]. Ideal diodes are used to
restrict the flow of energy to be from the input to the
output.

The model uses existing Modelica Library compo-
nents such as resistors, ideal diodes, capacitors and
two new components: a controlled current source
(CCS) and a PI controller with limiting.

2.1 Controlled Current Source (CCS)

This component is the redefinition of existing Voltage
Controlled Current Source within the Modelica Elec-
trical Library with a new current definition equation
and the addition of extra parameters. The relationship
between input and output power of any dc-dc converter
can be written as

Pin =
Pout

η
; (1)

Vin · Iin =
Vout · Iout

η
. (2)

The load current reflected to the input is

Iin =
Vout · Iout

η ·Vin
. (3)

In the model, Vout is the output voltage, Iout is the load
current measured through the current sensor, η is effi-
ciency of the converter and Vin is the input voltage.

The Modelica code of this component is given below.
Since the output voltage is already used in the current
equation and there will be no output voltage when in-
put voltage is outside of range, parameters Vinmin and
Vinmax are not used in this component. The current
equation i2 is used under the complete model equation
section due to dependency on outside variables, which
are not defined inside the class itself. The Modelica
code given below is complete with i2 in it. When i2
is used outside of the class CCS, the class becomes a
partial class.

class CCS

extends Electrical.Analog.Interfaces.TwoPort;
parameter Real Vout;
parameter Real Pout;
parameter Real eff;

equation

i1 = 0;
i2 = v1*(CurrentSensor.i)/((v2 + 1e-10)*eff);
end CCS;

2.2 PI Controller

This component is the combination of two standard
Modelica library components: Gain and LimIntegra-
tor. These two components are connected in parallel
to form the proportional plus integral (PI) controller.
The error signal is fed to the input of the PI controller
and controller output is one that is proportional to both

Torrey D.A., Selamogullari U.S. A Behavioral Model for DC−DC Converter using Modelica

The Modelica Association 169 Modelica 2002, March 18−19, 2002

magnitude and the integral of the input signal. Pro-
portional control increases the speed of the response
while using a term proportional to the integral of the
error signal eliminates the steady state error.

Component LimIntegrator provides the option of turn-
ing the integrator off when the integral reaches a given
upper or lower limit. This is used to prevent integrator
wind-up. This way, the overall system has less over-
shoot and uses less control effort. The Modelica im-
plementation of this component follows.

class LimPICont

parameter Real Pout;
parameter Real Vref;
Blocks.Continuous.LimIntegrator
LimIntegrator1(outMax[:]={Pout/Vref});
Blocks.Math.Add Add1;
Blocks.Math.Gain Gain1;
Blocks.Interfaces.InPort inPort;
Blocks.Interfaces.OutPort outPort;

equation

connect(LimIntegrator1.inPort,inPort);
connect(Gain1.inPort,inPort);
connect(Gain1.outPort, Add1.inPort1);
connect(LimIntegrator1.outPort,Add1.

inPort2);
connect(Add1.outPort,outPort);

end LimPICont;

A theoretical method for determining the PI controller
parameters is explained in the next section.

3 Determining PI Controller Param-
eters

The following method can be used to determine the
PI controller parameters from a physical converter. A
ripple is introduced on the output voltage by using an
offset sinusiodal voltage source in series with a resistor
as shown in Fig. 3. Using the sinusoidal voltage source
provides control over the ripple frequency.

The capacitor voltage and current can be calculated
from the circuit equations once the resistor voltage and
current are known. These two currents add up to the
dc/dc converter output current:

iout = ir + ic . (4)

The output current can also be written as:

iout = H(s)(Vref −Vout) , (5)

Figure 3: Circuit for PI parameter extraction.

H(s) = Kp +
Ki

s
, (6)

where H(s) is the transfer function of the PI controller,
Vref is nominal output voltage of the converter and Vout

is the output voltage. If only ripple quantities are con-
sidered, then

ĩoutd = ĩrd + ĩcd , (7)

and

ĩoutd = H(s) · ṽoutd . (8)

ṽoutd is the ripple voltage across the output capacitor.
Since both ĩoutd and ṽoutd are known, PI controller pa-
rameters Kp and Ki can be calculated.

For high frequency values, the integrator effect of the
PI controller is minimized and the proportional effect
will be dominant. Under these conditions

ĩoutd = Kp · ṽoutd , (9)

so

Kp =
ĩoutd

ṽoutd
. (10)

For low frequencies, the intgerator will be donimant,
so

ĩoutd =
Ki

s
· ṽoutd , (11)

= Ki

∫
ṽoutd dt . (12)

The values found from this method are an approxima-
tion and give a starting point for final values. Test re-
sults using a physical converter can be used for fine-
tuning of the simulation model.

4 Simulation Results

Simulations have been completed for 10Ω and 20Ω
loading. For each simulation the following waveforms
are plotted:

A Behavioral Model for DC−DC Converter using Modelica Torrey D.A., Selamogullari U.S.

Modelica 2002, March 18−19, 2002 170 The Modelica Association

• Input current.

• Output voltage and current.

Simulation parameters and their values are:

• Vinmin = 145V

• Vinmax = 208V

• Vout = 300V

• Pout = 5000W

• η = 0.95

• LimIntegrator gain = 1 (actual gain would be de-
termined from the test explained in Section 3)

• Gain = 1 (actual gain would be determined from
the test explained in Section 3)

• Cout = Cin = 50µF

In order to show the effect of input voltage range
on converter operation, a sinusoidal voltage source is
placed in series with a constant voltage source to form
the input voltage (see Fig. 4). Both 10Ω and 20Ω
loading simulations are run for this case as well. For

0 0.1 0.2 0.3 0.4 0.5
-100

-50

0

50

100

150

200
DCtoDCModel1.CCS1.v2

Figure 4: The time-varying input voltage.

the constant input voltage case, the simulation results
for 10Ω loading are shown in Fig. 5 and Fig. 6. The
output current limit can be seen in Fig. 5.

For the time-varying input voltage case, the simulation
results for 20Ω loading are shown in Fig. 7 and Fig. 8.

The input current waveform in Fig. 8 for the time-
varying input voltage case can be explained by con-
sidering its equation:

Iin =
Vout · Iout

η ·Vin
. (13)

0 0.2 0.4 0.6 0.8 1

0

40

80

120

160

Rload.v Rload.i

Figure 5: The output voltage and current waveforms
for constant input voltage.

0 0.2 0.4 0.6 0.8 1
-5

0

5

10

15

20
DCtoDCModel1.CCS1.i2

Figure 6: Input current waveform for the constant in-
put voltage.

0 0.1 0.2 0.3 0.4
-50

0

50

100

150

200

250

300

350
Rload.v Rload.i

Figure 7: The output voltage and current waveforms
for time-varying input voltage.

Torrey D.A., Selamogullari U.S. A Behavioral Model for DC−DC Converter using Modelica

The Modelica Association 171 Modelica 2002, March 18−19, 2002

0 0.1 0.2 0.3
-5

0

5

10

15

20

25

30

35
DCtoDCModel1.CCS1.i2

Figure 8: The input current waveform for the time-
varying input voltage.

The output power has a constant value and the input
voltage varies sinusoidally. Thus, the current value is
found by division of a constant with a sinusoid. This
explains why the input current decreases as the input
voltage increases and vice versa.

5 Conclusion

This paper has described the development of a behav-
ioral model for dc/dc converters. The model has been
developed by using the modeling language Modelica.
Two new Modelica components are developed from
the existing libary components. Model itself is also
a new addition to Modelica Electrical Library. Simu-
lation results for 10 Ω and 20 Ω loading are given. In-
formation about the tuning of PI controller parameters
to a physical converter is explained.

References

[1] J. G. Kassakian, G. C. Verghese, and M.
F. Schlecht, Principles of Power Electronics,
Addison-Wesley, 1991.

[2] P. T. Krein, Elements of Power Electronics, Ox-
ford University Press, 1998.

[3] N. Mohan, T. M. Undeland, W. P. Robbins,
Power Electronics, 2nd Edition, John Wiley and
Sons Inc., 1995.

[4] D. W. Hart, Introduction to Power Electronics,
Prentice Hall Inc., 1997.

[5] Modelica Web Page (www.modelica.org)

[6] Dymola User’s Manual

[7] Modelica Standard Electrical Library

A Behavioral Model for DC−DC Converter using Modelica Torrey D.A., Selamogullari U.S.

Modelica 2002, March 18−19, 2002 172 The Modelica Association

A Modelica Code of DC-DC Con-
verter Model

package DCModel

model DCtoDCModel "DC/DC Converter Model"

parameter Real Pout;
parameter Real Vref;
parameter Real Vinmin;
parameter Real Vinmax;
parameter Real eff;
Real Iout;

model SignalCurrent
"Generic current source using the input signal as
source current"

extends Electrical.Analog.Interfaces.OnePort;
Blocks.Interfaces.InPort inPort(final n=1) ;

end SignalCurrent;

class LimPICont

parameter Real Pout;
parameter Real Vref;
Blocks.Continuous.LimIntegrator
LimIntegrator1(outMax[:]={Pout/Vref}) ;
Blocks.Math.Add Add1 ;
Blocks.Math.Gain Gain1 ;
Blocks.Interfaces.InPort inPort ;
Blocks.Interfaces.OutPort outPort ;

equation

connect(LimIntegrator1.inPort, inPort) ;
connect(Gain1.inPort, inPort) ;
connect(Gain1.outPort, Add1.inPort1) ;
connect(LimIntegrator1.outPort, Add1.inPort2) ;
connect(Add1.outPort, outPort) ;

end LimPICont;

partial class CCS

extends Electrical.Analog.Interfaces.TwoPort;

equation

i1 = 0;

end CCS;

CCS CCS1 ;
Electrical.Analog.Basic.Resistor Rhk ;
Electrical.Analog.Basic.Capacitor Cout(C=50e-6) ;
Electrical.Analog.Ideal.IdealDiode Din ;
Electrical.Analog.Basic.Capacitor Cin(C=50e-6) ;
Electrical.Analog.Interfaces.PositivePin p ;
Electrical.Analog.Interfaces.NegativePin n ;
Electrical.Analog.Interfaces.PositivePin p1 ;
Electrical.Analog.Interfaces.NegativePin n1 ;
Electrical.Analog.Sensors.CurrentSensor Amp ;
Blocks.Math.Feedback Feedback1 ;
Blocks.Sources.Constant Constant1(k={Vout}) ;
Electrical.Analog.Sensors.VoltageSensor Volt ;
Blocks.Nonlinear.Limiter Limiter1(uMax={Pout/Vout}, uMin={0});
LimPICont LimPI(Pout=Pout, Vref=Vref) ;
Electrical.Analog.Ideal.IdealDiode Dout ;
SignalCurrent SignalCurrent1 ;

equation

connect(Volt.p, Amp.p) ;
connect(Din.n, Cin.p) ;
connect(Din.p, p) ;
connect(Cin.n, n) ;
connect(Rhk.p, Cin.p) ;
connect(Cin.n, Rhk.n) ;
connect(CCS1.p2, Rhk.p) ;
connect(CCS1.n2, Rhk.n) ;
connect(CCS1.p1, p1) ;
connect(CCS1.n1, n1) ;
connect(Cout.p, Volt.p) ;
connect(Cout.n, Volt.n) ;
connect(Volt.n, n1) ;
connect(Amp.n, p1) ;
connect(Constant1.outPort, Feedback1.inPort1) ;
connect(Feedback1.outPort, LimPI.inPort) ;
connect(LimPI.outPort, Limiter1.inPort) ;
connect(Volt.outPort, Feedback1.inPort2) ;
connect(Limiter1.outPort, SignalCurrent1.inPort) ;
connect(Dout.n, SignalCurrent1.n) ;
connect(SignalCurrent1.p, Dout.p) ;
connect(Dout.p, Cout.n) ;
connect(Dout.n, Cout.p) ;

Iout = Pout/Vref;

CCS1.i2 = (CCS1.v1)*(Amp.i)/((CCS1.v2 + 1e-10)*eff);

SignalCurrent1.i = if p.v > Vinmin and p.v < Vinmax then
SignalCurrent1.inPort.signal[1]

else 0;

end DCtoDCModel;

end DCModel;

Torrey D.A., Selamogullari U.S. Modelica Implementation of Field−oriented Controlled 3−phase Induction ...

The Modelica Association 173 Modelica 2002, March 18−19, 2002

Modelica Implementation of Field-oriented Controlled 3-phase
Induction Machine Drive

David A. Torrey Ugur S. Selamogullari
Department of Electrical, Computer and Systems Engineering

Rensselaer Polytechnic Institute
Troy, NY 12180 USA

Email: torred@rpi.edu, selamu@rpi.edu

Abstract

This paper focuses on the modeling of a cage induc-
tion machine drive under direct-field oriented control,
also referred to as flux-vector control. The interest
is to create a behavioral model of an induction ma-
chine drive under field orientation for sytem simula-
tions since field-oriented control is now commonplace
in commerical adjustable speed drives. First, the 3-
phase induction machine model is developed. Then,
the field orientation requirements are applied to this
model and a voltage source inverter is used to emu-
late a controlled current source. Rotor field orientation
is used because of fewer limitations than other field-
orientation approaches. The inverter is assumed to
provide the desired phase currents instantenously and
ripple free at some efficiency. Finally, these three com-
ponents of the overall drive sytem, machine model,
field orientation and inverter power supply, are com-
bined together in a block using the Modelica language
and simultaneously solved using the Dymola user in-
terface.

1 Introduction

As a mature technology the induction machine en-
joys use in many established applications and is fre-
quently the first machine considered for emerging ap-
plications. The machine is comprised of a stator and
a rotor. The windings on the stator and the rotor are
assumed to be sinusoidally distributed in space to sim-
plify the analysis of the machine [5]. The windings
in the induction machine are coupled. This coupling
is described through the inductance matrix, which de-
scribes how current in any one winding contributes to
the flux linking the other windings. In a closed form,

the matrix equation can be written as

λabc = Labc(θ)iabc , (1)

where λabc and iabc are 1× 6 vectors and Labc(θ) is a
6×6 matrix dependent on rotor position.

The electrical dynamics for the induction machine can
be written very succinctly using vector notation as

vabc =
dλabc

dt
+ Rabciabc . (2)

The electromagnetic torque is

τem =
1
2

iT
dL(θ)

dθ
i , (3)

and the mechanical dynamics are

H
dω
dt

= τem − τl , (4)

where the load torque τl includes windage and friction
in addition to the shaft load. The moment of inertia
(H) is assumed to include the inertia of the induction
machine and whatever is connected to the induction
machine through its shaft.

Taken together Eqs. 1 through 4 summarize the elec-
tromechanical dynamics of the induction machine.
This description, however is inconvenient for studying
dynamics and control for two reasons:

1. The order of the system is large.

2. The dependence on θ gives rise to a time-varying
model.

To obtain a much simpler induction machine model,
two power invariant transformations are used. The αβ
transformation converts a balanced three-phase ma-
chine into an equivalent balanced two-phase machine.

Modelica Implementation of Field−oriented Controlled 3−phase Induction ... Torrey D.A., Selamogullari U.S.

Modelica 2002, March 18−19, 2002 174 The Modelica Association

This is valuable because in a three-phase machine each
phase couples into the other phase. A two-phase ma-
chine, on the other hand, has phase windings that do
not couple because the axes of the magnetic fields are
orthogonal (Fig. 1). In addition, it reduces the machine
from six windings to four windings.

a

b

c

α

β

ωt ωt

abc reference
frame

αβ0 reference
frame

Figure 1: Space vectors for the abc reference frame
and the αβ0 reference frame.

If the phase a and phase α axes are coincident, N3 is
the number of turns of the three-phase winding and N2

is the number of turns for the two-phase winding, then
resolving the three mmfs of the abc frame along the
α and β axes and equating the three-phase quantities
gives

N2iα = N3ia + N3ib cos
(

2π
3

)
+ N3ic cos

(
4π
3

)
, (5)

N2iβ = N3ib sin
(

2π
3

)
+ N3ic sin

(
4π
3

)
. (6)

For completeness, a third variable which is indepen-
dent of iα and iβ is needed:

N2i0 = kN3ia + kN3ib + kN3ic . (7)

These relationships can be summarized in vector form
as


 iα

iβ
i0


 =

T︷ ︸︸ ︷
N3

N2


 1 −1/2 −1/2

0
√

3/2 −√
3/2

k k k





 ia

ib
ic


 . (8)

In order to have invariance of power, T = T−T must
be satisfied, and this is satisfied if N3/N2 =

√
2/3 and

k = 1/
√

2 [7], giving

T =

√
2
3


 1 −1/2 −1/2

0
√

3/2 −√
3/2

1/
√

2 1/
√

2 1/
√

2


 . (9)

Since 0 components do not couple to either the α or β
phases and do not contribute to torque production, it is

best not to include them in the model. As a result, the
model order is reduced from six states to four states.
The T matrix becomes T23 for converting abc quanti-
ties to αβ quantities and becomes T32 for the inverse
transformation:

T23 =

√
2
3

[
1 −1/2 −1/2
0

√
3/2 −√

3/2

]
; (10)

T32 = T T
23 . (11)

In a closed format, the electrical dynamics become

vαβ =
dλαβ

dt
+ Rαβiαβ . (12)

The second transformation is another power-invariant
transformation that is tied to the rotating magnetic
fields in the airgap of the machine. This dq transfor-
mation eliminates the rotor position from the machine
dynamics by projecting the dynamics onto a reference
frame that moves with the airgap magnetic field. Fig. 2
shows an arbitrary vector�a decomposed into reference
frames where one frame is displaced from the other by
an angle φ. Each reference frame is denoted by a direct
axis and a quadrature axis; the direct and quadrature
axes are orthogonal. It can be shown that

[
ad2

aq2

]
=

[
cos(φ) sin(φ)
−sin(φ) cos(φ)

][
ad1

aq1

]
. (13)

φ

d1 axis ad1

aq1

d2 axis
aq2

ad2

q1 axis

q2 axis

Figure 2: The vector �a decomposed into two reference
frames, with angular displacement φ between them.

Fig. 3 shows the relationship among the three coordi-
nate systems, where superscript s and r indicate stator
and rotor frames, respectively. Accordingly, the αβ
dynamics of the stator and rotor are transformed to dq
reference frame through an angle Pφ for the stator and

Torrey D.A., Selamogullari U.S. Modelica Implementation of Field−oriented Controlled 3−phase Induction ...

The Modelica Association 175 Modelica 2002, March 18−19, 2002

P(φ−θ) for the rotor quantities (Fig. 3). It follows that




λsd

λsq

λrd

λrq


 =

[
ePφJ 0

0 eP(φ−θ)J

]


λsα
λsβ
λrα
λrβ


 , (14)

where

J =
[

0 1
−1 0

]
; (15)

eJφ =
[

cos(φ) sin(φ)
−sin(φ) cos(φ)

]
. (16)

(φ -θ)

φ
θ

αs

βs

αr

βr

dq

Figure 3: The relationship among the stator αβ axes,
the rotor αβ axes, and the axes of the dq reference
frame.

The machine dynamics become

vdq =
λdq

dt
+ Rdqidq −

[
ωsJ 0

0 ωslJ

]
λdq , (17)

where

λdq =
[

LSI MI
MI LRI

]
idq ; (18)

LS = Ls + Lss ,

LR = Lr + Lrr ,

M = 3
2 Lsr .

ωs is the synchronous angular velocity of the air-gap
magnetic field, ωsl is the slip frequency, and P is the
number of pole pairs.

The torque equation is

τm =
3PLsr

2
(isqird− isdirq)= PM(isqird − isdirq) . (19)

2 Field Orientation

Field oriented control is a technique that structures the
control of an induction-machine to be entirely paral-
lel to that of a separately excited dc machine. That
is, the field flux is oriented to be orthogonal to the
torque-producing current. There are three commonly
discussed versions of field orientation: rotor, stator and
airgap. In each, the torque is given by vector product
between flux and current. The flux involved is tied
to the type of orientation, for example rotor orienta-
tion uses rotor fluxes. In the direct method, the airgap
flux is measured directly by Hall sensors to determine
the magnitude and orientation of the rotor flux vector,
while the indirect field orientation is based on calculat-
ing the slip speed required for proper field orientation,
and imposition of this speed on the motor [1, 2, 3, 4].

In direct field orientation, the orientation of the rotor
flux is determined as follows:

1. The currents isα and isβ are calculated from the
measured stator currents.

2. The fluxes λrα and λrβ are calculated from the
measured airgap flux and the stator currents:

λrα =
LR

M
λmα − (LR−M)isα ; (20)

λrβ =
LR

M
λmβ − (LR −M)isβ . (21)

3. The magnitude and orientation of the rotor flux is
determined using the rectangular to polar coordi-
nate transformation:

|λr| =
√

λ2
rα + λ2

rβ , (22)

φ = tan−1 λrβ

λrα
. (23)

Under field-orientation, we are forcing the induction
machine to maintain orthogonality between appro-
priate flux and current through active control. The
commands for flux and torque are generated by a
higher-order controller. The block diagram of the field
oriented-control of an induction machine is given in
Fig. 4. Based on commanded flux and torque, the de-
sired values for i∗sd and i∗sq are generated. The outputs
of the flux and torque calculators are used to close the
flux and torque feedback loops. By knowing the rotor
position, the corresponding values for i∗sα and i∗sβ are
determined using the rotary transformation:[

issα
issβ

]
= e−Jφ

[
isd

isq

]
, (24)

Modelica Implementation of Field−oriented Controlled 3−phase Induction ... Torrey D.A., Selamogullari U.S.

Modelica 2002, March 18−19, 2002 176 The Modelica Association

���������
���������

�
�

�
�

��

Torque
Calculator

�
�

�
�

��

Flux
Calculator

PWM
Current

Regulator
�

�
�

�
��

��
��

��
��

��
��

�

�

� �

�

� �

�

�

�

�

�
�
�
�
�
�

�� ��

� � �
� � �

� � �� � �

� � �
�

�
�

�

�

�

��

�

∑

∑ IM

dq

αβ
αβ

abc

=
∼

−

λ∗
rd

τ∗m

i∗sd

i∗sq ψ

i∗sβ

i∗sα
i∗sa

i∗sb

i∗sc

isa

isb

isc

λmα

λmβλrd

Figure 4: A general block diagram of how field oriented control is implemented.

where φ is the electrical angle that comes out of the
flux calculator shown in Fig 4. The excitation an-
gle is determined by simulating the induction motor
in the αβ reference frame. In our model, this is an
easy task since the simulation gives us λrα and λrβ di-
rectly. Once isα and isβ are determined, they can be
converted into the desired phase currents i∗sa, i

∗
sb and i∗sc

using the αβ transformation. Because stator currents
are imposed on the induction motor, phase voltages
are no longer prescribed. Instead, the phase voltages
reflect the self-consistent resolution of the induction
motor model and the imposed currents. Accordingly,
the number of states within the induction motor model
is reduced by two. The rotor dynamics on the αβ axes
can be written as

dλs
rα

dt
= − 1

τr
λs

rα +
M
τr

issα −Pωrλs
rβ , (25)

dλs
rβ

dt
= − 1

τr
λs

rβ +
M
τr

issβ + Pωrλs
rα , (26)

where τr = LR/Rr .

The stator voltages are given by

vs
s,αβ = Rsis,αβ +

dλs,αβ

dt
, (27)

where

λs
s,αβ = σLSis,αβ +

M
LR

λr,αβ , (28)

and

σ = 1− M2

LSLR
. (29)

Stator three-phase voltages and currents can be calcu-
lated using the T23 transformation matrix:

vs,abc = T23vs
s,αβ ; (30)

is,abc = T23iss,αβ . (31)

It is common to use a voltage-source inverter to feed
the induction motor with closed-loop current control.
The inverter is assumed to be instantenous and mod-
eled as a current source. The current values are de-
termined from the feedback loops of flux and torque.
Pulse width modulation (PWM) is routinely employed
to control the inverter switches [6]. Ideally the phase
currents would be without ripple and perfectly track
the commanded phase currents, while reality is some-
what different but close enough to the ideal. Thus, the
inverter is assumed to be ideal and the current drawn
from the DC side of the inverter can be calculated us-
ing conservation of instantenous power:

idc =
iTs,abcvs,abc

ηinvvdc
, (32)

where ηinv is the inverter efficiency.

There are three sections to this model. The first cap-
tures the electromechanical dynamics of the induction

Torrey D.A., Selamogullari U.S. Modelica Implementation of Field−oriented Controlled 3−phase Induction ...

The Modelica Association 177 Modelica 2002, March 18−19, 2002

machine when operating under direct field orientation.
These dynamics when applied to the induction ma-
chine model prescribe the corresponding stator volt-
ages and currents. The stator voltages and currents in
turn dictate the current that must be supplied by the
inverter power supply.

As a block diagram, the developed system model is
shown in Fig. 5. The pins are provided for inverter
connections, inports are used to get the flux and torque
commands and a flange is used for the shaft of the ma-
chine. This way, the model emulates the reality. The
Modelica code for the model is given in Appendix A.
Since including the vs,αβ calculations in the simulation
code causes a DAE index problem in the translation
stage, the voltages are calculated seperately using the
derivative and gain blocks from the Modelica library.
Then, the instantenous power is calculated.

Flux Command Torque Commad

Field Oriented Motor Model

Inverter Input

V
=

80

Flux

k={0.5}

Torque

LoadTorque

tau

LoadTorque1

k={30.6}

G

Figure 5: Block diagram of the field-oriented con-
trolled 3-phase induction machine drive.

To illustrate the performance of the direct rotor flux
field orientation system, the model is simulated un-
der a commanded torque and flux profile[3]. The load
torque is taken as 30.6 Nm: the total inertia of the sys-
tem is 0.5 kg.m2. The commanded torque profile is

τm =




135.3 Nm for 0 < t ≤ 0.5 sec
30.6 Nm for 0.5 < t ≤ 1 sec

−74.1 Nm for 1 < t ≤ 1.5 sec
−135.3 Nm for 1.5 < t ≤ 2sec
−30.6 Nm for t > 2 sec.

(33)

The rotor flux is to be maintained at 0.5 Wb. The
programmed torque and flux commands are given in
Fig. 6 and Fig. 7, respectively.

Simulation results for the torque, speed and flux of the
model are shown Fig. 8 and Fig. 9. The inverter DC
side current is plotted in Fig. 10. Comparing the sim-
ulation results with the desired torque and flux com-

mands shows that the model follows the commanded
torque and flux.

0 1 2
-150

-100

-50

0

50

100

150
FOMotor1.Torque_command.signal[1]

Figure 6: The commanded torque profile.

0 1 2
0.44

0.46

0.48

0.5

0.52

0.54

0.56
FOMotor1.IndMot1.Flux_command.signal[1]

Figure 7: The commanded flux.

0 1 2
-150

-100

-50

0

50

100

150
FOMotor1.IndMot1.Wrm FOMotor1.IndMot1.Tem

Figure 8: The torque and speed response of the induc-
tion machine.

Modelica Implementation of Field−oriented Controlled 3−phase Induction ... Torrey D.A., Selamogullari U.S.

Modelica 2002, March 18−19, 2002 178 The Modelica Association

0 1 2
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
FOMotor1.IndMot1.lambda_rd FOMotor1.IndMot1.lambda_rq

Figure 9: The simulated rotor fluxes.

0 1 2
-40

-20

0

20

40

60

80

100
FOMotor1.InvCurrent1.i

Figure 10: The inverter DC side current.

3 Conclusion

The underlying motivation for this study is the con-
struction of a field-oriented controlled 3-phase induc-
tion machine drive model for system simulations. The
final block diagram (Fig. 5) is comprised of three com-
ponents: an induction machine model, field orienta-
tion requirements and an inverter power supply that
provides the desired phase currents under field orien-
tation. The inverter is assumed ideal and loaded con-
sistent with the induction machine drive sytem. Since
the physical phase currents are needed to obtain the in-
verter DC side current, the induction machine is simu-
lated in αβ reference frame under rotor direct field ori-
entation. This is required to determine the orientation
of the rotor flux. Pins, inports and a flange are used to
provide the connection points to the user. The model
is simulated under a programmed flux and torque pro-
file and results are given. The Dymola simulation tool
is used to solve the simultaneous resolution of three
sections.

References

[1] F. Blaschke, Das Ver fahren der Feldorientierung
zur Regelung der Drehfelmachine (The method
of field orientation for control of three phase
machines) Ph.D. Dissertation, TU Braunschweig,
1973.

[2] F. Blaschke, The principle of field orientation as
applied to the new transvektor closed-loop control
system rotating-field machines, Siemens Review,
Vol. 34, pp. 217-220, May 1972.

[3] A. M. Trzynadlowski, The Field Orientation Prin-
ciple in Control of Induction Motors, Kluwer,
1994.

[4] D. M. Novotny and T. A. Lipo, Vector Control and
Dynamcis of AC Drives, Oxford University Press,
1997.

[5] A. E. Fitzgerald, C. Kinglesy, Jr., and S. D.
Umans, Electric Machinery, 5th ed., McGraw-
Hill, 1990.

[6] B. K. Bose, ed., Power Electronics and Variable
Frequency Drives, IEEE Press, 1997, Chapter 4.

[7] N. N. Hancock, Matrix Analysis of Electric
Machinery,2nd ed., Pergamon Press,1974

[8] Dymola User’s Manual

[9] Modelica Web page (www.modelica.org)

Torrey D.A., Selamogullari U.S. Modelica Implementation of Field−oriented Controlled 3−phase Induction ...

The Modelica Association 179 Modelica 2002, March 18−19, 2002

A Modelica Code
package FieldOriented

class Tork
Real T ;
Modelica.Blocks.Interfaces.OutPort Torque ;

equation
T = if (time <= 0.5) then (135.3) else if (time <= 1 and time > 0.5) then
30.6 else if (time > 1 and time <= 1.5) then -74.1 else if (time > 1.5
and time <= 2) then -135.3 else if time > 2 then -30.6 else 0 ;
Torque.signal[1] = T ;

end Tork ;

partial class InvCurrent "Source for constant current"
extends Modelica.Electrical.Analog.Interfaces.OnePort ;

end InvCurrent ;

class IndMot
parameter Real Rs=0.294 "stator resistance(abc, dq frames)" ;
parameter Real Rr=0.156 "rotor resistance (abc, dq frames)" ;
parameter Real Lsl=0.00139 "abc frame stator leakage inductance" ;
parameter Real Lrl=0.00074 "abc frame rotor lekage inductance" ;
parameter Real Lsr=0.041 "abc frame mutual inductance" ;
parameter Real P=3 "number of pole pairs" ;
parameter Real H=0.5 "inertia of rotor" ;
parameter Real f=60 "applied source frequency" ;
Real M "dq frame mutual inductance" ;
Real LS "dq frame stator inductance" ;
Real LR "dq frame rotor inductance" ;
Real D "leakage factor" ;
Real Tem "electromechanical torque" ;
Real Wrm(start=0) "Motor mechanical speed" ;
Real theta "Rotor position angle" ;
Real Isd "d axis stator current" ;
Real Isq "q axis stator current" ;
Real Is_alpha "alpha axis stator current" ;
Real Is_beta "beta axis stator current" ;
Real Isa "stator phase a current" ;
Real Isb "stator phase b current" ;
Real Isc "stator phase a current" ;
Real lambda_ralpha(start=1e-3) "alpha axis rotor flux" ;
Real lambda_rbeta(start=1e-3) "beta axis rotor flux" ;
Real lambda_rd "d axis rotor flux" ;
Real lambda_rq "q axis rotor flux" ;
Real lambda_salpha "alpaha axis stator flux" ;
Real lambda_sbeta "beta axis stator flux" ;
Real Tem_fo "Torque under field orientation used for closed loop control" ;
Real m_flux "magnitude of the rotr flux" ;
Real p_flux "angle of the rotor flux" ;
Real Tref "Reference Torque" ;
Real Lref "Reference Flux" ;
Real Terror "Torque error" ;
Real Ferror "Flux error" ;
Real errort(start=0) "integral of torque error" ;
Real errorf(start=0) "integral of flux errror" ;
parameter Real Kif=500 "PI controller integral gain for Flux" ;
parameter Real Kpf=1000 "PI controller proportional gain for Flux" ;
parameter Real Kit=500 "PI controller integral gain for Torque" ;
parameter Real Kpt=1000 "PI controller proportional gain for Torque" ;
Modelica.Blocks.Interfaces.OutPort Lambda_salpha ;
Modelica.Blocks.Interfaces.OutPort Lambda_sbeta ;
Modelica.Blocks.Interfaces.OutPort I_salpha ;
Modelica.Blocks.Interfaces.OutPort I_sbeta "OutPorts used above are
used to calculate the Vs_alpha and Vs_beta since including them
into the code brings DAE index problem" ;
Modelica.Blocks.Interfaces.InPort Flux_command ;
Modelica.Blocks.Interfaces.InPort Torque_command ;
Modelica.Mechanics.Rotational.Interfaces.Flange_b shaft ;

equation
Lambda_salpha.signal[1] = lambda_salpha ;
Lambda_sbeta.signal[1] = lambda_sbeta ;
I_salpha.signal[1] = Is_alpha ;
I_sbeta.signal[1] = Is_beta ;

Modelica Implementation of Field−oriented Controlled 3−phase Induction ... Torrey D.A., Selamogullari U.S.

Modelica 2002, March 18−19, 2002 180 The Modelica Association

M = 3/2*Lsr ;
LS = Lsl + M ;
LR = Lrl + M ;
D = (LS*LR - (M*M)) ;

Tref = Torque_command.signal[1] ;
Lref = Flux_command.signal[1] ;

Terror = Tref - Tem_fo ;
Ferror = Lref - m_flux ;

der(errort) = Terror ;
der(errorf) = Ferror ;

Isd = Kpf*Ferror + Kif*errorf ;
Isq = Kpt*Terror + Kit*errort ;
Is_alpha = Isd*cos(p_flux) - Isq*sin(p_flux) ;
Is_beta = Isd*sin(p_flux) + Isq*cos(p_flux) ;

der(lambda_ralpha) = -Rr/LR*lambda_ralpha + M*Rr/LR*Is_alpha - P*Wrm*lambda_rbeta ;
der(lambda_rbeta) = -Rr/LR*lambda_rbeta + M*Rr/LR*Is_beta + P*Wrm*lambda_ralpha ;
lambda_rd = lambda_ralpha*cos(p_flux) + lambda_rbeta*sin(p_flux) ;
lambda_rq = -lambda_ralpha*sin(p_flux) + lambda_rbeta*cos(p_flux) ;
lambda_salpha = D/(LS*LR)*LS*Is_alpha + M/LR*lambda_ralpha ;
lambda_sbeta = D/(LS*LR)*LS*Is_beta + M/LR*lambda_rbeta ;

m_flux = sqrt((lambda_ralphaˆ2) + (lambda_rbetaˆ2)) ;
p_flux = atan2(lambda_rbeta, lambda_ralpha) ;

der(Wrm) = if Wrm >= 0 then (1/H)*(Tem - shaft.tau) else (1/H)*(Tem + shaft.tau) ;
der(theta) = Wrm ;
shaft.phi = theta ;

Tem = (P*M/LR)*(Isq*lambda_rd - Isd*lambda_rq) ;
Tem_fo = (P*M/LR)*(Isq*m_flux) ;

Isa = Is_alpha*sqrt(2/3) ;
Isb = sqrt(2/3)*(-0.5*Is_alpha + sqrt(3)/2*Is_beta) ;
Isc = sqrt(2/3)*(-0.5*Is_alpha - sqrt(3)/2*Is_beta) ;

end IndMot ;

class PowerCalculator
block P2toP3

extends Modelica.Blocks.Interfaces.BlockIcon ;
parameter Integer n=1 "Dimension of input and output vectors." ;
Modelica.Blocks.Interfaces.OutPort a(final n=n)"Connector 1 of Real input signals" ;
Modelica.Blocks.Interfaces.OutPort b(final n=n)"Connector 2 of Real input signals" ;
Modelica.Blocks.Interfaces.OutPort c(final n=n)"Connector 3 of Real input signals" ;
Modelica.Blocks.Interfaces.InPort alfa(final n=n)"Connector of Real output signals" ;
Modelica.Blocks.Interfaces.InPort beta(final n=n) ;

equation
a.signal[1] = alfa.signal[1]*sqrt(2/3) ;
b.signal[1] = sqrt(2/3)*(-0.5*alfa.signal[1] + sqrt(3)/2*beta.signal[1]) ;
c.signal[1] = sqrt(2/3)*(-0.5*alfa.signal[1] - sqrt(3)/2*beta.signal[1]) ;

end P2toP3 ;

P2toP3 P2toP3_1 ;
P2toP3 P2toP3_2 ;
Modelica.Blocks.Math.Gain Gain1 ;
Modelica.Blocks.Continuous.Derivative Derivative1 ;
Modelica.Blocks.Math.Add Add1 ;
Modelica.Blocks.Math.Add3 Power ;
Modelica.Blocks.Math.Product Product1 ;
Modelica.Blocks.Math.Gain Gain2 ;
Modelica.Blocks.Continuous.Derivative Derivative2 ;
Modelica.Blocks.Math.Add Add2 ;
Modelica.Blocks.Math.Product Product2 ;
Modelica.Blocks.Math.Product Product3 ;
Modelica.Blocks.Interfaces.InPort inPort ;
Modelica.Blocks.Interfaces.InPort inPort1 ;
Modelica.Blocks.Interfaces.InPort inPort2 ;
Modelica.Blocks.Interfaces.InPort inPort3 ;
Modelica.Blocks.Interfaces.OutPort outPort ;

Torrey D.A., Selamogullari U.S. Modelica Implementation of Field−oriented Controlled 3−phase Induction ...

The Modelica Association 181 Modelica 2002, March 18−19, 2002

equation
connect(Power.inPort1, Product1.outPort) ;
connect(Power.inPort3, Product3.outPort) ;
connect(Derivative2.inPort, inPort3) ;
connect(Gain1.inPort, inPort) ;
connect(Add2.inPort2, Derivative2.outPort) ;
connect(Add2.inPort1, Gain2.outPort) ;
connect(Add1.inPort1, Gain1.outPort) ;
connect(Derivative1.inPort, inPort1) ;
connect(Derivative1.outPort, Add1.inPort2) ;
connect(P2toP3_1.alfa, inPort) ;
connect(P2toP3_2.alfa, Add1.outPort) ;
connect(P2toP3_2.beta, Add2.outPort) ;
connect(P2toP3_1.a, Product1.inPort1) ;
connect(P2toP3_2.a, Product1.inPort2) ;
connect(P2toP3_1.b, Product2.inPort1) ;
connect(P2toP3_2.b, Product2.inPort2) ;
connect(P2toP3_1.c, Product3.inPort1) ;
connect(P2toP3_2.c, Product3.inPort2) ;
connect(Power.inPort2, Product2.outPort) ;
connect(inPort2, Gain2.inPort) ;

connect(P2toP3_1.beta, inPort2) ;
connect(Power.outPort, outPort) ;

end PowerCalculator;

class FOMotor
parameter Real Inveff=0.9 ;
IndMot IndMot1 ;
Modelica.Electrical.Analog.Interfaces.PositivePin p ;
Modelica.Electrical.Analog.Interfaces.NegativePin n ;
Modelica.Blocks.Interfaces.InPort Flux_command ;
Modelica.Blocks.Interfaces.InPort Torque_command ;
InvCurrent InvCurrent1 ;
Modelica.Mechanics.Rotational.Interfaces.Flange_b shaft ;
PowerCalculator PowerCalculator1 (Gain1.k={IndMot1.Rs}, Gain2.k={IndMot1.Rs}) ;

equation
connect(IndMot1.Flux_command, Flux_command) ;
connect(IndMot1.Torque_command, Torque_command) ;
connect(InvCurrent1.p, p) ;
connect(InvCurrent1.n, n) ;
connect(IndMot1.shaft, shaft) ;
connect(PowerCalculator1.inPort, IndMot1.I_salpha) ;
connect(PowerCalculator1.inPort1, IndMot1.Lambda_salpha) ;
InvCurrent1.i = (PowerCalculator1.Power.outPort.signal[1]/(Inveff*InvCurrent1.v)) ;
connect(PowerCalculator1.inPort2, IndMot1.I_sbeta) ;
connect(PowerCalculator1.inPort3, IndMot1.Lambda_sbeta) ;

end FOMotor;

end FieldOriented ;

Modelica 2002, March 18−19, 2002 182 The Modelica Association

Wischhusen S., Schmitz G. Numerical Simulation of Complex Cooling and Heating Systems

The Modelica Association 183 Modelica 2002, March 18−19, 2002

Numerical Simulation of Complex Cooling and Heating Systems

Dipl.–Ing. Stefan Wischhusen Prof. Dr.–Ing. Gerhard Schmitz
Technical University Hamburg–Harburg

Department of Technical Thermodynamics
Denickestraße 17, D–21073 Hamburg, Germany

Abstract

In cooperation with the Imtech Deutschland GmbH
& Co. KG (formerly known as Rudolf Otto Meyer
GmbH & Co. KG) a research project was conducted.
The aim of the project is to develop a simulation tool
for heating and cooling systems in building applica-
tions. This tool should enable configuration studies
and dynamic system simulations with time scales from
a few seconds up to one year within short computa-
tional times. Therefore, the simulation environment of
Dymola, containing the programming language Mo-
delica, is used to model complex heterogenous sys-
tems. In this paper the recent library for heating com-
ponents is presented and the implemented models are
subsequently used for a verifying simulation of an
existing thermal power plant. Furthermore, the
graphical user interface HKSIM is introduced as
an applied tool for project management and post–
processing, integrating Dymola for model editing and
simulation only.

1 Introduction

So far, there is no simulation tool known which en-
ables the dynamic simulation of both, complex heat-
ing and cooling systems in building applications,
allowing free choice of parts and system layout.
Therefore, this research project was conducted in 2001
with the goal of developing such an object–oriented li-
brary. Partners involved in this project are the Depart-
ment of Technical Thermodynamics of the Technical
University Hamburg–Harburg and Imtech Deutsch-
land. From the viewpoint of a system engineer it is
desirable to predict the dynamic behaviour of a com-
plex plant during the concept and definition phase of
a project. The development of running costs is due
to the gas and electric power consumption of every
single component, like for instance pumps, boilers
etc.. These are the key optimisation numbers of such

a system for the operator as well as for the system
builder. Since many owners of heating (and cooling)
plants neither have the knowledge nor the financial
budget for a reconfiguration, contracting companies
are commissioned with the optimisation. There are of
course various kinds of contracts possible. One could
be the optimisation of an existing plant, another the
supply with heating and/or cooling where the customer
just pays for the delivered energy and not for the plant,
which has to be build for that purpose (outsourcing).
The benefit resulting from that simulation tool is not
only of economical nature but also a reduction of en-
ergy consumption which means a decreased produc-
tion of carbondioxid. This is the background for the
work which is described in this paper.

2 Concept of Simulation

Since there is already a lot of building simulation
software available, like e.g. TRNSYS, BLAST and
others, the development is focused on the plant com-
ponents. Due to the separation of the building from
the system simulation some work has to be invested in
the linkage between both calculations. The simulation
of the building is supposed to be done first. The
results from this simulation, basically the heat demand
(requirement of refrigeration, respectively) and room
temperature, are stored in a data file which can be
read in subsequently by a table–interpolation–model
CombiTableTime from the Modelica–Standard–
Libraries [3] (Fig.1). To the interpolation–model
connects a model of a radiator, which is not a single
heating element in that sense but represents one
heating circuit or even a whole building. The main
idea is, that the heat demand is directly translated
into a corresponding mass flow rate by functions
implemented to the heat consuming model. Usually,
for the modeling of thermo–hydraulic control volumes
two state variables are needed, like e.g. pressure p and
enthalpy h. During the integration process the speed

Numerical Simulation of Complex Cooling and Heating Systems Wischhusen S., Schmitz G.

Modelica 2002, March 18−19, 2002 184 The Modelica Association

Figure 1: Concept of separated simulations

of the solver is influenced by the dynamic behavior of
the state variables, or better, the time scales in which
the state variables change. These time scales differ
by up to three magnitudes in heating installations.
This is the reason why an incompressible fluid model
is selected with a simple algebraic mass balance in
order to reduce the calculation time. Thus, the mass
flow rate is just considered as a signal, which is not
calculated by a detailed momentum balance, including
the actual pressure difference between inlet and outlet,
but is limited by the pumps pressure difference and
maximum flow rate. The used concept results in cal-
culation times of a few minutes for a plant simulation
of one year. In addition to that, the influence of the
pressure on the gas and electric power consumption
of a heating installation is considered to be low so
that it can be neglected. Due to these reasons only the
water temperature is taken as a thermodynamic state
variable of each component.

In favour of a conservative energy balance a control
volume formulation is chosen and the temperature is
projected downstream. In case of an adiabatic control
volume V from the energy balance follows:

V ρ cw Ṫ � cw � �ṁin � tin � ṁout � tout� (1)

with the thermodynamic temperature T , the Celsius–
temperature t and mass flow rate ṁ

T � tout �273�15

ṁin � ṁout (incomp. fluid) .

A water property model is needed to calculate the
specific heat capacity cw and density ρ. This can
be done efficiently by assuming constant values or
more accurately by providing polynomial functions
[1] depending on temperature. Since the accuracy is
hardly enhanced by less then 1% but the calculation
times are increased by 300% the constant value
approach is considered to be accurate enough.

For the calculation of the gas consumption of a boiler
the efficiency coefficient η is needed on the one hand,
which is defined as the ratio of heat output to burner
output and on the other hand the feed temperature,
which is provided by the controller. Boiler manu-
facturers usually specify η depending on different
states with regard to the biggest impact, like e.g. load
ratio, return temperature or average boiler tempera-
ture. The specified values can be interpolated by a
characteristic diagram model which also refers elec-
tric power consumption of the burner. The common
methods, functions and interfaces are implemented in
a class (BaseBoiler), whereas the characteristic
diagram class Characteristic Diagram can
be replaced by ”drag and drop” or modified to gener-
ate a new boiler model in an convenient and easy way
(see Fig.2). The same concept of an object–oriented
model is also used for the modeling of other compo-
nents of a heating installation, like for instance pumps
or combined heat and power plants (CHP)[2].

Wischhusen S., Schmitz G. Numerical Simulation of Complex Cooling and Heating Systems

The Modelica Association 185 Modelica 2002, March 18−19, 2002

Figure 2: Diagram layer of a boiler model

3 Library Content

The recent library contains models for components
of heating and cooling installations in subpackages.
Since the later users of the library shall only modify
the existing component classes by ”drag and drop” and
parameterisation, the base classes will be stored in an
extra library which cannot be modified. An important
requirement for the parameterisation (and also for the
component model itself) is that the needed information
is made available by the manufacturer. This has been
checked in the beginning of every model development.
Especially, when programming components for cool-
ing systems it was found out that the supplied infor-
mation level is very low.
So far, the boiler sublibrary consists of models for a
broad range of small to large gas–fired boiler types
(oil fuel could be easily introduced), as there are con-
densing boilers and normal boilers equipped with at-
mospheric to modulating burners. The electric power
consumption of the gas burners ventilation motor is
also taken into account.
The pump sublibrary provides models for uncontrolled
and controlled pumps. These models can be used for
heating, cooling and service water supply.
Pipes are modeled by discretised control volumes and
wall classes, which enable the calculation for heat
losses. Usually, these losses are neglected when the
heating installation and the pipes are part of the build-
ing which has to be heated because it is considered to
contribute to the heat demand. Thus, in most cases adi-
abatic pipes without any wall model are used to model
the systems delay.
For the simulation of domestic hot water systems a
sublibrary provides models for hot water storage tanks.

The heat is either stored in horizontal or upright stand-
ing tanks which may have water layers with different
water temperatures. The heat is transfered in internal
or external heat exchangers (loading systems).
Since the combined heat and power technology is be-
coming more and more important – not only in very
large heating installations – a model for gas driven
CHP’s has been added to the library.
Currently, the work focuses on the development of
components for cooling systems, like water chillers
and cooling towers. The previously developed compo-
nents of heating systems will be reused as far as poss-
ible, for example the pump models, pipe models and
storage tank models.

Figure 3: Schematic of a cooling installation

The water chiller model is not numerically described
by a control volume because the needed state equa-
tions for this purpose include pressure and enthalpy
which decrease the speed of simulation too much as
discussed in section 2. Although with the current
computing facilities real–time simulations of thermo–
hydraulic systems are partly possible (good guess of
initial conditions provided) these models are not suit-
able for simulations of one year. Thus, characteristic
diagrams are implemented in the chiller model which
refer to the used refrigerant and type of compressor.
The supplied functions were derived from technical
data of various manufacturers and device sizes [4] with
a maximum spread of 10%. A simple model example
of a cooling system is presented in Fig.3.

Numerical Simulation of Complex Cooling and Heating Systems Wischhusen S., Schmitz G.

Modelica 2002, March 18−19, 2002 186 The Modelica Association

Figure 4: Recent package Heizkreise for heating installation components

4 Verification of Existing Models

The following section is focused on the simulation
and verification of models of heating installations with
measurement data. At first, the fundamental ques-
tion, why a dynamic simulation environment is cho-
sen, shall be answered by means of a simple example.

4.1 Dynamic Simulation – Why?

Due to the fact that real heating and cooling installa-
tions may have large fluid capacities a dynamic simu-
lation of such systems is necessary. In order to demon-
strate the difference between static and dynamic simu-
lation a simple feed temperature step is performed with
three different boilers and the same hydraulic input
(ṁ� 2�0kg/s and treturn � 60ÆC). The results from the
three simulations are shown in Fig.5 where the step
of the feed temperature is triggered after one hour.
In a static simulation, represented by the continuous
line, the boiler follows the step input ideally (sufficient
burner output of at least 265kW assumed). In a dy-
namic calculation the water volume within the boiler
has to be heated up by the gas burner‘s rated output
until the switch–off temperature is reached (1K below

set value). Thereover, the boiler model switches into
the ideal mode which means the heat input is adjusted
ideally without triggering further state events by
burner starts and stops. It is evident that the dy-
namic calculated feed temperature with regard to the
static simulation increases in a slower way and that the
warm–up time is influenced by the size of the boiler.
The temperature rise is slowed down by the continuous
mass flow rate which has a bigger impact on smaller
boilers. In the case of a too small output rate of the
boiler (boiler with a nominal capacity of 140kW) the
feed temperature input is actually not reached.

During the warm–up of the feed temperature the gas
burner operates at full capacity which means a higher
gas consumption than calculated in a static simula-
tion. In addition to that, the operation efficiency drops
due to the rising water temperature, the increased
load and rising exhaust gas temperature. Compar-
ing the gas consumption for a simulation time of two
hours including one temperature step a deviation of
3% (400kW) to 13% (2500kW) is found depending
on the total water volume of the boiler. Therefore, a
dynamic simulation of complex heating and cooling
installations is considered to be necessary.

Wischhusen S., Schmitz G. Numerical Simulation of Complex Cooling and Heating Systems

The Modelica Association 187 Modelica 2002, March 18−19, 2002

3000 3200 3400 3600 3800 4000 4200
65

70

75

80

85

90

95
Feed Temperature

Time [s]

T
em

pe
ra

tu
re

 [
°C

]

Boiler 140kW
Boiler 400kW
Boiler 740kW
Static 400kW

Figure 5: Feed temperature step for different boiler
sizes and simulation types

4.2 Simulation of a Thermal Power Plant

Furthermore, the existing models have been used
to simulate a thermal power plant which is op-
erated by the contracting subsidiary company of
Imtech Deutschland, Imtech Contracting. The
schematic diagram of the heating installation model is
shown in Fig.6. The measurement data with regard
to mass flow rate, return, feed and ambient tempera-
ture is interpolated by the interpolation table model
CombiTableTime DataInput and AmbientTemp
which is supplied by the tables sublibrary of the Mo-
delica Additions Libraries. The feed temperature input
is used to compare the energy flow of the model with
the real system. The source model HydSource re-
presents the heat consuming part. This is done because
measurement data is not supplied for the consumers
and the associated buildings were not simulated. To
make sure that the same amount of energy is transfered
like in the real system, the mass flow rate is related to
the energy flux, rising when the simulated feed tem-
perature is falling. The shown system consists of the
following components:

� Boiler: gas–fired boiler (nominal capacity of
1�360kW) equipped with a modulating (output
can vary in a certain range) burner

� Pump: pump with integrated electronic speed
regulation for variable head control, maximum
flow rate 64m3/h

� AdmixingPump: 3–speed inline pump, maxi-
mum flow rate 32m3/h

� MixingValve: 3–way valve, adjusting a con-
stant temperature difference ∆T between return
and feed of 20K

� Controller: ambient temperature lead feed
temperature controller

� ExpansionVessel: model is used as a data
sink for the mass flow signal

Finally, the gas and electric power consumption is
summed up in the gas and electric meter model.

Figure 6: Schematic of a thermal power plant

Measurement data with an interval length of 15
minutes has been provided by Imtech Contracting
over a period of 9 days in February. The data set
contains ambient, feed and return temperature of the
pipeline as well as of the boiler. Furthermore, the
volume flow rate has been measured. With use of
these input values the heat demand of the consumers
can be calculated directly (Fig.8).

As Fig.7 reveals, the boiler feed temperature of the
simulation follows the measured temperature under-
standing the mentioned ideal model behaviour which
does not produce noise resulting from measurement
tolerances and a chopping burner output below 250kW
heat demand.

With regard to Fig.8 it is evident that the simulated
burner output is just a little higher than the heat de-
mand because of the boiler‘s high efficiency level of
94%. The profile of the heat demand shows typical
events like a lower load at night followed by a warm–
up peak in the early morning. Two times the plant
was even turned off completely which was not due to
weather conditions but to maintenance reasons.

4.3 Case Study

In this section a comparison of four often used boiler
configurations is undertaken. Thus, the boiler model

Numerical Simulation of Complex Cooling and Heating Systems Wischhusen S., Schmitz G.

Modelica 2002, March 18−19, 2002 188 The Modelica Association

6.02 7.02 8.02 9.02 10.02 11.02 12.02 13.02 14.02 15.02 16.02
60

70

80

90

100

110

120

130

140

150
Boiler Feed Temperature

Time[dd.mm]

T
em

p[
°C

]

Wed Sun Sim
Mea

Figure 7: Boiler feed temperature simulated over a
period of 9 days in Feb.

in Fig.6 was replaced by the following configurations,
which are all state–of–the–art:

� two parallel boilers (rated output 740kW each)
(Fig.10)

� one condensing boiler (1350kW)

� a condensing boiler (640kW) followed by a sim-
ple boiler (740kW) for higher duties (Fig.11)

For reasons of comparison, the heat demand data
of the previous simulation run was doubled by just
increasing the mass flow rate. The prices for gas
and electricity have been set with regard to the usual
contract conditions (Gas: 3�6Ct/kWh, Electricity:
14(day)–10(night)Ct/kWh).
The outcome is presented in the chart diagram of
Fig.9. Obviously, the existing configuration is also
the most expensive with regard to running costs
(as mentioned before the average efficiency of the
implemented boiler model is up to 94%) which has
two reasons. First, the gas burner of the boiler model
is driven by an electric motor with a rated power of
6�5kW, which is considerably higher than that of the
two installed pumps and of the smaller boilers (simple
boiler: 2�6kW and cond. boiler: 1�4kW). Second, the
average efficiency of the condensing boilers is 98%
and would be even higher if the return temperature
was lower than 60ÆC as in this case.
Less expensive is the configuration with two parallel
boilers because of the smaller burner motor as men-
tioned before and the fact that only one boiler operates

6.02 7.02 8.02 9.02 10.02 11.02 12.02 13.02 14.02 15.02 16.02
0

100

200

300

400

500

600
Burner Output Heat Demand

Time[dd.mm]

Po
w

er
[k

W
]

Wed Sun

Burner Output Sim
Heat Demand Mea

Figure 8: Simulated burner output and measured heat
demand

in part load. The gas consumption is even rising
slightly, since the efficiency of a high loaded boiler
drops and this effect can not be fully compensated by
reduced standby losses of the second boiler.
A single condensing boiler configuration reduces the
fuel costs by 230 EUR in 9 days while the electric
costs are not affected, since the same burner type is
implemented.

Figure 9: Running costs of case study

Apparently, the highest reduction (approx. 300 EUR
or 6%) in this case study could be realised by the ser-
ial configuration of a condensing boiler with a simple
boiler because it combines the positive effects of
two smaller boilers and condensing technology.
This is a reason why this concept is preferred by

Wischhusen S., Schmitz G. Numerical Simulation of Complex Cooling and Heating Systems

The Modelica Association 189 Modelica 2002, March 18−19, 2002

Figure 10: Configuration with two parallel boilers

Figure 11: Configuration with one condensing boiler followed by a normal boiler

Imtech Deutschland when it comes to the design of
new heating installations with low return tempera-
tures. Nevertheless, it has to be emphasised that in this
special case the calculated reduction of running costs
may be to low to be worthwhile, especially if the in-
vestment costs of the more efficient configurations are
much higher.

5 Graphical User Interface – HKSIM

As mentioned before a graphical user interface for
Windows is developed by the Zentrale Ingenieurtech-
nik (ZIT) department of Imtech Deutschland for a
number of reasons:

1. As an expert tool, the used simulation environ-
ment, Dymola, needs to be controlled by an ap-
plied user interface which is focused on the end–
user and simulation background.

2. A data base connection is needed to save differ-
ent projects and to give information about former
simulations and their outcome.

3. The results from the simulations can be presented
in a chart, which can be printed out as a stan-
dard information sheet for customers or can be
exported to other applications.

In fact, Dymola is a powerful, but also complex simu-
lation tool, too complex for a straightforward usage
when results are needed fast. Thus, the graphical user
interface is utilising the applied features of Dymola,
like the model editor (system building by ”drag and
drop”) and the simulator. Other applications, like
the plot and animation window are faded out. Also,
the end–user, for instance the project engineer, is not
expected to program with use of Modelica.

Numerical Simulation of Complex Cooling and Heating Systems Wischhusen S., Schmitz G.

Modelica 2002, March 18−19, 2002 190 The Modelica Association

Figure 12: Screen shot of HKSIM‘s main (top l.) and parameter window (bottom l.)

The typical procedure can be described as follows:
The user chooses a project from the list of existing
installations (Fig.12) or a new one is opened, alterna-
tively. It has to be emphasised that every modification
of an existing project is saved under a new model name
and can be restored later. Afterwards, Dymola can
be started and the model library is loaded. From this
point, the user can decide if the Dymola environment
or HKSIM is used. After the configuration or modi-
fication of the project model is completed, parameter
settings can be performed within the Dymola diagram
layer. The same applies for the model translation. A
convenient setting of the simulation time is enabled by
means of a submenu of HKSIM, which converts start
and stop times from a pull down date and hour menu to
start and stop times in seconds (Fig.12). In other sub-
menus data input files for the boundary conditions (e.g.
heat demand, ambient temperature) can be chosen as
well as parameters with regard to operation costs cal-
culation before the simulation is finally started. The
results are then displayed by an implemented post
processing tool. For clarity reasons only a prede-
fined choice of relevant variables can be plotted from
a result browser which also offers the results of for-

mer simulation runs in numerical order. An example
of a plot diagram is shown in Fig.13.

6 Conclusion

A simulation tool for heating and cooling processes
in building applications is needed to calculate the per-
formance of complex system layouts with regard to
economical and ecological aspects. In this paper, the
development of a system library is described and it was
pointed out that a dynamic simulation in this field is
necessary as a matter of accuracy. The library com-
ponents can be used in an applied way as a case study
in section 4.3 shall demonstrate. Since the end–users
will operate this simulation tool among other applica-
tions in a predetermined way, a graphical user inter-
face is programmed, integrating Dymola just as a
model editor and simulator, while focusing more on
the needs of a project engineer. So, case studies and
post–processing operations can be undertaken conve-
niently with use of an integrated data base and chart
utility.

Wischhusen S., Schmitz G. Numerical Simulation of Complex Cooling and Heating Systems

The Modelica Association 191 Modelica 2002, March 18−19, 2002

Figure 13: Screen shot of HKSIM‘s post processing window

7 Acknowledgement

The measurement data used in the simulation of the
thermal power plant has been kindly provided by
Imtech Contracting. Especially, I would like to thank
Bruno Lüdemann and Ole Engel, who is developing
the graphical user interface, for their help and ad-
vice throughout this project. I have to thank Ad-
mir Hadžikadunić for his work on modeling com-
bined heat and power plants during his diploma thesis.
Thanks must also go to Hicham Nabil for developing
concepts with regard to model complex cooling sys-
tems in his diploma thesis.

References

[1] Glück, B.:
Zustands– und Stoffwerte: Wasser, Dampf und
Luft
2. Aufl., Verlag für Bauwesen, Berlin, 1991.

[2] Hadžikadunić, A.:
Simulation von Blockheizkraftwerken mit
Modelica / Dymola
Diploma thesis, Department of Techni-
cal Thermodynamics, Technical University
Hamburg–Harburg, 2001.

[3] Modelica Standard Library
www.modelica.org/libraries.shtml,
2002.

[4] Recknagel, Sprenger, Schramek:
Taschenbuch für Heizung und Klimatechnik
69. Aufl., R. Oldenbourg Verlag, München
/Wien, 1999.

Modelica 2002, March 18−19, 2002 192 The Modelica Association

The Modelica Association 193 Modelica 2002, March 18−19, 2002

Session 8a

Discrete Event Modeling

Modelica 2002, March 18−19, 2002 194 The Modelica Association

Freiseisen W., Keber R., Medetz W., Pau P., Stelzmueller D. Using Modelica for Testing Embedded Systems

The Modelica Association 195 Modelica 2002, March 18−19, 2002

Using Modelica for Testing Embedded Systems

Wolfgang Freiseisen, Robert Keber, Wihelm Medetz,

 Petru Pau, Dietmar Stelzmueller
[wfreisei,rkeber,ppau]@risc.uni-linz.ac.at

[wilhelm.medetz,dietmar.stelzmueller]@scch.at

Abstract
In this paper, we give an overview of a simulation environ-
ment based on Modelica, dedicated to testing PLC
programs. The main components of the system are a compiler
of a Modelica subset and a runtime environment, which
provides the necessary tools for simulating the evolution of
models.

Introduction
Due to the high complexity of embedded

software systems, it is more and more desirable to
provide programmable logic control (PLC) program-
mers with virtual test environments. Usually, tests of
the complete software, including PLC programs, high-
level task control and human-machine interface (HMI)
visualization, can only be performed when the
mechanical environment, which is controlled by the
software, has been finished.

This is the reason why a simulation environment

based on Modelica has been developed. We describe
in this paper a simulation system that handles models
written in Modelica and uses C++ as intermediate
language. Developed in the frame of the project
VirtMould, supported by RISC institute and
company ENGEL from Schwertberg, Austria, the
compiler was meant to provide a tool for simulating
injection-molding machines. The compiler accepts only
a subset of Modelica language: this subset suffices
for obtaining a model that simulates faithfully an
injection-molding machine.

 In order to minimize the necessary simulation
modelling time, Modelica descriptions of many
components are generated automatically from CAD
models. Models are translated first to XML, the
resulting files containing, in fact, the syntactic structure
of the Modelica programs. The XML files are further
parsed and provide the input for a pushdown
automaton, which creates the internal data structures
that store the essential content of the future C++
classes.

This C++ code is compiled and linked to specific
simulation libraries; the resulting software component
– a dynamic-link library or a static library – can be
linked to external tools for visualization or process
simulation.

In fact, the runtime environment is interfaced
with a simulation of the embedded software
environment. It allows an almost real time execution
and simulation of the embedded software. In addition,

an open, OPC (OLE for process control) based
interface for visualization and monitoring of the
process is provided.

As we have already mentioned, the stable version
of our product accepts only a subset of Modelica
language. Thus, among the restricted classes, only
blocks are currently translated, and the syntax is
restricted. A version that can handle Modelica
models is currently in the testing phase.

The paper is structured as follows: We begin by
giving a short overview of the project. The architecture
is detailed in Section 2. In Section 3 we present the
main features of the C++ generated code. Section 4
describes the interface provided by the software
component obtained after compiling the model. In
Section 6 we give some examples and snapshots of the
visual interfaces.

1. Project overview
ENGEL is a leading manufacturer of injection

moulding machines, producing and selling integrated
flexible manufacturing cells. A typical manufacturing
cell consists of:

- an injection-moulding machine, whose
individual components are selected from a
wide variety of available product features;

- a handling system built upon a free program-
mable robot.

The whole manufacturing cell is controlled by an
embedded software system that integrates an IEC 1131
based PLC, a high-level task-coordination language, a
Java-based HMI and communication components for
manufacturing execution system (MES) integration.

The software engineers and service technicians
should have the possibility to perform software tests
offline on their desktop with a “virtual injection-
moulding machine”, whenever a new PLC is produced.
In order to achieve a high user acceptance, a test

environment (see [6] for a description of the main
features of such software components) must be closely
integrated with the development environment used by
the PLC programmers; also, the PLC programmer
should not be bothered with building simulation
models for his specific target machine. Therefore the
simulation models used for testing must be
automatically generated from CAD designs.

The main goal is to increase software quality
through simulation-based testing without increasing the

Using Modelica for Testing Embedded Systems Freiseisen W., Keber R., Medetz W., Pau P., Stelzmueller D.

Modelica 2002, March 18−19, 2002 196 The Modelica Association

time spent for testing. In addition to this, VirtMould
should also be applicable for other application
domains, like customer support offline diagnosis,
computer based training or sales support.

2. System architecture
VirtMould environment contains four major compo-
nents:

• automatic generation of a simulation model;
• programming environment;
• runtime environment;
• visualization.

Figure 1: System architecture of the VirtMould
environment.

Automatic generation of the simulation model

In order to minimize the effort for building
simulation models, XML-based tools have been
developed for translating CAD files (containing
electrical, hydraulic, etc. components), together with
information about product configuration, to Modelica.
These tools work with XLST transformations based on
the XML files exported from CAD, and generate
component assembly files.

A library containing the mechatronic blocks and
handling system components of the injection-moulding
machine has been developed and is continuously
improved and extended (ENGEL Component Library).
The goal has not been to achieve the highest possible
simulation accuracy, but rather to provide the accuracy
required for software testing, together with a high
degree of flexibility and fast simulation execution. This
library also contains components for interactive test
manipulation, interaction with the panel of the virtual
machine, and simulation of machine failures.

Programming Environment

A compiler for a Modelica subset has been
implemented. The focus of this compiler was to
provide an easy integration into the overall system
architecture and to allow the efficient simulation of
discrete events. This is done in two phases: The
Modelica - XML translator parses the Modelica
files and generates a XML representation, and the XML

- C++ translator generates C++ class files. Details on
the Modelica compiler are presented in Section 3.

Runtime Environment

The runtime environment is loaded by the PLC
program simulation and contains some major
components:

– the model is the C++ collection of classes
corresponding to the Modelica program;

– the solver is the C++ framework for
computing trajectories of the variables of the
model;

– there are two kinds of interfaces for
controlling the simulation and for data
exchange:

the control interface is a COM in-process
DLL interface, which has been chosen for
coupling the PLC program simulation with
the Modelica simulation runtime environ-
ment. The PLC program simulation allows
program execution in either soft real-time or
virtual simulation time mode.
for accessing the simulating state we have
added an OPC server. A more detailed
description is given in Section 4.

Visualization

In addition to using third party visualization
tools, a built-in configurable user interface allows the
design of virtual hardware panels. The user has the
possibility to:

- inspect all model variables in a hierarchical
manner;

- monitor some variables by drawing their
trajectories;

- change the values of some variables, provided
that those variables permit this kind of user
interaction.

The user interface can be configured through an XML
file.

3. Short description of the Modelica

compiler
The compilation of a Modelica model comprises
three steps. After each step, one or more files of
specific types are generated. Thus:

1. The model is parsed and the syntactic
structure is stored in an XML file. In the same
format (XML) are stored the libraries.

2. One or more XML files are taken as input by a
program that produces C++ code. This code
mirrors the Modelica code, a Modelica

Freiseisen W., Keber R., Medetz W., Pau P., Stelzmueller D. Using Modelica for Testing Embedded Systems

The Modelica Association 197 Modelica 2002, March 18−19, 2002

class having a C++ counterpart, which is a
C++ class.

3. The C++ file is compiled, and the object is
linked with some libraries, which provide the
framework for solving the model, i.e.,
generating a simulation, and for interfacing
with other software tools.

In the following we focus on the characteristics of the
C++ code.

Base classes

C++ as intermediate code was a normal choice,
due to the object-oriented philosophy of Modelica
(see Modelica tutorial [1]). A Modelica class is
translated into a C++ class. Among the restricted
Modelica classes, our system accepts type, block,
connector and package. Models are accepted with
some restrictions.

To each component of a Modelica class
corresponds a member data in its C++ image.
According to the specifics of the Modelica class, a
number of other members are included in the C++
code, like, e.g., one additional member for each
differentiated variable.

A Modelica block and its C++ image are
shown in Figure 1. We have kept in the C++ code only
the member declarations and function definitions that
correspond directly to their Modelica counterparts.

The C++ correspondent of a Modelica
package is derived from a special class, which has no
method with equations but can contain a number of
inner classes.

The connectors provide a set of template
member functions, in order to allow connections with
components of various types.

We must emphasize that the granularity of
Modelica code is preserved: The models are de-
scribed hierarchically in Modelica, by giving the
mathematical description of components and
connecting them in composite objects; this structure is
transmitted to the C++ code.

Equations

The equations that describe the behavior of a
component generate a few member functions. Thus:

1. discrete equations are collected in a member
function that is executed only when special
events occur;

2. differential equations go to another member
function;

3. the remaining equations are divided in two
groups, depending on the relation of their
variables with differential equations. Thus,
we call dynamic these equations that are
related to differential equations, and

4. independent algebraic the other ones.

These methods are easily generated for blocks –
provided that the Modelica code contains all
equations in explicit form. If flow variables occur and
Kirchoff laws have to be generated, implicit equations
should be added and the translation requires further
processing. Moreover, for equations that cannot be
explicitized (like transcendental equations, or poly-
nomial of high degree), numerical solvers are required.
These features will be covered in a future version of
our system.

Events

The set of discrete equations is solved only when
some events occur. During the simulation, an event
queue is maintained and used for triggering the
evaluation of these equations.

Changes of values of discrete variables usually
generate events; also, the special functions sample
and edge are event-generators. On the other hand,
events can be generated externally, by the interaction
of the user with the visual interface: Recall that the
output of our system is a software component that can
be embedded or attached to other software tools; this
component communicates with the environment in two
ways, that is, it exposes names, types and values of
variables, and it accepts, with some restrictions,
modifications of these variables.

Simulation

A simulation consists in the computation of
trajectories of variables during a specific time period.
In fact, a finite set of points on these trajectories is
computed, for values of time discretized by a time step

whose value is set externally.
For solving differential-algebraic equations we

have implemented a few numerical integrators: Euler,
Runge-Kutta, Runge-Kutta with variable step size (see
[4], [5] for detailed descriptions of these methods). In
order to ensure a higher stability, the integrators have
an internal time step (fixed or variable), which is
usually much smaller than the external. The differential
and dynamic equations are evaluated after each internal
time step, whereas the independent algebraic equations
are evaluated after the external time step.

Basically, the simulation is performed following
the same rules as described in the Modelica language
specifications (see [2], Chapter 4): The integrator
solves numerically the equations between two events.
When an event occurs, the set of discrete equations is
solved and any change of the values of the discrete
variables can influence the set of differential and
algebraic equations.

Ordering their enclosing blocks gives the order in
which the equations are evaluated, so that every
variable that occurs in the right-hand side of an
equation has already been given a value before the
equation is evaluated.

Using Modelica for Testing Embedded Systems Freiseisen W., Keber R., Medetz W., Pau P., Stelzmueller D.

Modelica 2002, March 18−19, 2002 198 The Modelica Association

classclassclassclass Sine : publicpublicpublicpublic Interfaces::MO {

// Variables ...

publicpublicpublicpublic:

ParamVectorN<Real> amplitude;

ParamVectorN<SIunits::Frequency> freqHz;

ParamVectorN<SIunits::Angle> phase;

ParamVectorN<Real> offset;

ParamVectorN<SIunits::Time> startTime;

// protected members

 ConstScalar<Real> pi;

 ParamVectorN<Real> p_amplitude;

 ParamVectorN<Real> p_freqHz;

 ParamVectorN<Real> p_phase;

 ParamVectorN<Real> p_offset;

 ParamVectorN<SIunits::Time> p_startTime;

// methods

publicpublicpublicpublic:

 Sine(){ // Default Constructor....

 // … initialization of parameters with constant vals

 // …

 }

 voidvoidvoidvoid resize(){ // resizing vector components

 p_amplitude.resize(nout);

 p_freqHz.resize(nout);

 p_phase.resize(nout);

 p_offset.resize(nout);

 p_startTime.resize(nout);

 }

 voidvoidvoidvoid init() {

// initializing parameters with non-constant expr.

 //

// initializing nout

 nout.parameter(max (size (amplitude,1) ,

size (freqHz,1) ,size (phase,1) ,

size (offset,1) ,size (startTime,1)), 1);

 MO::init();

 //…

 resize();

 }

 voidvoidvoidvoid start(){ // Settings for start

 MO::start();

 }

// …

 voidvoidvoidvoid equation_dyn(const Time &time){

// Dynamic Equations for this Block

 MO::equation_dyn(time);

 {

 Integer _initialCond;

 Integer _finalCond;

 _initialCond = 1;

 _finalCond = nout;

 forforforfor (intintintint i=_initialCond;i<=_finalCond;i++){

 Real _if5;

 ifififif (TimeLt(time, p_startTime [i - 1])){

 _if5 = 0.;

 } elseelseelseelse {

_if5 = p_amplitude [i - 1] *

 Modelica->Math->sin (

 2*pi*p_freqHz [i - 1] *

 (time-p_startTime [i - 1]) +

 p_phase [i - 1]) ;

 }

 y [i - 1] = p_offset [i - 1] + (_if5) ;

 }

 }

 returnreturnreturnreturn;

 }

// …

}; // end class: Sine

Figure 2: A Modelica block and its C++ translation.

blockblockblockblock Sine

parameterparameterparameterparameter RealRealRealReal amplitude[:]={1.};

parameterparameterparameterparameter SIunits.Frequency freqHz[:]={1.};

parameterparameterparameterparameter SIunits.Angle phase[:]={0.};

parameterparameterparameterparameter RealRealRealReal offset[:]={0.};

parameterparameterparameterparameter SIunits.Time startTime[:]={0.};

extendsextendsextendsextends Interfaces.MO(finalfinalfinalfinal nout=max([size(amplitude, 1); size(freqHz, 1); size(phase, 1);

size(offset, 1); size(startTime, 1)]));

protectedprotectedprotectedprotected

constantconstantconstantconstant RealRealRealReal pi=Modelica.Constants.pi;

parameterparameterparameterparameter RealRealRealReal p_amplitude[nout]=(ifififif size(amplitude, 1) == 1 thenthenthenthen ones(nout)*amplitude[1] elseelseelseelse amplitude);

parameterparameterparameterparameter RealRealRealReal p_freqHz[nout]=(ifififif size(freqHz, 1) == 1 thenthenthenthen ones(nout)*freqHz[1] elseelseelseelse freqHz);

parameterparameterparameterparameter RealRealRealReal p_phase[nout]=(ifififif size(phase, 1) == 1 thenthenthenthen ones(nout)*phase[1] elseelseelseelse phase);

parameterparameterparameterparameter RealRealRealReal p_offset[nout]=(if if if if size(offset, 1) == 1 thenthenthenthen ones(nout)*offset[1] elseelseelseelse offset);

parameterparameterparameterparameter SIunits.Time p_startTime[nout]=(if size(startTime, 1) == 1 thenthenthenthen ones(nout)*startTime[1] elseelseelseelse startTime);

equationequationequationequation

forforforfor i inininin 1:nout looplooplooploop

y[i] = p_offset[i] + (ifififif time < p_startTime[i] thenthenthenthen 0.

elseelseelseelse p_amplitude[i]*Modelica.Math.sin(2*pi*p_freqHz[i]*(time - p_startTime[i]) + p_phase[i]));

endendendend forforforfor;
endendendend Sine;

Freiseisen W., Keber R., Medetz W., Pau P., Stelzmueller D. Using Modelica for Testing Embedded Systems

The Modelica Association 199 Modelica 2002, March 18−19, 2002

4. Communication with other

programs
The runtime system contains two interfaces for

connections with other programs:
- a proprietary COM interface for com-

municating with the PLC program simulation;
- an open OPC-based interface for communi-

cation with visualization tools.
After compiling the initial Modelica text, a

library (.lib file) or a dynamic-link library (.dll
file) is generated. This library encapsulates both the
model description and the integration algorithms.
Among the possible services provided by this library we
mention: start/stop a simulation process, transmit the
names, types and values of all the internal variables of
the model, at every time moment during the simulation
run, and accept new values for some of the variables.

Interaction with other programs is realized through
a common interface: we have used the COM (Common

Object Mode) technique. A COM interface component
for loading and unloading simulations, calculating time
steps and exchanging data with the simulation has been
designed.

For visualizing the results of the simulation an
OPC (OLE for process control, see [3] for more
information) server has been developed and imple-
mented. The simulation results are provided via OPC
and these values can be visualized with standard OPC
client tools. OPC is the most commonly used standard
for inter-process communication in the area of manu-
facturing automation.

The OPC specification is a non-proprietary
technical specification that defines a set of standard
interfaces based upon Microsoft OLE/COM technology.
An OPC standard interface makes possible inter-
operability between automation/control applications,
field systems/devices and business/office applications.

Traditionally, each software or application devel-
oper was required to write a custom interface, or
server/driver, to exchange data with hardware field
devices. OPC eliminates this requirement by defining a
common, high performance interface that permits this
work to be done once, and then easily reused by HMI,
SCADA (Supervisory Control and Data Acquisition),
control and custom applications.

The advantage of using the OPC Data Access
Specification is that it provides a hierarchically
structured namespace that can be directly used to map
Modelica variables. Clients can then retrieve OPC
items (i.e. Modelica variables) either synchronously
or asynchronously. OPC also provides possibilities to
specify the desired update rates for items and to browse
the available item name space. The OPC server defines
the access status (read, write) for each item together
with additional descriptive information. As OPC is
implemented by a COM object, the inter-process com-
munication can be realized either as an highly efficient
in-process communication or as distributable (DCOM)
out-of-process communication. Also several clients can
communicate in parallel with one OPC server.

5. Usage and examples
The following figure shows a standard ENGEL

injection moulding machine. The ENGEL HL is a
highly accurate, fast and energy-saving injection
moulding machine in tiebarless design for use in the
range from 200 to 6,000 kN clamping force.

Figure 3: An injection moulding machine.

After a thorough analysis of the machine structure,
a simulation model written in Modelica has been
developed, which should describe its components with
an appropriate accuracy for testing its general behavior.
As we have already mentioned, Modelica description of
many components has been automatically generated
from CAD specifications.

An excerpt of the main Modelica model of the
injection model machine is given in the following. In
the instantiation sector of this model all the functional
units of the machine are defined.

blockblockblockblock InjectMoldMachine

 "Tiebarless Injection Molding Machine"

Lib.IMM.FunctionalUnits.MainPowerSupply MainPower;

 Lib.IMM.FunctionalUnits.ControlVoltages ContrVolt;

 Lib.IMM.FunctionalUnits.EmergencyOff EmergOff;

 Lib.IMM.FunctionalUnits.FilterMotor FilterMotor1;

 Lib.IMM.FunctionalUnits.Motor Motor1;

 Lib.IMM.FunctionalUnits.SafetyGateMoldFront SGMoldFront;

 Lib.IMM.FunctionalUnits.SafetyDoor SafetyDoor;

 Lib.IMM.FunctionalUnits.SafetyGateInject SGInject;

 Lib.IMM.FunctionalUnits.Heating

 Heat1 (startTemp = 30.);

 Lib.IMM.FunctionalUnits.TraverseCooling Cool1;

 Lib.IMM.FunctionalUnits.PumpBlock Pumps;

 Lib.IMM.FunctionalUnits.Ejector

 Ejector1 (startPos = 0.3);

 Lib.IMM.FunctionalUnits.Core

 Core1 (startPos = 10.),

 Core2 (startPos = 10.);

 Lib.IMM.FunctionalUnits.InjectionUnit

 InjUnit1 (startPos = 5.);

 Lib.IMM.FunctionalUnits.Mold

 Mold1 (startPos = 3.);

 Lib.IMM.FunctionalUnits.InjectionPlasticize

 InjPlast1 (startPos = 1.);

 Lib.VMLib.Electrics.AlarmLamp Alarm;

 PLC_Interface PLC_IO;

 ButtonBlock Buttons;

equationequationequationequation

// input connections for "SafetyDoor"

connect(ContrVolt.VAC24, SafetyDoor.VAC24);

connect(ContrVolt.VE24, SafetyDoor.VE24);

connect(Buttons.SafetyDoor.outPort, SafetyDoor.HandleGate);

connect(Buttons.QuitKey.outPort, SafetyDoor.QuitKey);

 //. . .

endendendend InjectMoldMachine;

Using Modelica for Testing Embedded Systems Freiseisen W., Keber R., Medetz W., Pau P., Stelzmueller D.

Modelica 2002, March 18−19, 2002 200 The Modelica Association

The simulation model contains all components
necessary for characterizing the behavior of the
machine, including its electrical parts (e.g. power supply
with different control voltages), hydraulic movements
(e.g. ejector, mold) and interaction with the user (e.g.
open/close safety gate).

Currently, the typical testing environment consists
of the following windows:

- HMI of the injection moulding machine; this
graphical object has the appearance and
functionalities of the touch screen of the real
machine;

- Graph window: for visualizing simulation
results of selected variables;

- Control panel: buttons and switches for
opening/closing safety gates, moving hydraulic
units, etc.; this object is a faithful copy of the
control panel of the injection moulding
machine;

- PLC simulation window: gives internal infor-
mation of the PLC runtime environment.

These components can be seen in Figure 4.

6. Conclusions and future work
The quality of the overall system architecture of

the VirtMould test environment has been proved by a
high user acceptance. About 10 PLC programmers in
their daily work are currently using the environment;
this number should be increased to 50 or more users,
testing more than 1000 systems per year. Modelica
has proved to be the ideal object oriented modelling
language for building reusable libraries of simulation
components, which is essential for automatic model
generation.

The next step will be to add a test automation
framework, such that regression tests can be performed
automatically. An SVG (Scalable Vector Graphic)
based visualization client will provide enhanced 2D
animation of the simulation process. A 3D mechanical
component visualization will also provide the possibility
for collision checking.

In addition to software testing, the environment
will also be used for computer-based training.

Figure 4: Screenshot from a simulation session.

Freiseisen W., Keber R., Medetz W., Pau P., Stelzmueller D. Using Modelica for Testing Embedded Systems

The Modelica Association 201 Modelica 2002, March 18−19, 2002

 References

[1] Modelica™ – A Unified Object-Oriented Language
for Physical Systems Modeling, Tutorial,
Version 1.4, by Modelica Association,
Dec. 2000, downloadable from
http://www.modelica.org.

[2] Modelica™ – A Unified Object-Oriented Language
for Physical Systems Modeling,
Language Specification, Version 1.4, by
Modelica Association, Dec. 2000,
downloadable from
http://www.modelica.org.

[3] F. Iwanitz, J. Lange - OLE for Process Control,
Huethig GmbH, Heidelberg, 2001.

[4] U. M. Ascher, L. R. Petzold – Computer methods for

ordinary differential equations and

differential-algebraic equations, SIAM,
1998.

[5] K. E. Brennan, S. L. Campbell, L. R. Petzold –
Numerical solution or initial-value

problems in differential-algebraic

equations, SIAM 1996.

[6] C. Kaner, J. Falk, H. Q. Nguyen - Testing Computer
Software, John Wiley & Sons, 1999.

[7] M. Fewster, D. Graham - Software Test Automation,
Addison-Wesley, 1999.

Modelica 2002, March 18−19, 2002 202 The Modelica Association

Remelhe M.A.P. Combining Discrete Event Models and Modelica − General Thoughts ...

The Modelica Association 203 Modelica 2002, March 18−19, 2002

Combining Discrete Event Models and Modelica –
General Thoughts and a Special Modeling Environment

Manuel A. Pereira Remelhe
Process Control Laboratory

Department of Chemical Engineering
University Dortmund, D-44221 Dortmund

Tel.: +49/231/755-5127, Fax: +49/231/755-5129
Email: m.remelhe@ct.uni-dortmund.de

Abstract
This contribution consists of two parts. In the first
part general possibilities for the combination of
Modelica models and discrete event models are
discussed on a conceptual level. It is shown that it
is necessary to support asynchronous behavior and
that it is useful to represent sampled data behavior
of discrete event systems in an interrupt-driven
style for fast simulation. The characterizations of
the alternatives are summarized in table 1.
In the second part a modeling environment proto-
type that provides dedicated editors for different
discrete event formalisms and supports hierarchical
and heterogeneous models is presented briefly. It
transforms a discrete event model into a Modelica
class whose behavior is given by a Modelica algo-
rithm and several Modelica functions. Such a dis-
crete event component can be inserted intuitively
into a model of a physical system and simulated by
standard Modelica-Tools.

Introduction
Sophisticated technological systems often require
complex discrete event control. For instance, se-
quential control is needed for the execution of
recipes on chemical batch plants. Redundancy
control is crucial for the safety of aircraft. And
resource booking systems are needed for coordi-
nating several interacting sequential controllers,
e.g., to avoid collisions of robots or to prevent the
mixing of parallel running batches in chemical
batch plants. These discrete parts often involve
hierarchical execution schemes as well as
concurrency with synchronous and asynchronous
communication. The physical part of such techno-
logical systems normally is very large and include
complex hybrid dynamics such as Friction, colli-
sions and instantaneous equilibrium reactions.

If simulation is to be used for the estimation of
throughput, power consumption, quality quantities

etc. the simulation model has to incorporate the
discrete event as well as the physical part of the
system. Hence, powerful modeling formalisms are
required for both, the physical and the discrete
part, and an intuitive integration of these parts has
to be supported. In addition to the clearness of the
modeling paradigm the simulation efficiency is an
important aspect.

For the modeling and simulation of general hybrid
physical systems Modelica [1] is particular suit-
able, because it facilitates multi-domain models,
allows intuitive modeling of the most hybrid phe-
nomena and enables efficient simulation. Further-
more it is possible to combine physical models
with complex discrete event dynamics. In this
contribution 4 general approaches for the integra-
tion of physical models and discrete-event models
are discussed:
1. declarative style (based on equations),
2. imperative style (based on Modelica algo-

rithms and functions),
3. external secondary simulator (based on the

external function interface) and
4. external primary simulator (Modelica in the

loop).

One well known example for the first approach is
the Petri nets library created by Mosterman, Otter
and Elmqvist [2]. The Petri net modeling objects,
i.e., places and transitions, are represented by li-
brary components. These can be instantiated and
connected via the connectors to constitute a spe-
cific Petri net graph. The equations of the transi-
tion and place objects were specified in a way such
that the composition of these equations behaves
like a Petri net would do.

The second approach implies that the behavior of a
discrete event system is encoded imperatively into
one Modelica algorithm that may call Modelica
functions. In order to support high-level modeling
formalisms a special modeling environment has to

Combining Discrete Event Models and Modelica − General Thoughts ... Remelhe M.A.P.

Modelica 2002, March 18−19, 2002 204 The Modelica Association

be implemented that provides dedicated editors for
specific discrete event formalisms and translates
automatically a discrete event model into a Mode-
lica component containing such an algorithm. A
prototype of such a modeling environment will be
presented in the second part of this contribution.

The third and fourth approaches allow the usage of
existing discrete event simulators. In the third case
a Modelica simulator controls the external simula-
tor, whereas in the fourth case the Modelica simu-
lator is controlled from outside, e.g., by a State-
flow-Simulink model.

Part I: General Thoughts

Interrupt-driven Models
The task of discrete event systems is normally to
wait for certain state events in the physical system
and react instantly when they occur, e.g., when a
predefined temperature is reached, the next step of
a recipe is started. Hence, from a functional point
of view discrete event systems are interrupt-driven,
or to be more precise, driven by state events (and
sporadic time events).

A prerequisite for realizing this behavior is the
detection and localization of state events during
continuous integration. Since integration methods
require continuous model equations, in Modelica
all inequality expressions of a model are fixed
during integration in order to guarantee that dis-
continuous changes of variables do not occur. In
addition, inequality expressions which depend on
continuous state variables and which are critical,
are monitored during integration. When the logical
value of an inequality expression changes, the time
instant of the switching point is determined up to a
certain precision and the integration is stopped,
i.e., a state event is localized. In the case of time
events the inequality expression depends only on
the time variable and the integration simply stops
directly at the predetermined time.

Modelica-Tools such as Dymola [3] support this
event handling, if the events can be deduced from
the Modelica code, i.e., the inequality expressions
must be included in the code. Therefore an inter-
rupt-driven model of a discrete event system can
only be realized accurately with the first two ap-
proaches. If an external simulator is to be used, a
wrapper code could be written in Modelica that
defines the externally caused state events. But that
would not be feasible for very complex discrete

event models and the advantage of using an ap-
proved discrete event simulator would get lost due
to error-prone hand coding. However, the fourth
approach allows to detect the state events at the
end of an integration step without using event
localization, so that the event instants depend on
the step size of the integrator.

Sampled-data Models
Discrete event systems are normally implemented
as sampled-data systems. In the most cases the
sampling rates are very high, so that the sampling
can be neglected which results into interrupt-driven
models. However, sometimes it is necessary to
consider the sampling. The simplest way to do so
is to use the sample-operator. In the following
example a tank is filled continuously with the rate
1. A controller with 100 samplings per second
opens the outlet when the tank level becomes
higher than 10 and it closes the outlet when the
tank level becomes lower than 0.1 .

model ControlledTank
 Real level;
 Boolean valveOpen;
equation

der(level)= if valveOpen then
1 - sqrt(level*2.173) else 1;

when sample(0, 0.01) then
 valveOpen =

if level > 10 then true
else if level < 0.1 then false
else pre(valveOpen);

end when;
end ControlledTank;

The sample-Operator generates regular time events
each 0.01 seconds. At every time event the inte-
grator is stopped, the switching equation is evalu-
ated and the integrator is started again. Since the
initialization of the integrator consumes the largest
amount of time, the simulation can be speed up
significantly by transforming this sampled-data
model into an interrupt-driven model that emulates
the sampled-data behavior. This is done by replac-
ing the when clause by the following two when
clauses:

when {level<0.1, level>10} then
 sampleTime=(floor(time*100)+1)/100;
end when;
when time > sampleTime then
 valveOpen = if level>10 then true

else if level<0.1 then false
else pre(valveOpen);

end when;

Remelhe M.A.P. Combining Discrete Event Models and Modelica − General Thoughts ...

The Modelica Association 205 Modelica 2002, March 18−19, 2002

In the first when clause an effective sampling time
is determined, when a significant state event oc-
curs. It is the next regular sample time the sample
operator would have. In the second when clause
then the switching equation is evaluated when the
sampling time is reached. While no state events
occur, the integration does not stop. For the given
example the simulation of the interrupt-driven
model is 70 times faster than the simulation of the
sampled-data model. In consequence, the sample-
operator should not be used for reactive discrete
event systems. Instead, it is always possible to
emulate sampled-data behavior, if required.

Asynchronous Behavior
In the first approach the modeling objects of a
formalism are represented by Modelica objects
whose behavior is defined declaratively using
equations.
These equations are treated in the same way as the
equations of the physical systems part so that a
discrete transition of the discrete event model is
connected to a complete evaluation of the whole
system of equations including the physical systems
equations. This synchronous behavior is disadvan-
tageous when a formalism is used that performs a
sequence of intermediate transitions in order to
achieve a consistent state. Here, the effective tran-
sition that should be observable from the physical
system incorporates several internal transitions that
are asynchronous to the those of the physical sys-
tem. Otherwise inconsistent intermediate states of
the discrete event model could have an illegal ef-
fect on the physical system. Furthermore complex
discrete event systems often involve complex hier-
archical execution schemes: on each level a proc-
ess can include sub-processes, and concurrent
subsystems may run asynchronously. Therefore, it
is crucial to support asynchronous behavior for
modeling complex discrete event controllers.
Hence, the equation-based approach is only suit-
able for simple cases where as the other three ap-
proaches can realize such complex behavior due to
the algorithm-based imperative definition.

Other Aspects
Modelica algorithms are more limited in compari-
son to real programming languages, because
Modelica’s data structure is static, i.e., it is not
possible to instantiate new variables or components
at run-time. Therefore all variables that might be
needed possibly at run-time have to be installed at
compile-time. For example an event list of a
scheduler of a discrete event simulator has to be

realized by a fixed length vector in principle. If
during a simulation the number of elements for the
event list exceeds the length of the vector, the
simulation has to abort.

Some discrete event systems have only discrete-
time input signals. In this case state or time events
are generated outside of the discrete event compo-
nent, e.g., by limit switches in the physical system,
and the usage of an external simulator is straight-
forward.

The models created with the Petri nets library look
pretty much like Petri nets. The difference to the
original formalism is that there no ports, so that the
objects can be connected directly with lines and
therefore only two classes of objects are needed.
However, many formalisms have more complex
syntax and graphics that can not be represented
adequately using object-oriented composition dia-
grams. Statecharts for example has a state hierar-
chy concept without encapsulation of inner states.
Consequently, dedicated graphical editors should
be used in general. The following table summa-
rizes the characterizations of the 4 approaches.

Table 1: Characterization of the 4 approaches

Approach 1 2 3 4
allows interrupt-driven models
(localization of state events)

x x - -

allows asynchronous behavior
(hidden iterations)

- x x x

allows dynamic data structures - - x x
adequate graphics - x x x
heterogeneous discrete event models ? x ? ?
reliable discrete event simulation ? ? x x

Part II: A Prototype of a Modeling
Environment
In order to enable heterogeneous discrete event
models including domain-specific formalisms a
modeling environment prototype has been devel-
oped that provides dedicated editors for the differ-
ent formalisms. The environment is based on the
meta-modeling tool DoME [4]. This tool generates
automatically graphical editors based on a formal
specification of the syntax and on parameters for
the graphical appearance of the formalism. There-
fore prototypes of new editors can be implemented
within a few hours and a final version can be
achieved within a few days. This is important for
further development of domain-specific formalism.

Combining Discrete Event Models and Modelica − General Thoughts ... Remelhe M.A.P.

Modelica 2002, March 18−19, 2002 206 The Modelica Association

An hierarchical block diagram formalism is im-
plemented that allows the basic blocks to be mod-
eled with any reactive formalism. At present, state-
charts [5] and sequential function charts [6] are
integrated, but other formalisms can be added in
future.

Hierarchical Block Diagram Formalism
In the framework of the block diagram formalism
an archetype concept is used. Each archetype de-
fines a specific class of objects and can be instanti-
ated several times. The definition of an archetype
incorporates the ports of the objects (fig. 3), ar-
chetype attributes, object attributes and one or
more alternative internal implementations, i.e.,
different interchangeable realizations. In order to
cope with the possible combinations of different
implementations one or more configurations can be
defined that determine unambiguously which im-
plementation is used for which instance.

In our case port types and block types can be de-
fined. Port types are archetypes with archetype
attributes (port variables and sub-ports), but with-
out an implementation (fig.1). Ports can be instan-
tiated within block archetypes and port archetypes.
The block archetypes contain ports and no further
attributes. The implementations of a block arche-
type can be a block diagram or a statechart or a
sequential function chart (fig. 2 and 4). A block
diagram contains the outer ports of the corre-
sponding archetype and sub-blocks adorned with
their own ports. In a block diagram one output port
can be connected to several input ports, but one
input port must not be connected with more than
one output port (fig. 2).

Figure 1: Defining a port type named "states" using
Modelica syntax

Figure 2: A block diagram implementation named "Red-
Con_BG"

Figure 3: The shelf view on the archetypes

Figure 4: A statechart model that represents an implemen-
tation of an block

Remelhe M.A.P. Combining Discrete Event Models and Modelica − General Thoughts ...

The Modelica Association 207 Modelica 2002, March 18−19, 2002

The Translation into Modelica
The translation procedures for the different for-
malisms are programmed using the extension fa-
cilities of DoME: The Scheme variant Alter, a Lisp
like functional programming language, and Small-
talk in which DoME itself is implemented.

For the translation of a hierarchical model a spe-
cific implementation configuration is used. All
parts that are automatically generated are encap-
sulated in one Modelica model class. The connec-
tors of this class correspond to the outer ports on
the highest model level. Each port type is directly
represented by a connector definition. For each
block implementation a record is generated that
defines the components (variables and/or sub-
blocks) of the corresponding implementation.
Since the instantiation of such a record is con-
nected to the instantiation of its components, the
instance of the top-level block contains the whole
data structure of the hierarchical model.

// block1 contains block2 and block3:
record Data_block1
 ...
 data_Block2 block2;
 data_Block3 block3;
 ...
 Boolean trig;
end Data_block1;

In addition for each block implementation a set of
Modelica functions is generated that define its
behavior. The following tasks are realized by sin-
gle Modelica functions:
- initialization of the components (variables and

sub-blocks) of the block implementation
- detecting the need for state transitions based on

given input values
- performing state transitions based on given

input values
- data logging for visualization
For a specific block implementation the argument
type and the output type of these functions is the
corresponding record. Hence, the initialization
function of the top-level block gets its data object
(a record) as an argument and calls the initializa-
tion function of its sub-blocks using the corre-
sponding sub-objects included in the record:

function init_block1
input Data_block1 par;
output Data_block1 data;

algorithm
 data := par;
 data.block2 :=

 init_block2(data.block2);
 data.block3 :=
 init_block2(data.block3);
 ...
end init_block1;

Finally, the generated Modelica model class con-
tains an algorithm that originates all function calls:

model DiscreteController
 < Port Definitions >
 < Record Definitions >
 < Function Definitions >
 InputPort inputConnector;
 OutputPort outputConnector;
 Data_block1 block1;
algorithm
 block1.inputPort := inputConnector;

when initial() then
 block1 := init_block1(block1);

end when;
 block1 := detect_block1(block1);

if block1.trig then
 block1 := peform_block1(block1);

end if;
 outputConnector :=
 block1.outputPort;
end DiscreteController;

Such a Modelica model of a discrete event compo-
nent can be inserted intuitively into a model of a
physical system and simulated by standard Mode-
lica-Tools.

References
[1] Modelica. Homepage: http://www.Modelica.org/

[2] Mosterman P.J., Otter M. and Elmqvist H.: Modeling
Petri-Nets as Local Constraint Equations for Hybrid Sys-
tems using Modelica. Proceedings of the 1998 Summer
Computer Simulation Conference (SCSC'98), Reno,
U.S.A., 19.-20. Juli 1998.

[3] Dymola. Homepage: http://www.Dynasim.se/.

[4] DoME. http://www.htc.honeywell.com/dome/.

[5] D. Harel: Statecharts: A Visual Formalism for Complex
Systems. Sc. of Comp. Prog. 8, pp 231-274, 1987.

[6] International Electrotechnical Commission. Interna-
tional Standard IEC 1131 Programmable Control-
lers, Part 3, Programming Languages. IEC, Geneva,
1993.

[7] M. Otter, M. A. Pereira Remelhe, S. Engell, P. Moster-
man, “Hybrid Models of Physical Systems and Discrete
Controllers,” at - Automatisierungstechnik, vol. 48, no. 09,
pp. 426-437, 2000.

[8] M. A. Pereira Remelhe: Simulation and Visualization
Support for User-defined Formalisms Using Meta-
Modeling and Hierarchical Formalism Transformation.
Proceedings of the 2001 IEEE International Conference
on Control Applications, México City, 2001

Combining Discrete Event Models and Modelica − General Thoughts ... Remelhe M.A.P.

Modelica 2002, March 18−19, 2002 208 The Modelica Association

Färnqvist D., Strandemar K., Johansson K.H., Hespanha J.P. Hybrid Modeling of Communication Networks ...

The Modelica Association 209 Modelica 2002, March 18−19, 2002

Hybrid Modeling of Communication Networks Using Modelica
�

Daniel Färnqvist†, Katrin Strandemar†, Karl Henrik Johansson†, ‡ and João Pedro Hespanha§

Abstract

Modeling and simulation of communication networks
using Modelica is discussed. Congestion control in
packet-switched networks, such as the Internet, is to-
day mainly analyzed through time-consuming simu-
lations of individual packets. We show, by develop-
ing a model library based on a recent hybrid systems
model, that Modelica provides an efficient platform for
the analysis of communication networks. As an exam-
ple, a comparison between the two congestion control
protocols is presented.

1 Introduction

The interaction with a variety of networks plays an
important role in everyone’s life. A growing use of
networks, such as the Internet, with their widening
set of services increases the demand on the control of
the network. The objective is often to improve traffic
throughput and to better accommodate different ser-
vice demands. Communication networks experience
major problems due to traffic congestion. Today’s con-
gestion control is in most networks implemented as
end-to-end protocols, e.g., [4, 12, 10]. The protocols
have proved to form the basis of a remarkably robust
and scalable system, though the understanding of the
basic principles of these complex systems is far from
satisfactory. There is intensive research on modeling
and simulation of the Internet. It has been pointed out
that classical network models from telecommunication
based on Poisson modeling are not suitable for the In-
ternet [8]. Recent models capturing the self-similar na-
ture of the traffic has been developed [5]. The general
opinion in the network area is still that Internet mod-
eling and simulation are open research problems [9].

�

The authors want to thank Håkan Hjalmarsson and Gunnar
Karlsson for helpful discussions.

†Dept. of Signals, Sensors & Systems, Royal Institute of Tech-
nology, SE–100 44 Stockholm, Sweden

‡Corresponding author. Tel. +46 8 7907321. Fax
+46 8 7907329. kallej@s3.kth.se

§Dept. of Electrical & Computer Engineering, University of
California, Santa Barbara, CA

The intention of this paper is to describe initial work
on modeling packet-switched communication network
using Modelica. The standard modeling and simula-
tion environment targeted at networking research is the
discrete event simulator ns-2 [7]. ns-2, which was
originally developed at UC Berkeley, implements net-
work protocols such as the transmission control pro-
tocol (TCP) and traffic source behaviors such as file
transfer protocol (FTP) and Telnet. Since ns-2 di-
rectly implements the Internet protocols and simulates
individual packets, it provides on one hand accurate
simulation results but on the other hand a rather slow
simulation speed. The result of this is that ns-2 is
mainly for studying relatively small networks over a
short time scale. The other extreme is to use flow mod-
els, i.e., to approximate the packet transmission with
a continuous flow and basically neglect the network
protocols. Flow models capture average transmission
rates but ignores events such as packet drops. Flow
models are hence suitable for the study of steady-state
behavior but not for evaluating transient phenomena.
This is for instance due to that certain congestion con-
trol strategies are based on the implicit feedback in-
formation from packet drops, which are not included
in the flow model. A hybrid systems model, which is
based on the average rates but takes packet drops into
account, was recently proposed in the literature [3].
The motivation for this model is to capture the net-
work behavior on a time scale in between packet mod-
els and flow models. Studies have shown that the hy-
brid model is able to model many important network
phenomena [3, 1]. In this paper, we will show that the
hybrid model is suitable for Modelica. Moreover, we
show that simulating the model in Dymola provides an
efficient environment for studying congestion control
in computer networks.

The outline of the paper is as follows. Section 2
presents a brief introduction to congestion control in
communication networks. The hybrid model is de-
scribed in Section 3 and its Modelica implementation
is discussed in Section 4. An example, where two TCP
versions are compared for a small wireless network, is
given in Section 5.

Hybrid Modeling of Communication Networks ... Färnqvist D., Strandemar K., Johansson K.H., Hespanha J.P.

Modelica 2002, March 18−19, 2002 210 The Modelica Association

Figure 1: Communication network.

2 Communication Networks

A packet-switched communication network can be de-
scribed by a directed graph. The nodes represent the
routers, which direct the packets from sender to re-
ceiver, and the edges correspond to wired or wire-
less links. Figure 1 illustrates a connection with one
sender and one receiver. The bandwidths of the links
are limited, so each router has a buffer where packets
are stored if more packets are entering the router than
is going out. In this way, it is possible to deal with
minor traffic congestion in the network. If too many
packets enter a router in a short amount of time, how-
ever, packets will be dropped due to that the buffer has
finite size. The way this congestion problem is han-
dled by the senders on the Internet is through a con-
trol mechanism denoted transmission control protocol
(TCP). The receiver sends acknowledgments back to
the sender, when packets have arrived. In order to ef-
ficiently use the network resources, the TCP sender
adjusts it sending rate according to a control variable
called the window size w. The TCP sender sends w
number of packets and waits for acknowledgments for
them to return. Hence, w corresponds to the number
of unacknowledged packets the sender may have in
the network. When the sender has received acknowl-
edgments for all w packets, w is increased by one. If
a packet is dropped (so that no acknowledgment for
that packet is received), w is decreased by a factor two.
Hence, TCP uses additive increase and multiplicative
decrease (AIMD) to regulate the congestion window
size based on explicit acknowledgments and implicit
negative acknowledgments. Although, the AIMD con-
trol strategy has proved to be efficient, robust and re-
markably scalable for the Internet, it is believed that it
might be too abrupt for emerging applications such as
streaming of audio and video.

fff rsq −=
�

� �
��
�

<=
=

otherwiseB
q

q

Bsqs

r f

f

f

,0

Bsz −=
�

s
q

q
sq f

ff −=
�

B
q

q
r f

f =

?,max Bsqq >=

?Lz =

0:=z

fdrop

fdrop

full-not-Queue

full-Queue

0:=z

?Bs ≤

Figure 2: Hybrid queue model.

3 Hybrid Model

In the hybrid model for communication networks pro-
posed by Hespanha et al. [3, 1], the network dynamics
and the TCP dynamics is modeled as hybrid systems
(e.g., [2, 11]). Note that the hybrid model is based on
traffic flows, but is more accurate than a classical flow
model since it handles discrete events such as packet
drops and window adjusting.

3.1 Network Dynamics

Packet transmission rates are in the hybrid model
treated as continuous-time real-valued variables. The
received rate of packets at a router is denoted r and the
sent rate is denoted s. The number of packets stored
in a router queue is denoted q, which is also treated
as a continuous variable. The dynamics of the queue
is depending on if the queue is full (q � qmax) or not
(0 	 q
 qmax). We thus for each router introduce the
hybrid system with two discrete states shown in Fig-
ure 2. In this model, subscript f refers to flow f , so
that the windows w f for all flows are updated accord-
ing to given equations. Moreover, introduce the vari-
ables q � ∑ f q f and s � ∑ f s f , and let the bandwidth
of the outgoing link be equal to a constant B. Note
that when the queue is full, a drop will be generated as
soon as the variable z is equal to the predefined packet
size L. Which flow f of the incoming flows that will
lose a packet is determined by the distribution of the
flows in the queue.

Färnqvist D., Strandemar K., Johansson K.H., Hespanha J.P. Hybrid Modeling of Communication Networks ...

The Modelica Association 211 Modelica 2002, March 18−19, 2002

start-Slow

recov.-Fast

avoid.-Cong.

Timeout

Figure 3: Hybrid TCP model.

f

f
f RTT

Lw
r

⋅
=

f
f RTT

w
1=&

avoid.�Cong. ?fdrop

2
: f

f

w
w =

Figure 4: Simplified model of congestion control in
TCP.

3.2 TCP Dynamics

The hybrid TCP model consists of four discrete states
as shown in Figure 3. We will not detail the contin-
uous dynamics and the transition rules for all states,
but rather focus on the most important discrete state,
namely, congestion avoidance. It is through the con-
gestion avoidance state the additive increase and mul-
tiplicative decrease control strategy described in Sec-
tion 2 is implemented.
Introduce the round-trip time RTTf for flow f as the
time between sending a packet and receiving the cor-
responding acknowledgment. It is given by the sum of
the physical propagation time and the queueing times.
The sender estimates RTTf and uses it in the conges-
tion control algorithm. Congestion avoidance in TCP
can be described by the hybrid system in Figure 4. If
RTTf is approximately constant, we note that the win-
dow size w f grows linearly. The corresponding trans-
mission rate r f for the sender is proportional to w f . If
a drop occur in flow f , the window size is reduced by
a factor two.
Figure 5 shows a simulation of the queue size q (solid)
and the window size w (dashed) for a typical ses-
sion. When the queue becomes full (q � qmax � 57),
a packet is dropped and w is reduced by a factor two.
The window size has a sawtooth shape, which is char-
acteristic for TCP flows. The reason why the growth

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

time

pa
ck

et
s

q
w

Figure 5: Illustration of congestion avoidance for a
network with a single router. When the queue q (solid)
exceeds qmax � 57, one packets is dropped. TCP re-
duces accordingly the window w (dashed) by a factor
two. Note the characteristic shape of w with intervals
of approximately linear growth and periodic jumps.

Figure 6: Example of a simple communication net-
work implemented in Modelica.

in w is not linear in the beginning of the session is that
RTT varies substantially due to the rapid increase in
q: when q is small RTT is approximately equal to the
physical propagation time, while if q is large packets
spend a relatively large amount of time in the queue.

4 Modelica Implementation

An example of a communication network imple-
mented in Modelica is shown in Figure 6. Two senders
and two receivers are connected to the network. Their
flows are sharing the same link capacity. If the sum
of the flows at some time instance is larger than the
bandwidth of the link, packets will be queued.
The hybrid model described in previous section con-
sists of continuous equations and discrete events.
Modelica was chosen as implementation language

Hybrid Modeling of Communication Networks ... Färnqvist D., Strandemar K., Johansson K.H., Hespanha J.P.

Modelica 2002, March 18−19, 2002 212 The Modelica Association

fr

fRTT

1�Queue

Routing

1�TCP

2�Queue

2�TCP
fs

f?�in�drop

fr

Figure 7: Composition of hybrid communication net-
work model. The network dynamics and the TCP dy-
namics are separated.

since it supports efficient handling of such models. We
have developed a communication network library. The
library contains standard building blocks for network
simulation, such as TCP senders, routing tables, and
queues. Figure 7 shows the schematic layout of our
communication network model. Note that the network
dynamics and the TCP controllers are separated. The
only information shared between the two submodels
are the sending rates r f , the round-trip times RTTf ,
and the drop events. The modular structure allows an
easy testing of for instance different TCP controllers
applied to the same network topology.
Appropriate handling of the switching between dis-
crete states is important for accurate and efficient
simulation of the hybrid model. Implementations in
Simulink showed some problems in this respect. Our
implementation in Modelica and simulation in Dy-
mola works well. Note that the simulation time is
not depending on the number of flows, but instead
by the number of discrete events generated by packet
drops. The simulation time grows considerably when
the number of discrete events becomes large, which
hence limits the complexity of the model that can be
studied. In ns-2, where individual packets are simu-
lated, the simulation time is also depending on the size
of the packet flows as well as the number of flows.

5 Example

Let us simulate the simple computer network in Fig-
ure 6. Sender 1 sends Flow f1 using a version of TCP
called TCP Westwood (TCPW) [6] and Sender 2 sends
Flow f2 using TCP SACK [3]. TCP SACK corre-
sponds approximately to “standard” TCP used for the
Internet today. The flows are sent over the same wire-
less link. For a wireless link transmission losses are

0 5 10 15 20 25
0

10

20

30

40

50

60

70

time

w

TCPW
TCP SACK

Figure 8: Simulation of the system in Figure 6. The
windows size for TCP SACK is considerably reduced
when the wireless link is losing a lot of packets (at
about t � 5 and t � 15), while TCPW is able to cope
with the losses very well.

more likely than for a wired link. For the network in
Figure 6, there can be packet losses both due to that
the router queue is full and due to that the wireless
transmission lose packets. We model the wireless link
as having a good and a bad state. In the good state
0.1% of the transmitted packets are lost, while in the
bad state 10% of the packets are lost. The link stays in
each state a random amount of time, which is exponen-
tially distributed. TCPW was designed taking wireless
links into account, while TCP SACK was designed for
wired links. Next we will see that TCPW might be a
good option for the emerging wireless Internet.
Figure 8 shows the window sizes for a simulation of
the network in Figure 6. The solid line corresponds
to TCPW and the dashed line to TCP SACK. Note the
time intervals at about t � 5 and t � 15 when the link is
in the bad state. The packet losses due to the bad trans-
mission result in a sudden decrease of the window size
for TCP SACK, while TCPW are able to compensate
for the packet losses of the wireless link. The win-
dow size for TCPW is in general larger than for TCP
SACK. This gives a larger throughput for the connec-
tion using TCPW, as is shown in Figure 9.
Figure 10 shows the throughput when two TCPW’s are
sharing the same wireless link (upper plots) and when
two TCP SACK’s are sharing the same link (lower
plots). From the simulations we see that the major ad-
vantage of TCPW is when the link is in the bad state.
When the link is in the good state, the performance of
both TCP implementations are roughly equal.
Since TCP (SACK) was developed for wired net-

Färnqvist D., Strandemar K., Johansson K.H., Hespanha J.P. Hybrid Modeling of Communication Networks ...

The Modelica Association 213 Modelica 2002, March 18−19, 2002

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

7

time

T
hr

ou
gh

pu
t

TCPW
TCP SACK

Figure 9: TCPW gives a larger throughput than TCP
SACK. The difference is emphasized when there are a
large number of packet losses due to the wireless trans-
mission.

works, where packet losses arise only due to buffer
overflow, there is a problem using it over wireless
links. The reason is that the window size is reduced
by a factor two every time a drop occurs, regardless if
the drop is due to congestion or to transmission loss.
TCPW has another way of updating the window size
when a drop occurs. The window size is set to a value
based on an estimate of the available bandwidth and
the current round-trip time RTT . Since RTT is highly
dependent on the queue sizes, so that RTT is small if
and only if all corresponding queues are small, a small
RTT implies that a detected drop must be due to wire-
less loss. The aim of TCPW is hence to utilize the
available bandwidth more efficiently.

References

[1] S. Bohacek, J. P. Hespanha, J. Lee, and K. Obraczka.
Analysis of a TCP hybrid model. In Proc. of the 39th
Annual Allerton Conference on Communication, Con-
trol, and Computing, 2001.

[2] R. W. Brockett. Hybrid models for motion control
systems. In H. Trentelman and J. Willems, editors,
Essays in Control: Perspectives in the Theory and Its
Applications, pages 29–53. Birkhäuser, Boston, 1993.

[3] J. P. Hespanha, S. Bohacek, K. Obraczka, and J. Lee.
Hybrid modeling of TCP congestion control. In M. Di
Benedetto and A. Sangiovanni-Vincentelli, editors,
Hybrid Systems: Computation and Control, volume
2034 of Lecture Notes in Computer Science, pages
291–304. Springer-Verlag, Berlin, Germany, 2001.

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

7

time

T
hr

ou
gh

pu
t

TCPW 1
TCPW 2
TCP SACK 1
TCP SACK 2

Figure 10: Throughput for two TCP Westwood
senders (upper plots) and two TCP SACK senders
(lower plots).

[4] V. Jacobson. Congestion avoidance and control. In
Proc. of SIGCOMM, volume 18.4, pages 314–329,
1988.

[5] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V.
Wilson. On the self-similar nature of ethernet traffic
(extended version). IEEE/ACM Transactions on Net-
working, 2(1):1–15, 1994.

[6] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and
R. Wang. TCP Westwood: bandwidth estimation for
enhanced transport over wireless links. In MobiCom,
Rome, Italy, 2001.

[7] The Network Simulator ns-2. Information Sci-
ences Institute, University of Southern California.
http://www.isi.edu/nsnam/ns.

[8] V. Paxson and S. Floyd. Wide-area traffic: the failure
of Poisson modeling. IEEE/ACM Trans. on Network-
ing, 3(3):226–244, 1995.

[9] V. Paxson and S. Floyd. Why we don’t know how to
simulate the internet. In Proc. of the Winter Simulation
Conference, 1997.

[10] L. L. Peterson and B. S. Davie. Computer networks:
a systems approach. Morgan Kaufmann, 2nd edition,
2000.

[11] A. van der Schaft and J. M. Schumacher. An Intro-
duction to Hybrid Dynamical Systems. Number 251
in Lecture Notes in Control and Information Sciences.
Springer-Verlag, London, 2000.

[12] J. Walrand and P. Varaiya. High-performance commu-
nication networks. Morgan Kaufmann, 2nd edition,
2000.

Modelica 2002, March 18−19, 2002 214 The Modelica Association

The Modelica Association 215 Modelica 2002, March 18−19, 2002

Session 8b

Thermodynamic Systems II

Modelica 2002, March 18−19, 2002 216 The Modelica Association

Steinmann W.D., Zunft S. A Library for Modelica Applications in Technical Thermodynamics

The Modelica Association 217 Modelica 2002, March 18−19, 2002

TechThermo- A Library for Modelica Applications in
Technical Thermodynamics

W.D. Steinmann, S. Zunft
German Aerospace Center (DLR)

Institute of Technical Thermodynamics
Pfaffenwaldring 38-40, 70569 Stuttgart

wolf.steinmann@dlr.de

Abstract
This paper describes the development of the Modelica
library TechThermo. This library is intended as a basis
for simulation projects in the area of technical
thermodynamics. TechThermo enhances the efficiency
of simulation activities by providing models describing
essential processes which are not restricted to certain
applications. The library contains connector-definitions,
boundary conditions, basic descriptions of heat and
mass transfer, control volumes, general property
routines and components like turbines or heat-
exchangers. The structure of models can be controlled
by parameters thus providing the possibility to choose
between different physical descriptions of a process.

Introduction
At DLR’s Institute of Technical Thermodynamics
various simulation activities cover projects reaching
from solarthermal power generation to fuel cell systems.
Initial experiences with Modelica show that the
efficiency of the simulation activities can be improved
significantly by definition of a base library containing
models which are not restricted to a special application.
By using such a base library developers working on
differents projects share a common basis and can
concentrate on the physical process which are typical
for a special application while the common basis
undergoes a continuous optimization resulting from the
experience in the different projects.

Resulting from the former work with Modelica, some
recommandations for improving the acceptance of a
library can be made:

- models should be small and easy to understand

- models should be numerically robust

- the dependance on the right choice for the right
initial conditions should be as small as possible

- the total number of components in a library should
be limited; it’s better to build several smaller
libraries than building a single one containing
everything

- the time period for developing a library should be
limited

- an extensive application of object-oriented
techniques like multiple inheritance doesn’t
improve readability

Experienced users should profit from TechThermo
primarily by extending the models provided by the
library thus minimizing the amount of trivial equations
needed for describing a physical process. By
standardization of connectors and variable names of
input and output variables the reusability and readibility
of models is enhanced. On the other hand, this library
should allow a quick analysis of thermodynamic
systems without the necessity of major modifications of
the models. This also helps new users to apply Modelica
for the simulation of thermodynamic systems.

1 Library Structure

TechThermo is organized in a four-level structure.
There are seven main packages, which are stored in
seperate files:

- Interface connectors and general base models

- Source boundary conditions

- Basic heat/mass transfer, control volumes

- Medium thermophysical properties

- Component basic components

- Subsystem simplified thermodynamic systems

- Example examples

Each of these main packages is divided in sub-packages.
These sub-packages contain models which can be used
without further modifications. If necessary, there are
supporting models and data-records on the fourth level:

A Library for Modelica Applications in Technical Thermodynamics Steinmann W.D., Zunft S.

Modelica 2002, March 18−19, 2002 218 The Modelica Association

main package

sub-package

model 1

model 2

model 3

package Support

support-model 1

support-model 2

package Data

data record 1

data record 2

This structure enhances the orientation of the user
within the library, since the first two levels contain only
packages, while all models which can be used
immediately are concentrated within the third level.

2 Control of Model Structure by
Parameters

A general-purpose library has to offer a choice between
different descriptions for a physical process to adapt the
model to a certain simulation task. In Modelica
flexibility can be reached by using replaceable models.
In TechThermo, this approach is used to exchange
models which show significant differences. In other
cases, differences in a physical model only affect a
single equation. Here, the usage of replaceable models
seems not to be effective, since the total number of
models will increase significantly. Instead, parameters
are used in combination with if-expressions to influence
the structure of a model. Two different cases can be
distinguished: if there are only two alternatives,
parameters of type Boolean are used to select the
appropriate physical model. In TechThermo, names of
such parameters start with switch_ to distinguish them
from other parameters:

model

parameter Boolean switch_name = true;

....

equation

if switch_name then

// this part is only activated, if

// switch_name== true

equation 1;

equation 2;

equation 3;

...

end if;

If there are more than two alternatives parameters of
type Integer are applied. The names of these parameters
start with option_. The alternatives are described in the
info-section of a model. Users don’t have to get along
with names for different replaceable models, the total
number of different models is kept small:

model

parameter Integer opotion_name=1;

.....

 equation

if option_name== 1 then

// this part is only activated, if

// option_name== 1

equation 1;

equation 2;

equation 3;

....

end if;

if option_name== 2 then

// this part is only activated, if

// option_name== 2

equation 1;

equation 2;

equation 3;

....

end if;

if option_name== 3 then

// this part is only activated, if

// option_name== 3

equation 1;

equation 2;

equation 3;

....

end if;

The switch_ and option_ parameters are declared with
default values describing the standard case, so users can
use the models without modifications of these
parameters. Dymola translates only the parts which are
activated by the parameters, other sections are ignored.
As a result, control of model structure by parameters
doesn’t increase the calculation time. On the other side,
modifications of switch_ and option_ parameters only
become effective after a new compilation.

Steinmann W.D., Zunft S. A Library for Modelica Applications in Technical Thermodynamics

The Modelica Association 219 Modelica 2002, March 18−19, 2002

3 Connectors

The definition of connectors is an essential task during
the creation of a base library. There’s no unique ‚right‘
definition of connectors. In TechThermo four different
kinds of connectors are defined:

m_dot [kg/s] mass-flow rate

h [J/kg] spec. enthalpy

p [Pa] pressure

mass-flow

x_i[-] vector of mass-
fractions

q_dot [W] heat-flow rateheat-flow

t [°C] temperature

h [J/kg] spec. enthalpy

p [Pa] pressure

rho [kg/m³] density

s [J/kg/K] spec. entropy

t [°C] temperature

u [J/kg] spec. internal
energy

x [-] steam quality

thermal state

x_i [-] vector with
mass fractions

exergy-flow exergy_dot [W] exergy-flow
rate

There are two connectors of each kind with different
graphical presentation. The mass-flow connector allows
the description of combined heat and mass-transfer.
Specific enthalpy and pressure enable a description of
the thermal state of the flowing medium. The
description of a multi-component flow is possible by the
vector x_i which contains the mass-fraction of each
component. During the development of TechThermo
different alternatives for the mass-flow connector have
been discussed: the definition of individual mass-flow
connectors for different transported media proves not to
be efficient, since the number of connectors became to
high. Instead, an universal mass-flow connector was
defined. While the choice of mass-flow rate and
pressure as connector variables is obvious, alternatives
to specific enthalpy have been discussed. One
disadvantage of specific enthalpy as a connector
variable is that it is neither a ‘through’ nor an ‘across’
variable, a connection of more than two elements
demands a mixing model. This might be avoided by
using enthalpy-flow rate (product of specific enthalpy
and mass-flow) as a connector variable. The major
drawback of this concept is that information about the
energy in the fluid is always related to the mass-flow

rate: if the velocity of the fluid is zero, no information
about the specific enthalpy of the fluid is available, if
specific enthalpy is calculated from the enthalpy-flow
rate division by zero must be avoided. Temperature as
connector variable doesn’t allow a clear definition of
themal state in the two-phase region, entropy as
connector variable is interesting from a theoretical point
of view but is probably not accepted by all users.

The heat-flow connectors are used for thermal energy
transfer without mass-flow, connector variables are
temperature and heat flow rate.

The state connector transports information about the
thermal state of a system. A characteristic of
thermodynamics is that there are many different options
for describing the themal state. Depending on the
application, different sets of variables are preferred.
While the steam quality is interesting when simulating a
steam generator, it is unnecessary during the analysis of
a gas turbine. A general library like TechThermo must
offer a variety of state variables at the thermal state
connector without urging the user to define all of them
to avoid error messages. The state connector contains
eight different kinds of state variables: spec. enthalpy h,
pressure p, density rho, spec. entropy s, temperature t,
spec. internal energy u, steam quality x and composition
x_i. By using the model NotUsedVariables variables
at the state connector can be equated with default values
thus eliminating the necessity to define them explicitly.
The choice of variables defined by NotUsedVariables
depends on parameters of type Boolean.

The set of connectors is completed by the general
exergy-connectors which transport exergy-flows like
mechanical power or electricity without further
specification of the kind of power-flow.

3.1 Adapters to Connectors of Modelica
Standard Library

The Connector main package contains a sub-package
with models to join models from the Modelica Standard
Library to models from TechThermo. These adapters
include a connector from each of these two libraries and
define the relation between the variables of the two
connectors.

Fig. 1: Adapter-model OutHeatFlowInSignal
transforming signal to thermodynamic connector
variable

A Library for Modelica Applications in Technical Thermodynamics Steinmann W.D., Zunft S.

Modelica 2002, March 18−19, 2002 220 The Modelica Association

 Fig. 1 shows the adapter-model OutHeatFlowInSignal
that connects a heat flow connector to the connector
InPort from the Modelica Standard Library. The adapter
is used to transform a general signal provided by model
Ramp to a thermodynamic variable. The thermodynamic
variable is either temperature or heat-flow rate
depending on the value of parameter option_defsignal in
OutHeatFlowInSignal. Similar adapters are
implemented for the other connectors in TechThermo.

3.2 TwoPort Models

Many processes in technical thermodynamics can be
regarded as systems with an inflow and an outflow. As
base classes for models TechThermo provides for all
defined connectors models with an inflow and an
outflow connector. There are two different kinds of
models: while TwoPortCM only includes two
connectors with different graphical representation,
TwoPort extends TwoPortCM introducing also simple
relations for the corresponding variables of the two
connectors. These relations can be controlled by
parameters. Many processes affect only some of the
connector variables while others remain constant. By
using TwoPort as a base model, the necessity to define
explicitly connector variables which remain constant is
avoided by setting the corresponding parameter values.
For example models describing heat transport can
extend the TwoPort-model for heat flow:

partial model TwoPortCM
" partial model heat flow element with two
connectors"
//------------connectors---------------------

In InHeatFlow;
Out OutHeatFlow;

end TwoPortCM ;

model TwoPort
"model heat flow element with two connectors"
extends Support.TwoPortCM;
//------------boolean switches for additional
// equations---------
parameter Boolean switch_q_dot_const=false
“if switch_q_dot_const=true then
q_in_dot+q_out_dot=0";
parameter Boolean switch_t_const=false
"if switch_t_const=true then t_in=t_out";

//Internal variables

flow SIunits.HeatFlowRate q_in_dot;
SIunits.CelsiusTemperature t_in;
flow SIunits.HeatFlowRate q_out_dot;
SIunits.CelsiusTemperature t_out;

equation

q_in_dot = InHeatFlow.q_dot;

t_in = InHeatFlow.t;

 q_out_dot = OutHeatFlow.q_dot;

 t_out = OutHeatFlow.t;

//relations between connector variables at
//heat_cut1 and heat_cut2 dependant on boolean
//parameters:

if switch_q_dot_const then

 0.0 = q_in_dot + q_out_dot;

 //heat flow rate remains constant

end if;

if switch_q_dot_const then

 t_in = t_out;

 //temperature remains constant

end if;

end TwoPort;

The introduction of variables like t_in, q_in_dot, t_out,
q_out_dot shorts the names of connector-variables.

There are also TwoPort mass-flow elements with
additional connectors for heat flow or exergy flow.
These models offer the option to activate a stationary
energy balance.

Fig. 2: Icon for TwoPort-model for heat-flow

4. Source Models

The Source package contains models representing
boundary conditions in thermodynamic systems.
Boundary conditions can be introduced for all kind of
connectors. The connector variables used as boundary
conditions are selected by parameters thus avoiding the
necessity to define seperate models for various kinds of
boundary conditions.

Steinmann W.D., Zunft S. A Library for Modelica Applications in Technical Thermodynamics

The Modelica Association 221 Modelica 2002, March 18−19, 2002

The following Modelica-Code shows the definition of a
source for heat flow:

model ParameterDefined
heat-flow source with optional definition of
heat-flow variables by parameters"

TTInterface.HeatFlow.Out OutHeatFlow;

//------------parameters-----------------------
//switches for variables at connectors:
parameter Boolean witch_q_dot_def=false
if switch_q_dot_def=true, OutHeatFlow.q_dot is
determined by parameter q_dot_para";
parameter Boolean switch_t_def=false
"if switch_t_def=true, OutHeatFlow.t is
determined by parameter t_para";

//values for variables at outlet if
//corresponding switch-parameter=true
parameter SIunits.HeatFlowRate q_dot_para=1.0
"value for heat-flow rate HeatFlowOut.q_dot at
outlet if switch_q_dot_def=true";
parameter SIunits.CelsiusTemperature
t_para=25.0
"value for temperature at HeatFlowOut.t at
outlet if switch_t_def=true";
equation

if switch_q_dot_def then
 OutHeatFlow.q_dot = q_dot_para;

end if;

if switch_t_def then
 OutHeatFlow.t = t_para;

end if;

end ParameterDefined;

This model allows to select a constant temperature or a
constant heat flow (or both) as boundary conditions. In
addition to models providing constant boundary
conditions, there are also models with an signal input
offering the possibility to control one of the boundary
variables by an external signal source.

5. Models for Heat and Mass Transfer

Package Basic offers basic models for describing heat
and mass transfer processes. There are models
describing thermal conduction, convective heat transfer
and radiation heat transfer. Depending on switch-
parameters values for heat conductivity, heat transfer
coefficient or emissivity can be assumed as being
constant or not. The model HeatTransfer extends the
TwoPort-model for heat flow and calculates convective
heat-transfer assuming a constant value for the heat
transfer coefficient. There’s no storage of energy in the
element, so parameter switch_q_dot_const = true, i.e.
q_in_dot = -q_out_dot. The temperature difference
between the inlet and the outlet is calculated from the
heat-flow rate, the area and the heat transfer coefficient:

model HeatTransfer
 "basic model describing heat transfer "
extends TTInterface.HeatFlow.TwoPort
(switch_q_dot_const=true);

SIunits.CoefficientOfHeatTransfer alpha_trans;
parameter SIunits.CoefficientOfHeatTransfer
alpha_trans_const=1000
“if switch_alpha_const==true then
alpha_trans=alpha_trans_const";
parameter SIunits.Area surface_area=1.0
"area normal to direction of heat transfer";

//-------switch-parameter-------------------
parameter Boolean switch_alpha_const=true
“if switch_alpha_const==true then
alpha_trans=alpha_trans_const";

equation

if switch_alpha_const then
 alpha_trans = alpha_trans_const;
end if;

q_in_dot = surface_area*(t_in -
t_out)*alpha_trans;

end HeatTransfer;

The model HeatTransferVariable extends the more
basic HeatTransfer-model, parameter
switch_alpha_const being set to false and the heat
transfer coefficient alpha_trans is now calculated from
the properties of the fluid and the velocity. There are
two connectors for the mass-flow determining the heat
transfer coefficient. An additional state connector is
needed to introduce the density of the fluid for
calculating the velocity from mass-flow rate.
HeatTransferVariable offers various possibilities for
calculating the heat transfer coefficient, the user can
choose the apporopriate physical model by setting an
option_parameter.

Fig. 3 model HeatTransferVariable with connectors for
mass-flow and thermal state to calculate heat transfer
coefficient.

Similar to the models describing heat transport, the
models included in TechThermo for calculating pressure
loss due to mass flow offer the possibility to choose
between different physical model depending on flow
geometry, accuracy and velocity range.

A Library for Modelica Applications in Technical Thermodynamics Steinmann W.D., Zunft S.

Modelica 2002, March 18−19, 2002 222 The Modelica Association

6 Control Volumes

A proper description of control volumes is essential for
modelling the dynamic behaviour of a thermodynamic
system. In TechThermo, the dynamics of a finite mass
with a single connector is described by the model
ThermalCapacity. The temperature of the system is
calculated from the heat flowing into or out of the
system. Heat capacity and mass of the system can be
determined by parameters c_heat, m_const, but there’s
also the possibility to extend the model and introduce
other definitions for mass or heat-capacity after a
modification of the corresponding switch_parameters.
This might be useful if other parameters are preferrred
(example: pipe with mass calculated from diameter and
density) .

model ThermalCapacity
"control volume finite thermal capacity"

 TTInterface.HeatFlow.In HeatCut
 SIunits.Mass m;
 // mass of thermal capacity
 SIunits.SpecificHeatCapacity c_heat;
 // specific heat capacity

parameter SIunits.Mass m_const=1
“const. value mass if
switch_m_const==true";
parameter SIunits.SpecificHeatCapacity
c_heat_const=500
"const. value heat-capacity if
switch_c_heat_const==true";

 // Boolean switches
parameter Boolean switch_m_const=true
“if switch_m_const==true then
m=m_const";

parameter Boolean
switch_c_heat_const=true
"if switch_c_heat_const==true then
c_heat=c_heat_const";

equation

if switch_c_heat_const then
// specific heat capacity is
// defined by parameter

 c_heat = c_heat_const;
end if;

if switch_m_const then
 // mass is defined by parameter
 m = m_const;

end if;

 // transient energy conservation
 HeatCut.q_dot = m*c_heat*der(HeatCut.t);

end ThermalCapacity;

A general description for a finite volume with a single
mass-flow connector and a heat-flow input is provided
by the model ControlVolume including energy and mass
conservation:

model ControlVolume
parameter Integer n_comp=1;
parameter SIunits.Volume v_control=1;

//-connector for thermal state---
TTInterface.ThermalState.In
StateCut(n_comp=n_comp);

//connector for inflow or outflow of mass
TTInterface.MassFlow.In
InMassFlow(n_comp=n_comp);

//---------- connector for heat
//transferred to ControlVolume----

 TTInterface.HeatFlow.In InHeatFlow;

protected
 SIunits.InternalEnergy energy;

SIunits.MassFlowRate m_inflow_dot;
 SIunits.MassFlowRate m_outflow_dot;

equation

 InMassFlow.p = StateCut.p;
 InMassFlow.x_i = StateCut.x_i;
 InHeatFlow.t = StateCut.t;

energy =
v_control*StateCut.u*StateCut.rho;

der(energy) = m_inflow_dot*InMassFlow.h
+ InHeatFlow.q_dot +
m_outflow_dot*StateCut.h;

v_control*der(StateCut.rho) =
InMassFlow.m_dot;

m_inflow_dot = if InMassFlow.m_dot <= 0
then 0.0 else InMassFlow.m_dot;
m_outflow_dot = if InMassFlow.m_dot > 0
then 0.0 else InMassFlow.m_dot;

end ControlVolume;

Model ControlVolume gets information about the
density of the fluid by the state connector StateCut,
usually by an external property routine providing a
relation between internal energy u, density rho and
pressure p, so the model is not restricted to a certain
kind of fluid. The mass-flow can either be positive or
negative, the direction also influences the specific
enthalpy at the mass-flow connector.

7 Thermophysical Properties

In technical thermodynamics the calculation of physical
properties plays an important role. Since TechThermo
should be a general purpose library, the routines
included for property calculation are mainly based on
univeral physical models, descriptions optimized for a
certain medium are not applied. For most models, the
characterization of a substance by molar mass and
critical point properties is sufficient. With respect to
calculation time and errors usually introduced by
simplified physical models in other parts, the reduced

Steinmann W.D., Zunft S. A Library for Modelica Applications in Technical Thermodynamics

The Modelica Association 223 Modelica 2002, March 18−19, 2002

accuracy of general property models seems to be
acceptable.

In TechThermo the property models are seperated from
other model parts, informations are exchanged by a state
connector. Connecting a property model usually
presents the final step in creating a model. The general
models for property calculation are organized in four
sub-packages according to the physical condition:

- Solid

- Liquid

- Gas

- MultiPhase

Descriptions for the solid and liquid state offer the
possibility to take variations of density into account or
not. Depending on the demanded accuracy, one of the
following models describing the gas state can be
selected:

- PerfectGas:
pv=RT, specific heat capacity is constant
low pressure, small temperature variations, far from
saturation temperature
example: dry air at ambient conditions

- IdealGas:
pv=RT, specific heat capacity is temperature
dependant
medium pressure, significant temperature variation,
far from saturation temperature
example: air in gas turbine

- RealGas:
Redlich Kwong equation:

()bvvT

a

bv

RT
p

5,0 +
−

−
=

coefficients a and b are calculated from critical
values,
heat capacity is temperature dependant
example: superheated water-steam

The Redlich-Kwong equation is a cubic equation of
state. In order to determine the correct solution, a cubic
equation solver based on the method of Cardano is
applied. The calculation of caloric values like spec.
enthalpy or entropy demands an equation for the
specific heat capacity dependant on temperature. Since
no general models are available, polynomes (usually
second degree) must be provided for calculating the
specific heat capacity.

The model SaturationTemperature calculates the
saturation temperature from the pressure according to
Antoine, the model EvaporationPressure calculates the
evaporation enthalpy. Together with the models
describing liquid and gaseous state the calculation of
thermophysical properties with a minimum of medium
specific data is possible.

8 Components

Main package Component contains models for the
fundamental units of a system in technical
thermodynamics like compressors, turbines, heat-
exchanger, pipes, valves, tanks or burners. These
models are composed of general basic models and a
specific property routine. For example the general
model for a turbine is model Basic (located in package
Turbine.Support):

model Basic
"turbine without specification of working
fluid"

extends TTInterface.MassFlow.TwoPort(
 final switch_m_dot_const=true,
 final switch_h_const=false,
 final switch_p_const=false,
 final switch_x_i_const=true);

//----exergy-connector mechanical power
provided by expansion

 TTInterface.ExergyFlow.Out PmechCut;

//---------connector for
//thermodynamic properties at inlet

 TTInterface.ThermalState.In InletState;

//---------connector for thermodynamic
//properties after ideal expansion-----
TTInterface.ThermalState.Out
IdealExpansionState;

 //---------parameters
parameter SIunits.Efficiency
eta_expansion_const=0.8
"const. efficiency of turbine if
switch_eta_expansion_const==true";

//---------switch-parameters----
parameter Boolean
switch_eta_expansion_const=true

 "if switch_eta_expansion_const==true
then eta_expansion=eta_expansion_const";

 protected
 SIunits.SpecificEnthalpy dh_ideal;

// spec. enthalpy difference isentropic
//expansion

 SIunits.SpecificEnthalpy h_out_ideal;
// spec. enthalpy after isentropic
//expansion

 SIunits.Efficiency eta_expansion;

A Library for Modelica Applications in Technical Thermodynamics Steinmann W.D., Zunft S.

Modelica 2002, March 18−19, 2002 224 The Modelica Association

equation

if switch_eta_expansion_const then
 eta_expansion = eta_expansion_const;

end if;

 InletState.h = h_in;
 InletState.p = p_in;
 InletState.x_i = x_in_i;

// thermal state after isentropic
//expansion from p_in to p_out
// is defined by p2 and entropy
//entropy_inlet_cut.s

 IdealExpansionState.p = p_out;
 IdealExpansionState.s = InletState.s;
 IdealExpansionState.x_i = x_in_i;
 h_out_ideal = IdealExpansionState.h;

// decrease specific enthalpy isentropic
//expansion
 dh_ideal = h_out_ideal - h_in;
// specific enthalpy after real expansion
 h_out = h_in + dh_ideal*eta_expansion;
// mechanical power provided by expansion

PmechCut.exergy_dot = m_in_dot*(h_out -
h_in);

end Basic;

In this basic version of turbine calculation, the outlet
condition is calculated from the inlet condition by
assuming an isentropic expansion and multiplying the
difference in spec. enthalpy by the efficiency of the
turbine. The calculation demands the knowledge of the
entropy at the inlet, which is provided by state
connector InletState and the thermodynamic state after
the ideal expansion which is provided by connector
IdealExpansionState. In this basic version, the
efficiency of the turbine is determined by the parameter
eta_expansion_const; a more elaborate turbine model
might be implemented by extending Basic, setting
switch_eta_const = false and introducing a calculation
procedure for the efficiency eta_expansion.

The model should now be used for expanding air, the
model AirTurbine extends first the model TurbineMC,
which contains two mass-flow connectors, an exergy-
flow connector for the mechanical work delivered by
the turbine and the icon presentation of the turbine. The
general tubine model Basic is connected to the outer
connectors, finally the model is completed by joining
two property routines for air to the thermal state
connectors IdealExpansionState and InletState of Basic.

Fig.4 : Icon for model AirTurbine and internal view
with basic turbine model and two property models.

9 Subsystem

The package subsystem contains simplified models for
thermodynamic systems like solar collectors or cyclic
processes. These models should be used to complete
systems when the main interest of the simulation
doesn’t focus on the part modelled by the subsystem-
component.

10 Current Status and Conclusion

The development of TechThermo started during a
project dealing with fuel-cell systems and has taken
advantages of the experiences gained in this area. After
an initial period of theoretical considerations almost all
components identified as essential are implemented.
TechThermo is now applied in two different projects,
one dealing with high temperature thermal storage, the
other dealing with the dynamics of solarthermal steam
generation. Compared to first experiences with
Modelica for simulating thermodynamic systems, the
efficiency of the modelling activities could be improved
significantly thus showing the importance of a common
base library. At the moment TechThermo undergoes a
continuous improvement due to the practical
experiences in the projects. While the total number of
models in TechThermo should remain more or less
constant, future activities will concentrate on the
improvement of the numerical stability of the
components.

Fabricius S.M.O., Badreddin E. Modelica Library for Hybrid Simulation of Mass Flow ...

The Modelica Association 225 Modelica 2002, March 18−19, 2002

Modelica Library for Hybrid Simulation

of Mass Flow in Process Plants

S.M.O. Fabricius and E. Badreddin
Swiss Federal Institute of Technology Zurich (ETH), Switzerland

Laboratory for Safety Analysis

fabricius@lsa.iet.mavt.ethz.ch

Abstract

Operation, control and maintenance of large process
plants can be very energy and cost intensive. Opti-
mization of the involved technical, organizational and
dependent economic aspects is a non-trivial, multi-
criteria problem; solving it can be supported by dy-
namic plant modeling.
First principles, constitutive and empirical relations
are used to derive quasi-steady-state mathematical
models of fluid storage and flow for a selection of phys-
ical components as are typically installed in process
plants. Control logic, both on component and plant-
level, is integrated using high-level hybrid language
constructs of Modelica and in particular, extended
Petri net formalism. The resulting Modelica library
facilitates efficient composition of mass flow models
of potentially large and complex plants and allows for
simulative investigation of plant dynamics.

1 Introduction

Availability of process plants depends mainly on a com-
bination of the reliability of individual installed compo-
nents, the plant topology, the control system1 and on
the plant maintenance strategy and procedures. Tra-
ditional system analysis methods, as know from relia-
bility engineering, e.g., fault tree analysis (FTA), event
tree analysis (ETA), hazard and operability study (HA-
ZOP) and failure mode and event analysis (FMEA)
can lead to significant insight into the weak points of
a plant with respect to performance measures as re-
liability, availability, safety or profitability. However,
these methods lack force of expression when trying to
deal with highly dynamic systems or systems with ex-
tensive internal feedback loops. Collaboration with a
partner form industry–on topics of maintenance, fault
detection and monitoring of process plants–has lead to
the insight that performance analysis of complex pro-
cess plants needs to consider not only static aspects,
but also dynamic ones, not only technical, but also op-
erational, organizational and economic factors as well.

1Both automatic control and human operator interaction.

Petri nets are well suited for modeling of discrete-event
phenomena, and can be used beneficially to investigate
plant availability (as demonstrated e.g., in [Fa01]), but
are inherently far less convenient as a modeling formal-
ism when confronted with physical processes exhibiting
continuous-time behavior. In order to address all above
mentioned aspects of process plant performance, in-
tegrated hybrid2 dynamic modeling–unifying different
formalisms–is in need.
Modelica3, still rather new, with its multi-domain and
multi-formalism modeling capabilities, seems promis-
ing in this respect. It defines a physical object-oriented
modeling paradigm suitable for expressing hybrid be-
havior and offers respective high-level language syntax
and semantic. It supports hierarchy, reuse of model-
ing knowledge and provides an open standard, based
upon which, a couple of computer-based tools have al-
ready been created or have migrated to4. Several open,
standard Modelica libraries exist e.g., for electric, me-
chanic and hydraulic systems. Among other, currently,
a thermodynamics library called “Thermofluid” is be-
ing developed, see [Tu98], which could be very useful
for modeling of process plants in the future as well.
In this text, primarily, mass-flow dynamics in process
plants are to be investigated, and for this purpose, a
new, customized library is presented. It contains mod-
els of basic equipment needed for fluid–in particular
liquid–transport and storage as well as logic to control
the flow of material. The library considers the flow as
quasi-steady-state, i.e., no momentum balance is for-
mulated; the flow is assumed to reach steady flow con-
ditions instantly based on the current outer pressure
situation and internal pressure drop characteristic.
System-level dynamics are of main interest here, not
the very details of component behavior. This distin-
guishes it also from the available–partly commercial–
hydraulics library in Dymola, which focuses on hy-
draulics as used in control systems. Emphasis is on

2The term “hybrid” is used here to denote combined discrete-
event and continuous-time behavior.

3Modelica is a trademark of the Modelica Association
(http://www.modelica.org

4In this text, the tool “Dymola” is used; Dymola
is a registered trademark of Dynasim AB, Sweden,
http://www.dynasim.se

Modelica Library for Hybrid Simulation of Mass Flow ... Fabricius S.M.O., Badreddin E.

Modelica 2002, March 18−19, 2002 226 The Modelica Association

ease-of-use, scalability and extendibility. Models gen-
erated with the library can be used for experimen-
tal design studies, control scheme optimization, de-
bottle-necking, re-engineering of already commissioned
plants. The paper first discusses basic physics and
mathematics of modeling fluid flow components before
addressing implementation in Modelica and giving sev-
eral modeling and simulation examples.

2 Basic Physics and Mathe-
matics of Quasi-Steady-State
Fluid Flow

This section briefly describes conservation laws, consti-
tutive relations and phenomenological empirical rela-
tions as they apply to liquid storage and flow in equip-
ment as typically installed in process plants. Note,
liquid density ρ is considered constant throughout the
text.

2.1 Fundamental Relations for Liquid
Storage and Flow

The mass balance for liquid storage is

dM

dt
=

∑

i

ṁi (1)

(with total mass M contained within the reservoir and
in- and outflow rates ṁ) and the relation describing
pressure drop as a function of volumetric flow rate q is

∆p = f(q). (2)

The well know Bernoulli equation in its original form
relates mechanical energies of a fluid neglecting fric-
tion and considering the fluid as incompressible. It
can be extended to include friction (irreversible loss of
pressure head as energy dissipation) as well as addi-
tion of flow energy (e.g., by means of pumps or com-
pressors). The sum of pressure-, velocity-, elevation-,
friction- and pump-head remains constant along a flow
trajectory (eq. 3, subscripts fr and pu for “friction”
and “pump” respectively). According to the second
law of thermodynamics, there is a restriction on the
conversion direction of friction head, it cannot be con-
verted back into other heads without interaction with
the environment.

p

ρ
+

v2

2
+ gz +

∑
∆pfr +

∑
∆ppu = const. (3)

2.2 Fluid Reservoirs

For a container with constant cross section A, the liquid
level obeys

dh

dt
=

1
A

∑

i

qi. (4)

If liquid flows via a pipe and flange (velocity vpipe) into
a large5 vessel (see fig. 1), the velocity head of the in-
flowing fluid can be considered irreversibly lost due to
turbulent friction (see e.g., [Th99]), i.e., no pressure
is recovered by slowing (process inside the vessel) the
fluid to assumed flow velocity zero6 in the vessel itself7.

p_pipe
v_pipe

p_vessel

Figure 1: Inflow to a vessel

For inflow to a tank, extended Bernoulli can be formu-
lated as

pvessel = ppipe +
ρ

2
v2

pipe − ∆pfr,inlet. (5)

As indicated, the dynamic pressure is irreversibly lost
with inflow, therefore, eq. 6 and 7 are valid.

∆pfr,inlet =
ρ

2
v2

pipe (6)

pvessel = ppipe. (7)

Irreversible pressure loss involved with outflow of liquid
at a flange of a vessel can be formulated as

∆pfr,outlet = Kcon
ρ

2
v2

pipe, (8)

v_pipe
p_vesselp_pipe

smoothabrupt

Figure 2: Outflow from a vessel

and is strongly dependent on the geometric form of the
flange (see fig. 2). According to [Th99], the contraction
coefficient Kcon of an abrupt exit from the vessel to the
outflow pipe is Kcon,abrupt ≈ 0.5 whereas for smooth,
tapered outlets it is rather small Kcon,smooth ≈ 0.05.

5“Large” in the sense of the tank diameter being much larger
than the flange diameter.

6Velocity “far” away from the inlet to the tank where the
fluid is essentially not moving and undisturbed by turbulence
from the inflow process.

7This is assumed true for both fluid inlets below and above
the surface of the liquid contained in the vessel.

Fabricius S.M.O., Badreddin E. Modelica Library for Hybrid Simulation of Mass Flow ...

The Modelica Association 227 Modelica 2002, March 18−19, 2002

Pressure in the pipe and vessel relate for outflow as
follows

pvessel = ppipe +
ρ

2
v2

pipe + ∆pfr,outlet, (9)

which can alternatively be formulated with volumetric
flow rate q to

ppipe = pvessel − ρ

2Apipe
(1 + Kcon) q2

pipe. (10)

Note, the relations for pressures and flow velocities are
different for the cases of in- and outflow (eq. 7 and
10). In reality, a physical flange at a vessel can nor-
mally carry both in- and outflows depending on the
surrounding pressure situation. Therefore, in a tank
model, a case distinction must be made in order to
determine the pressure drop relation valid for the re-
spective current flow situation. In this text, flow into
a component is always taken positive (q > 0.0[m3/s]),
in accordance with Modelica conventions.

2.3 Flow Resistors

When a fluid flows through a flow conduit, frictional
effects lead to pressure drops along the flow trajec-
tory. In many flow armatures, e.g., pipe elbows and
bends, orifices, diffusers and nozzles, the relation be-
tween pressure drop and flow velocity can be described
by eq. 11 with pressure drop coefficient ζ as a function
of Reynolds number Re and the geometry of the flow
channel (eq. 12). In technical applications, ζ is often
assumed constant for varying flow rate for many flow
armatures.

dp = ζ · ρ

2
· v2 (11)

ζ = ζ(Re, geometry) (12)

2.3.1 Pipes

The pressure drop in a pipe is customarily described
by

∆p = λ · L

D
· ρ

2
v2 (13)

with pipe length L, pipe diameter D, flow velocity v
and pipe friction factor λ. Depending on the magni-
tude of Re in the pipe

Re =
|v|D

ν
, (14)

different relations are to be used for λ, see table 1.
The linear relation for laminar flow regime is

λlam =
64
Re

. (15)

Re flow regime; relation

Re < 2300 laminar; linear

2000 < Re < 4000 transient

Re > 4000 turbulent; e.g., Blasius, Colebrook
Prandtl/Karman/Nikuradse

Table 1: Flow regimes

In the turbulent region and for smooth pipes8, the Bla-
sius relation can be used (eq. 16). Colebrook, Kar-
man/Nikuradse and Prandtl/Nikuradse are all implicit
relations, less handy to employ and are therefore not
further discussed here.

λturb = 0.364 · Re−
1
4 . (16)

2.3.2 Valves

A valve shall allow to control fluid flow by changing the
valve opening and as a consequence the flow resistance
across the valve. Usually the coefficients kv and kvs are
used with valves; kv indicates how much fluid–usually
in [m3/h]–passes the valve at an outer pressure gradi-
ent of ∆p = 1 [bar] at a certain opening position of the
valve and kvs indicates the flow when the valve is fully
open. The relation for the fully open valve is given in
eq. 17.

q = kvs ·
√
|∆p| · sign(∆p) (17)

A continuous control valve shall enable to control fluid
flow over the whole continuous range of opening posi-
tions possible in the valve. kv in this case is a function
(eq. 18) of the valve opening position x (normalized
to [0..1]) and kvs and has a characteristic depending
on the type and construction of the control valve (e.g.,
linear, equal-percentage).

kv = kv(kvs, x) (18)

Power control valves are driven by valve positioners
(servo), which can be described by a first order ex-
ponential lag with time delay τ , relating actual valve
travel x to demanded valve travel xd by

τ
dx

dt
= −x + xd. (19)

2.4 Pumps

Pumps can be seen as compensators for pressure drops
to drive a fluid through its flow channel. Two ideal-
ized pump characteristics are shown in fig. 3 and 4. An
ideal flow source is an abstraction of the behavior of
volumetric pumps (piston, displacement pump), which
have a very steep relation between pressure increase
and flow across the pump. The idealized characteristic

8Most commercial pipes for process industry applications can
normally be considered “smooth”, if not, the Colebrook relation
must be used which accounts for relative roughness ε/D.

Modelica Library for Hybrid Simulation of Mass Flow ... Fabricius S.M.O., Badreddin E.

Modelica 2002, March 18−19, 2002 228 The Modelica Association

is simply qpump = qsource, independent of the pressure
gradient. The other idealized representation is that of
an ideal pressure source (centrifugal pump type). Its
parameter can be set as height ∆hsource (head rise),
which determines the pressure rise in the pump (inde-
pendent of the flow rate).

∆ppump = ∆hsource · ρ · g (20)

dp

q
q_source

Figure 3: Flow source

q

dp

dp_source

Figure 4: Pressure source

More detailed and realistic pump models are described
in the literature and not explicitly discussed here due
to lack of space. A model for a centrifugal pump is
e.g., presented in [Ge85] as a first order model with
nonlinear algebraic constraint equations.

3 Modelica Library Implemen-
tation

Having described the basic physics, this section is con-
cerned with fluid flow component modeling to created
a Modelica library. Its structure is organized in com-
pliance with Modelica rules, grouping interfaces, vari-
ous component types and example models in different
packages, see fig. 5.

Figure 5: Library structure

3.1 Connector, Boundary Conditions
and Fluid Properties

A connector called “Flange” (fig. 6) defines the poten-
tial variable p for pressure and the flow variable q for
volumetric flow rate:

connector Flange
SI.Pressure p;

flow SI.VolumeFlowRate q;
end Flange

Currently, fluid properties are considered constant for
all library components. The respective parameters are
defined in an abstract class and given here, for the case
of water:

partial model Fluid
constant SI.Density rho=1000.0;
constant SI.KinematicViscosity nu=1.0e-6;

end Fluid

Boundary conditions can either be set for pressure or
for flow, the class icons are shown in fig. 7.

Figure 6: Connector Figure 7: Boundaries

3.2 Flow Resistors

The components presented in this subsection are all
modeled as purely resistive, i.e., no mass capacitance
and–as indicated earlier–no momentum balance is for-
mulated.

3.2.1 Pipes

With eq. 13 for pressure drop in a pipe and with eq.
15 for friction factor λlam, a linear relation for pressure
drop ∆plam in laminar pipe flow results as

∆plam = klam · v (21)

with coefficient

klam = 0.32 · D−2 · νLρ. (22)

For turbulent flow, the respective non-linear relation is

∆pturb = kturb · sign(v) · |v|7/4 (23)

with

kturb = 0.182 · D−5/4 · ν1/4Lρ. (24)

The question of how to model the transient region
(Re = [2300..4000]) arises. In reality, the flow will
change from laminar to turbulent depending on the
particular pipe geometry, flow disturbances, surface
particularities in a somewhat random and discontin-
uous fashion. Here, a linear model is used to connect
laminar to turbulent flow behavior, according to eq. 25
and 26 for positive and negative flow velocity respec-
tively9.

9Of course, other approaches are possible as well, in particular
some with “smooth” transfers, but this linear model is feasible
for the investigation purposes in mind.

Fabricius S.M.O., Badreddin E. Modelica Library for Hybrid Simulation of Mass Flow ...

The Modelica Association 229 Modelica 2002, March 18−19, 2002

∆ptrans = −k1trans + k2trans · v (25)

∆ptrans = k1trans + k2trans · v (26)

The two coefficients k1trans and k2trans can be calcu-
lated satisfying the conditions (eq. 27, 28) at the flow
regime transition points. Depending on the current
flow velocity, the flow regime is determined in the pipe
model using the “if-statement” of Modelica for auto-
matic detection of transition points (state events).

∆plam|Re=2300 = ∆ptrans|Re=2300 (27)

∆ptrans|Re=4000 = ∆pturb|Re=4000 (28)

If the pipe connects flanges of different geographical el-
evations, an additional term ∆pg is included in the pipe
model to account for gravitational pressure difference

∆pg = ρg∆z. (29)

Figure 8: Horizontal and elevated pipe; bend

Fig. 8 displays the pipe component icons. The arrow is
intended to indicate the default positive flow direction
of the fluid in the pipe. This, in order to facilitate set-
ting reasonable starting values for flow velocity to help
the execution algorithms find consistent initial values
at the beginning of a simulation.

3.2.2 Bends

The pressure drop across pipe bends (fig. 8, on the
right) can be formulated as multiples of velocity heads
(subscript “b” for bend)

∆pfr,b = kbf
ρ

2
v2

b . (30)

[Th99] lists some numerical values for kb, see table 2.

type of bend frictional loss kb

Standard 45◦ bend 0.35

Standard 90◦ bend 0.75

180◦ bend 2.2

Table 2: Examples of friction factors for pipe bends

3.2.3 Valves

Valves for different valve characteristics are modeled.
The one depicted in fig. 10 has a linear characteristic
kv = kvs · x (fig. 9) with a first order servo for the
valve positioner. Note, to avoid numerical problems,
the valve is modeled to always have a small leakage10,
even for an input signal demanding for complete valve
closure. The respective minimum opening valve travel
xmin can be set to zero if desired and if feasible with
the system model topology.

x

kvs

1.00.0

at dp=1 [bar]
kv [m3/h]

Figure 9: Linear char. Figure 10: Valve

3.2.4 Other Flow Resistors

An idealized linear (eq. 31) and a general quadratic
resistor (eq. 32) are implemented as well.

∆plin = k · v (31)

∆pgen = ζ
ρ

2
v2

bf . (32)

The linear resistor can be useful for simulation test
purposes, e.g., when nonlinearities in a model cause
problems calculating consistent initial conditions. The
pressure loss coefficient ζ can be chosen in order to
model orifices, venturi pipes or any other armature for
which the pressure loss coefficient is known. Standard
texts on fluid dynamics, e.g., [Yo01] or publications
from flow armature manufacturers list loss factors for
different forms of armatures.

3.3 Pumps

Fig. 11 shows icons of pumps modeled as ideal flow and
pressure source as well as a more detailed centrifugal
pump model.

Figure 11: Pump models

10Possibility of small leakage is also implemented in other ar-
matures allowing otherwise for complete flow interruption.

Modelica Library for Hybrid Simulation of Mass Flow ... Fabricius S.M.O., Badreddin E.

Modelica 2002, March 18−19, 2002 230 The Modelica Association

3.4 Tanks

A variety of tanks have been modeled. Here, a tank
with constant cross section, open to atmosphere with a
flange at the top and one at the bottom is illustrated.
The pressure distribution in such a tank is given in
eq. 33 (liquid level h, vertical elevation z in the liquid
space, pressure ps at the surface of the liquid).

p(z) = (ps + ρgh) − 1
ρgh

· z (33)

For an open tank, surface pressure equals ambient pres-
sure ps = p∞. The pressure at the bottom of the open
tank therefore is

p|z=0 = p∞ + ρgh. (34)

Figure 12: Open tank Figure 13: Sensors

Fig. 12 gives a graphical representation of this tank
model. Output connectors are added to signal tank
level (LI) as well as low and high level alarms (Boolean
signals; LAL, LAH). Note, this tank model imposes no
constraints on its level and does allow both liquid in-
and outflow at its lower flange, depending on the gra-
dient of inner to outer pressure conditions. Clearly, the
upper flange is always above the liquid surface in the
tank (unless the tank is completely full), and therefore,
no liquid outflow is possible at the top.

3.5 Additional Models

A variety of additional component models were cre-
ated, among them, sensors (fig. 13 shows flow and
pressure indicators, realized with or without sensor dy-
namics), no-return valves (analog to the diode in the
electric domain), various switches and commutators to
control fluid routing, pipe diameter changes, tanks with
constraints on levels and flow directions at it’s flanges,
pressurized tanks and relief valves. Some of the models
are thoroughly tested, others have a somewhat experi-
mental character.

4 Modeling and Simulation Ex-
amples

A few–rather simple–models shall first be given to
demonstrate the basic functionality of the library, be-
fore progressing to more comprehensive applications.

4.1 Introductory Demonstration Mod-
els

Tank Emptying Fig. 14 shows a model consisting
of a tank with a pipe connected to its lower flange.
Boundary conditions set the pressure at the outlet of
the pipe to ambient pressure and the inflow rate at the
upper flange to zero. Initial tank level is hs = 5.0m. As
expected, during simulation, the tank level decreases
and it can be seen in fig. 15 that the tank becomes
empty after about 6000s (pipe of 4cm inner diameter
and 10m length).

Figure 14: Model one Figure 15: Emptying

Tank Level Equalization In the next model, two
tanks of the same dimensions are connected with a pipe
at their lower flanges (fig. 16). Initial levels are h1,s =
8.0m and h2,s = 2.0m. There is no inflow to the tanks
at their upper flanges. During simulation, the levels
approach and equalize, as can be seen in fig. 17.

Figure 16: Model two Figure 17: Equalization

Flow Inversion in a Pipe The model of fig. 16 is
used again. This time, rather strong liquid inflow at
the upper flange of tank 2 is imposed as a step q2,in =
0.01m3/s at time t = 1000s. Fig. 18 and 19 show the
tank levels, the inflow step and the flow rate in the
connecting pipe. As can be seen, the behavior of the
model is initially identical to the one illustrated above,
after 1000s, the level in tank 2 increases faster due to
the liquid added at its upper flange and surpasses the
level of tank 1 after about 1550s, at which point in
time the flow in the pipe is inverted. The simulation
runs without numerical trouble through the point of
flow inversion.

Fabricius S.M.O., Badreddin E. Modelica Library for Hybrid Simulation of Mass Flow ...

The Modelica Association 231 Modelica 2002, March 18−19, 2002

Figure 18: Tank levels Figure 19: Step, flow

4.2 Laboratory Test-bed

A somewhat larger and more complex model is made
of a laboratory test-bed which is currently installed
at our institute. It consists of three tanks, a variety
of connecting horizontal and vertical pipe segments,
a pump and four continuous control valves. Fig. 20
depicts the PI11 flow diagram, fig. 21 gives a 3-D view
(CAD-draw from the planning phase) and fig. 22 shows
the test-bed in its recent early commissioning phase12.
A respective Modelica/Dymola model is shown in fig.
23.

Figure 20: PI scheme of test-bed

Figure 21: 3-D picture of the test-bed

For control scheme investigation, one flow (“FC” for
flow control) and two level (“LC”) controllers are in-

11Process and Instrumentation.
12The design in the flow diagram and the actual realization of

the test-bed differ somewhat, but this is not of importance here.

Figure 22: Test bed: Commissioning phase

cluded in the model (PID-type controllers with lim-
ited output and anti-windup from the standard Mod-
elica library with continuous control valves as actua-
tors). The valves all have positioning dynamics (1st-
order lag) with time constants τ = 1s (fast valve
with pneumatic drive) and kvs = 40m3/s for LC and
kvs = 15m3/s for FC. LC shall keep the levels in the
upper tanks “Tleft” and “Tright” at their desired set-
points (Tleft,sp = 0.4m, Tright,sp = 0.5m). FC is used
to control the flow rate through the pump (centrifu-
gal pump, modeled as an ideal pressure source with
hydraulic head of ∆hpump = 80m). After some sim-
ulation experiments, PID control parameters (gain k,
integrative and derivative time constants Ti and Td)
were chosen as indicated in table 3.

LC k 50
Ti 5
Td 0.1

FC k 100
Ti 5
Td 0.1

Table 3: Controller parameters

Fig. 24 and fig. 25 show the upper tank levels and the
respective control valve positions for a simulation ex-
periment of 400s duration. Initial levels of the upper
tanks are set to hleft,s = 0.3m and hright,s = 0.6m.
A step is imposed on the set-point of the flow con-
troller, at time t = 200s (increase from qsp1 = 0.00175
to qsp2 = 0.00275m3/s). With the controller parame-
ters given above, the levels are kept at their set-points
in a satisfactory fashion.
It can be seen in fig. 23, the system topology (as illus-
trated in the PI flow diagram and on the fotograph) is
maintained in the Modelica model. The model presents
itself in a graphical manner so that its structure can be
very quickly and intuitively understood. This is inher-
ent to the physical object-oriented modeling paradigm

Modelica Library for Hybrid Simulation of Mass Flow ... Fabricius S.M.O., Badreddin E.

Modelica 2002, March 18−19, 2002 232 The Modelica Association

Figure 23: Dymola model of testbed

Figure 24: Levels in the upper tanks

of Modelica and regarded as very beneficial. The effort
necessary to compose the test-bed model with the li-
brary presented was minor. Compare this to the work-
load if the modeler had to analytically and manually
derive the overall system equations! Such a proceed-
ing would probably be time-consuming and error prone
even for this still rather simple three-tank model, espe-
cially because there is non-linearities and hybrid phe-
nomena to account for as well. The library therefore
can greatly reduce the modeling burden and increase
efficiency of carrying out engineering design tasks (in

Figure 25: Level control valve positions

this case, controller design and investigation of dy-
namic behavior).

Furthermore, it has been shown (e.g., in [Ti00]) that
the Modelica modeling approach allows to scale models
to many thousands, if not hundreds of thousands of
defining equations. This is of great importance if trying
to model large and complex systems.

The presented test-bed is not yet operational in real-
ity; it will be interesting to validate the model against
experimental data and possibly refine it at a later time.

Fabricius S.M.O., Badreddin E. Modelica Library for Hybrid Simulation of Mass Flow ...

The Modelica Association 233 Modelica 2002, March 18−19, 2002

Figure 26: Plant model top view

4.3 Modeling of Mass Flow in a Process
Plant

For purposes of maintenance management in process
plants, it is advantageous to have a good knowledge of
plant dynamics. Process plants often can be consid-
ered as interconnected flow segments where the linking
elements are vessels13. Since the flow segments are de-
coupled from each other to some degree (depending on
the sizes of intermediate buffer vessels as well as on the
throughput capacities of flow segments), it can be ben-
eficial to take mass flow dynamics into account when
defining maintenance strategies and scheduling main-
tenance tasks.
Fig. 26 illustrates a model of a plant with both a batch
and continuous part, consisting of a tank with raw ma-
terials, a reactor, a buffer tank enabling synchroniza-
tion between batch and continuous part, two interme-
diate tanks in the continuous part and a large storage
vessel for the final product. Note, it is not necessary
to see all the details in fig. 26, rather, the aim is to
illustrate the overall plant structure and the modeling
concept.

13An abstraction into flow and storage elements as basic mod-
eling blocks is extensively used in systems dynamics, e.g., see
[Fo61].

The loading of the reactor with raw material is orga-
nized by control logic in the block “Loading” and the
transfer of the reactor content after reaction is com-
pleted is controlled by block “Transfer”; the internals
of the latter are shown fig. 27. As can be seen, the con-
trol logic is realized with Petri net formalism, based on
the Modelica library described in [Mo98]. In particular,
the reaction duration is modeled as delayed transition
firing (transition “TReactionDelay”)14.

Figure 27: Transfer control logic

Two types of flow segments are defined, namely, a flow
and a level controlled variant (“FCPlantSeg”, “LC-
PlantSeg”). Without going into details, it shall be said

14The Modelica Petri net library was extended in this context,
supporting timed stochastic Petri nets and places with multiple
token capacity, this aspect will be published in the near future.

Modelica Library for Hybrid Simulation of Mass Flow ... Fabricius S.M.O., Badreddin E.

Modelica 2002, March 18−19, 2002 234 The Modelica Association

here, the segments can contain whatever non-storage li-
brary component presented so far, but normally consist
of at least a flow driver (pump), flow resistor (process
steps and pipes) as well as control logic. The flow seg-
ment blocks receive measured flow or level signals, ref-
erence values as well as level alarms from neighboring
vessels as inputs. In addition, an external Boolean sig-
nal can be supplied to indicate flow interruption, which
can be useful to include deterministic or stochastic
component and subsystem failure models in the plant
model.
A simulation experiment with a flow interruption in
the middle flow segment (“LCPlantSeg1”) is carried
out for a total simulation duration of 3000 time units.
Fig. 28 shows the resulting tank levels, it can be seen
how the level in the reactor and the subsequent buffer
tank fluctuate. As well, the effect and propagation of
the flow interruption (1000 to 1800 time units) in the
plant is shown.

Figure 28: Tank levels in the plant

Plant control strategy, flow segment throughput capac-
ities and tank sizes all influence the sensitivity of the
plant to interruptions (e.g., caused by component fail-
ures or maintenance action) in flow segments , which
can be analyzed with models as just described. The
situation of course is yet more interesting if internal
feedback loops are present in the plant.

5 Conclusion and Outlook

A library for mass flow simulation in process plants
was presented and it has been shown how it can be
used to efficiently generate models of possibly large and
complex systems.
The presented plant models could be extended
to include important energy exchanging equipment
(heaters, coolers), more detailed component models as
well as stochastic Petri nets for component failure and
repair processes.
An important question to be dealt with in the future, is
how to efficiently handle the great bandwidth of char-

acteristic times in a system such as a process plant.
E.g., components often have life-times (between com-
ponent failures or preventive overhauls) in the range of
month to years, whereas the time constants of buffer
tanks are minutes to hours, the controller and actua-
tor dynamics seconds to minutes. If models were to be
used for maintenance strategy optimization accounting
for plant mass flow dynamics, it is desirable to have
models which allow for rapid progress in simulation
time for normal, nominal system behavior, switching
to others, more detailed ones, in the case of faults or
failures; multi-mode models are needed for this.
Another non-trivial topic is initial value calculation, es-
pecially as here for the case of quasi-steady state flow
models, where nonlinear algebraic equations must be
solved for iteratively, to calculate consistent initial con-
ditions. The tool Dymola seems to be quite sensitive to
choice of starting values, which is inconvenient in large
models. It is hoped, the tool will be further equipped
with even stronger algorithms in the future to support
the simulation analyst in this respect.

References

[Ge85] Geiger G. (1985). Technische Fehlerdiagnose
mittels Parameterschätzung und Fehlerklassifika-
tion am Beispiel einer elektrisch angetriebenen
Kreiselpumpe. VDI Verlag, Düsseldorf, Germany

[Fa01] Fabricius S.M.O., Badreddin E. (2001).
Stochastic Petri Net Modeling for Availability
and Maintainability Analysis. Proceedings of 14th
COMADEM, September 2001, Manchester, UK

[Fo61] Forrester J.W. (1961). Industrial Dynamics.
M.I.T. Press and John Wiley & Sons, New York,
U.S.A.

[Mo98] Mosterman P.J., Otter M., Elmqvist H.:
(1998). Modeling Petri Nets as Local Constraint
Equations for Hybrid Systems Using Modelica.
Summer Computer Simulation Conference, July
19-22, S. 314-319, 1998 Reno, Nevada, U.S.A.

[Ti00] Tiller M., Bowles P. et al. (2000). Detailed Ve-
hicle Powertrain Modeling in Modelica. First int.
Modelica Workshop 2000, October 23 - 24, 2000,
Lund University, Lund, Sweden

[Th99] Thomas P. (1999). Simulation of Industrial
Processes for Control Engineers. Butterworth-
Heinemann, Oxford, UK

[Tu98] Tummescheit H., Eborn, J. (1998). Design of
a Thermo-Hydraulic Model Library in Modelica.
The 12th European Simulation Multiconference,
ESM ’98, June 16-19, 1998, Manchester, UK

[Yo01] Young D.F., Munson B.R., Okiishi T.H. (2001).
A brief introduction to fluid mechanics. John Wi-
ley & Sons, New York, U.S.A.

Jensen J.M., Tummescheit H. Moving Boundary Models for Dynamic Simulations of Two−Phase Flows

The Modelica Association 235 Modelica 2002, March 18−19, 2002

Moving Boundary Models
for Dynamic Simulations of Two-Phase Flows

Jakob Munch Jensen† and Hubertus Tummescheit‡

†Department of Mechanical Engineering
Technical University of Denmark

jmj@mek.dtu.dk

‡Department of Automatic Control
Lund University, Sweden
hubertus@control.lth.se

Abstract

Two-phase flows are commonly found in components
in energy systems such as evaporators and boilers. The
performance of these components depends among oth-
ers on the controller. Transient models describing the
evaporation process are important tools for determin-
ing control parameters, and fast low order models are
needed for this purpose. This article describes a gen-
eral moving boundary (MB) model for modeling of
two-phase flows.
The new model is numerically fast compared to dis-
cretized models and very robust to sudden changes in
the boundary conditions. The model is a 7th order
model (7 state variables), which is a suitable order for
control design. The model is also well suited for open
loop simulations for systems design and optimization.
It is shown that the average void fraction has a signifi-
cant influence on the system response. A new method
to calculate the average void fraction including the in-
fluence of the slip ratio is given. The average void
fraction is calculated as a symbolic solution to the in-
tegral of the liquid fraction profile.

1 Introduction

First principle mathematical models of dynamical sys-
tems are made for a range of purposes, but one of
the most common ones is to develop and verify con-
trollers. The complexity of the model should be in ac-
cordance with the purpose of the model and this sim-
ple principle suggests that models for control design
should be of low order and preferably easy to linearize.
Unfortunately, physical systems are not sticking to this
class of models, on the contrary: most mathematical
first principle models are of distributed nature. The
natural way to describe such a model is partial differ-

ential equations (PDE). PDE are infinite dimensional
and their common numerical approximations, spatially
discretized PDEs using one of the many possible dis-
cretization schemes, are of high order and without fur-
ther model reduction not well suited for control de-
sign. The problem of control-oriented modeling is to
derive a model which at the same time fulfills the re-
quirements of control theory and characterizes those
features of the system which are needed to satisfy the
controller specification.
Moving boundary models for two phase flows in heat
exchangers are a good example of low order control
design models. They can be used for evaporators, con-
densers and steam generators. Their only disadvan-
tage is that a number of mathematically rather different
models arise depending on the operating conditions of
the heat exchanger and the fluid conditions at the inlet
of the equipment.
The model presented in this paper covers the most gen-
eral case of two-phase heat exchangers with subcooled
liquid at the inlet and superheated vapour at the outlet.
This flow configuration is commonly found in thermal
power systems, and the model can easily be extended
to condensers and heat exchangers with subcooled liq-
uid at the inlet and two-phase at the outlet. The special
case of dry-expansion evaporators for refrigeration has
been derived in [6].
The idea of a moving boundary model is to dynami-
cally track the lengths of the different regions in the
heat exchanger: the length from the inflow to the on-
set of boiling and the length of the two phase region.
Simulation results are given for an evaporator in an
organic rankine cycle, which utilizes the waste heat
from a gas turbine in a small power plant. Other refer-
ences to MB models include B.T. Beck that describes
a MB-model for incomplete vaporization [2], a two re-
gion MB-model by He [4] and a three region model by
Willatzen [7].

Moving Boundary Models for Dynamic Simulations of Two−Phase Flows Jensen J.M., Tummescheit H.

Modelica 2002, March 18−19, 2002 236 The Modelica Association

Roman and Greek Letters

A area h enthalpy
Cv nozzle coef. ṁ mass flow
Cw heat cap. of wall q heat flux
D diameter t time
L length v velocity
S slip ratio x mass fraction
Vcyl cylinder volume z length coordinate

α heat transfer coef. ρ density
η liquid fraction ω pump speed
ηv volumetric efficiency Φ dissipation function
γ void fraction Ψ vapour generation
µ density ratio

Subscripts

1 subcooled i inner
2 two-phase in inlet
3 superheated l saturated liquid
12 interface 1-2 o outer
23 interface 2-3 out outlet
amb ambient r refrigerant
c condensation w wall
g saturated gas

Superscripts�
flux per length

� �
flux per area� � �

flux per volume

Table 1: Notation used in the Moving Boundary Model

2 Governing Equations

The general differential mass balance is

∂ρ
∂t

� ∇ � � ρ �v � 	 0 (1)

which for the one-dimensional case can be written as

∂Aρ
∂t

� ∂ṁ
∂z

	 0 (2)

The general differential energy balance is

∂ρh
∂t

� ∇ � � ρh �v � 	
 ∇ � �q � �
 q � � � � Dp
Dt

� Φ (3)

which can be simplified by neglecting the axial con-
ductivity, radiation and the viscous stresses and assum-
ing one dimensional flow:

∂ � Aρh
 Ap �
∂t

� ∂ṁh
∂z

	 πDα � Tw
 Tr � � (4)

A simplified differential energy balance for the wall is
achieved by setting all flow terms in (3) equal to zero
and neglecting the axial conductivity.

CwρwAw
∂Tw

∂t
	 αiπDi � Tr
 Tw � � αoπDi � Tamb
 Tw �

(5)

Equations (2), (4) and (5) are the differential balance
equations, which will be integrated over the three re-
gions to give the general three region lumped model
for a two-phase heat exchanger. A schematic of the
model is given in Figure 2. It is assumed in the fol-
lowing analysis that the change in pressure along the
evaporator pipe is negligible.

Figure 1: Schematic of the Three Region MB-model.
1 : subcooled, 2 : two-phase and 3 : superheated.

2.1 Mass Balance for the Subcooled Region

Integration of the mass balance (2) over the subcooled
region gives� L1

0

∂ � Aρ �
∂t

dz
� � L1

0

∂ṁ
∂z

dz 	 0 (6)

Applying Leibniz’s rule (see Appendix A) on the first
term and integrating the second term give for a con-
stant area pipe:

A
d
dt

� L1

0
ρdz
 Aρ � L1 � dL1

dt
�

ṁ12
 ṁin 	 0 � (7)

The density at the interface ρ � L1 � is equal to the satu-
rated liquid density ρl . Pressure and mean enthalpy h̄1

define the state of the subcooled region where

h̄1 	 1
2

� hin
�

hl � (8)

The inlet enthalpy hin is known from the boundary
conditions and hl is a function of the pressure. The
mean density in the subcooled region is approximated
by

ρ̄1 	 1
L1

� L1

0
ρdz � ρ � p � h̄1 � (9)

The mean temperature is calculated from the same
states as T̄1 � T � p � h̄1 � . The mass balance for the sub-
cooled region can be rewritten as

A � � ρ̄1
 ρl � dL1

dt
�

L1
dρ̄1

dt � 	 ṁin
 ṁ12 (10)

Jensen J.M., Tummescheit H. Moving Boundary Models for Dynamic Simulations of Two−Phase Flows

The Modelica Association 237 Modelica 2002, March 18−19, 2002

The term dρ̄1 � dt is calculated using the chain rule:

dρ̄1

dt
� ∂ρ̄1

∂p

���
h

dp
dt

� ∂ρ̄1

∂h̄1

���
p

dh̄1

dt

� � ∂ρ̄1

∂p

���
h

� 1
2

∂ρ̄1

∂h̄1

���
p

dhl

dp � dp
dt� 1

2
∂ρ̄1

∂h̄1

���
p

dhin

dt

(11)

The term dhin � dt is determined from the boundary
conditions to the heat exchanger model. The expres-
sion for dρ̄1 � dt is inserted into the mass balance (10),
such that the final mass balance for the subcooled re-
gion reads:

A � � ρ̄1 � ρl � dL1

dt
�

L1 � ∂ρ̄1

∂p

���
h

� 1
2

∂ρ̄1

∂h̄1

���
p

dhl

dp � dp
dt� 1

2
L1

∂ρ̄1

∂h̄1

���
p

dhin

dt � � ṁin � ṁ12 �
(12)

2.2 Energy Balance for the Subcooled Region

Integration of the energy balance (4) over the sub-
cooled region gives	 L1

0

∂ � Aρh � Ap �
∂t

dz
� 	 L1

0

∂ṁh
∂z

dz

� 	 L1

0
πDα � Tw � Tr � dz � (13)

Applying Leibniz’s rule on the first term and integrat-
ing the other terms give for a constant area pipe and a
constant heat transfer coefficient α

A
d
dt

	 L1

0
ρhdz � Aρ � L1 � h � L1 � dL1

dt
� AL1

dp
dt�

ṁ12hl � ṁinhin � πDiαi1L1 � Tw1 � T̄r1 � � (14)

The first two terms are evaluated as

d
dt

	 L1

0
ρhdz � ρ � L1 � h � L1 � dL1

dt� d
dt

� ρ̄1h̄1L1 � � ρlhl
dL1

dt� � 1
2

ρ̄1 � hin
�

hl � � ρlhl � dL1

dt� 1
2

L1 � ρ̄1
� 1

2
� hin

�
hl � ∂ρ̄1

∂h̄1

���
p � dhin

dt� 1
2

L1 � ρ̄1
dhl

dp
� � hin

�
hl �

� ∂ρ̄1

∂p

���
h

� 1
2

∂ρ̄1

∂h̄1

���
p

dhl

dp � � dp
dt

�

(15)

where ρ̄1h̄1
 ρ1h1 � � L1
0 ρhdz. The above equation

(15) is inserted into the energy balance (14), which
gives the final energy balance for the subcooled region:

1
2

A � � ρ̄1 � hin
�

hl � � 2ρlhl � dL1

dt� � ρ̄1L1
� ∂ρ̄1

∂h

���
p � dhin

dt�
L1 � ρ̄1

dhl

dp
� � hin

�
hl � �

� ∂ρ̄1

∂p

���
h

� 1
2

∂ρ̄1

∂h

���
p

dhl

dp
� 2 � � dp

dt 	� ṁinhin � ṁ12hl
� πDiL1αi1 � Tw1 � T̄r1 � �

(16)

2.3 Mass and Energy Balances for the Two-
Phase and Superheated Regions

The mass and energy balances are integrated over the
two-phase region and the superheated region using the
same procedure as for the subcooled region. The equa-
tions are derived in detail in Appendix B.
The flow in the two-phase region is assumed to be ho-
mogeneous at equilibrium conditions with a mean den-
sity of ρ̄ � γ̄ρg

� � 1 � γ̄ � ρl , where the void fraction is
defined as γ � Ag � A. The average void fraction is de-
fined as γ̄ � 1

L2
� L1
 L2

L1
γdz and is assumed to be invari-

ant with time. A detailed model of the calculation of
the void fraction is derived in section 2.5. The mass
balance for the two-phase region is

A � � ρl � ρg � L1

dt
� � 1 � γ̄ � � ρl � ρg � dL2

dt�
L2 � γ̄

dρg

dp
� � 1 � γ̄ � dρl

dp � dp
dt � � ṁ12 � ṁ23

(17)

and the energy balance for the two-phase region is

A � L2 � γ̄
d � ρghg �

dp
� � 1 � γ̄ � d � ρlhl �

dp
� 1 � dp

dt� � γ̄ρghg
� � 1 � γ̄ � ρlhl � dL1

dt� � � 1 � γ̄ � � ρlhl � ρghg � dL2

dt� ṁ12hl � ṁ23hg
� πDiαi2L2 � Tw2 � Tr2 �

(18)

The derivative of the properties at the phase bound-
aries are written in a short notation and can be rewrit-
ten as e.g. d � ρghg � � dp � hg � dρg � dp � � ρg � dρg � dp � .
Both d � ρghg � � dp and d � ρlhl � � dp can be calculated

Moving Boundary Models for Dynamic Simulations of Two−Phase Flows Jensen J.M., Tummescheit H.

Modelica 2002, March 18−19, 2002 238 The Modelica Association

from the pressure. The mass balance for the super-
heated region reads:

A � L3 � 1
2

∂ρ̄3

∂h̄3

���
p

dhg

dp
� ∂ρ̄3

∂p

���
h �

dp
dt

� ρg � ρ̄3 � dL1

dt
� � ρg � ρ̄3 � dL2

dt� 1
2

L3
∂ρ̄3

∂h̄3

���
p

dhout

dt � � ṁ23 � ṁout �
(19)

The energy balance for the superheated region is given
by

A � � ρghg � 1
2

ρ̄3 � hg
�

hout � � � dL1

dt
� dL2

dt ��
L3 � 1

2
� hg

�
hout � � 1

2
∂ρ̄3

∂h̄3

���
p

dhg

dp
� ∂ρ̄3

∂p

���
h �� 1

2
ρ̄3

dhg

dp
� 1 � dp

dt

� 1
2

ρ̄3L3
� 1

4
∂ρ̄3

∂h̄3

���
p

� hg
�

hout � L3 �
dhout

dt� ṁ23hg � ṁouthout
� πDiαi3L3 � Tw3 � T̄r3 �

(20)

The mean properties of the superheated region are
calculated in the same way as in the subcooled re-
gion. Thus h̄3 � 0 � 5 � hg

�
hout � , ρ̄3 	 ρ � p
 h̄3 � and

T̄r3 	 T � p
 h̄3 � .

2.4 Energy Balance for the Wall Regions

The energy balances for the walls are derived. Integra-
tion of the wall energy equation (5) from α to β gives� β

α
CwρwAw

∂Tw

∂t
dz � � β

α
αiπDi � Tr � Tw � dz

� � β

α
αoπDi � Tamb � Tw � dz

(21)

Applying Leibniz’s rule, assuming constant wall prop-
erties give and rearranging gives the general energy
balance for a wall region:

CwρwAw � � β � α � dTw

dt
� � Tw � α � � Tw
 dα

dt� � Tw � Tw � β �
 dβ
dt � � αiπDi � β � α � � Tr � Tw
� αoπDo � β � α � � Tamb � Tw
 �

(22)

For the wall region adjacent to the subcooled region
α � 0 and β � L1, which gives

CwρwAw � L1
dTw1

dt
� � Tw1 � Tw � L1 �
 dL1

dt �� αi1πDiL1 � Tr1 � Tw1
 � αoπDoL1 � Tamb � Tw1

(23)

The wall temperature in the model is discontinuous at
L1 giving

Tw � L1 � � Tw2 for
dL1

dt � 0

Tw � L1 � � Tw1 for
dL1

dt � 0
(24)

Similar expressions are derived for the walls adjacent
to the two-phase and the superheated regions see Ap-
pendix B. Typically in the literature a simplified mean
value for Tw � L1 � has been used, which seems attrac-
tive in order to simplify the model see e.g. [4] and [7].
Simulations show that the response times for the sys-
tem for some test conditions depend significantly on
the expression for Tw � L1 � , and the full equations given
by (23) and (24) should therefore be used.
The general three region moving boundary model is
described by the mass and energy balances for the
flow stated in equations (12), (16), (17), (18), (19) and
(20) and the energy balances for the wall regions as
stated in equations (23), (49) and (51). In addition the
two discontinuous equations for the wall temperatures
as stated in (24) and (50) are needed. This equation
system contains 9 equations with the 7 state variables:� L1
 L2
 p
 hout
 Tw1
 Tw2 and Tw3 � . The variable hin,
which also appears differentiated, is calculated as a
boundary condition and is thus not included in the
state variables for the MB-model. Dependent variables
can be calculated from the state variables and include:� ρ̄1
 ρl
 ρg
 ρ̄3
 ∂ρ̄1 � ∂h̄1 � p
 ∂ρ̄1 � ∂p � h
 dρl � dp
 dρg � dp

∂ρ̄3 � ∂h̄1 � p
 ∂ρ̄3 � ∂p � h
 h̄1
 hlhg
 h̄3
 dhl � dp
 dhg � dp
 T̄r1

T̄r2
 T̄r3
 ṁ12
 ṁ23 � . Parameters are con-
stant during simulation and include:� A
 Di
 Do
 αi1
 αi2
 αi3
 αo
 γ̄
 L
 Tamb
 Cw
 ρw
 Aw � . The
boundary models calculate the variables � ṁin
 ṁout
 hin

and dhin � dt � , which are boundary conditions to the
MB-model.

2.5 Calculation of the Average Liquid Frac-
tion η̄

The liquid fraction in the two phase region η � z � is re-
lated to the void fraction γ � z � via the equation

η � z � � γ � z � � 1 � (25)

The same equation holds for the average values η̄ and
γ̄ over the whole region, which are the parameters of
interest. It is computed as the integral over the nor-
malized profile. For the derivation of a η � z � profile, a
couple of assumptions are necessary:

Jensen J.M., Tummescheit H. Moving Boundary Models for Dynamic Simulations of Two−Phase Flows

The Modelica Association 239 Modelica 2002, March 18−19, 2002

1. All assumptions made in the derivation of the
moving boundary model apply also to the deriva-
tion of the liquid fraction profile, in particular that
a constant pressure is assumed along the pipe.

2. The profile can be evaluated under steady state
conditions. For the purpose of slow, start-up tran-
sients as well as for linearization purposes this
does not pose any restrictions. This means in par-
ticular that the pressure is in steady state.

3. The vapour generation rate Ψ � is uniform over the
evaporator length.

4. The slip velocity ratio S � ug � ul between the
gas and the liquid velocities is constant along
the evaporator length and a known function of
the model states that also can be evaluated under
steady state conditions1.

A similar derivation but assuming a slip velocity ratio
of 1 has been done in [3]. Under the above assump-
tions, the following coupled ODE boundary value
problem holds:

ρl
∂ � Alul �

∂z
� � Ψ � (26)

ρg
∂ � Agug �

∂z
� Ψ � (27)

Ψ � is the net generation of saturated vapour per unit
length � kg � � ms � � , Al and Ag are the cross sectional ar-
eas taken up by liquid and vapour respectively and the
densities are independent of the length coordinate be-
cause we assumed no pressure loss and steady state
conditions for the pressure. This equation is normal-
ized by setting A � Al

�
Ag � 1 and letting the length

of the evaporation region run from 0 to 1 so that the
cross section area Al � z � is now equivalent to the liquid
volume fraction η � z � . Then, replacing ul with u and ug

with Su and dividing by ρl the following normalized
equation is obtained:

∂ � ηu �
∂z

� � Ψ � (28)

µS
∂ � � 1 � η � u �

∂z
� Ψ � (29)

1Remark: It is possible to weaken this assumption and use a
slip ratio S � z � which is a function of the length coordinate. Many
of the rather complex empirical slip correlations depend on the lo-
cal mass fraction x � ṁg � ṁ as well and in this case the profile and
the integral over the profile can only be solved numerically. For
certain applications this may result in the most accurate approxi-
mation of the mean void fraction.

where

Ψ � � Ψ
ρlA

� and µ � ρg

ρl
	

The boundary conditions at the length coordinates z �
0 	 0 and z � 1 	 0 are

η � 0 � � 1 � η � 1 � � 0 	 (30)

From (28), (29) and the boundary conditions, the fol-
lowing function for η � z � can be derived:

η � z � � 1 � z

1
�

z � 1
Sµ � 1 �

(31)

The influence of the slip ratio S on the amount of sat-
urated liquid in the evaporation region, η̄ can seen in
Figure 2. η � z � can be integrated symbolically to give:

0 0.2 0.4 0.6 0.8 1
DimensionlessLength z

0

0.2

0.4

0.6

0.8

1

liq
ui

d
fr

ac
tio

n
Η

Liquid Fraction Η over z for S � 1, 3, 5, and 7 and Μ � 0.01

S � 7.0

S � 5.0

S � 3.0

S � 1.0

Figure 2: Liquid Fraction η � z � along the normalized
evaporation region.

η̄ � � 1

0
η � z � dz � Sµ � Sµ � 1 � ln � Sµ � �� Sµ � 1 � 2 (32)

This η̄ can only be used together with the dynamic
model from the previous section when the time deriva-
tive of η̄ can be neglected. This holds for slow pressure
transients. The density ratio µ is a unique and simple
function of the pressure, but for the slip ratio S a num-
ber of empirical correlations are available to choose
from. Because of the assumptions made above, we
have to choose a slip ratio which is independent of the
local void fraction or mass fraction. A simple and ap-
pealing correlation is the one from Zivi (1964) cited
in [9] which minimizes the total kinetic energy flow
locally at each position z along the pipe:

S � ug

ul
�

	
ρl

ρg
 1 � 3 � µ1 � 3 (33)

Using this slip correlation, the average liquid fraction
in the pipe becomes a function of only one variable,

Moving Boundary Models for Dynamic Simulations of Two−Phase Flows Jensen J.M., Tummescheit H.

Modelica 2002, March 18−19, 2002 240 The Modelica Association

the density ratio µ.

η̄ � � 1

0
η � z � dz � 1

� � 1 � µ � 2 � 3 � 2 � 3 ln � 1 � µ � � 1 �
� � 1 � µ � 2 � 3 � 1 �

2

(34)
Both the density ratio µ and the slip S approach 1 when
the pressure is rising toward the critical pressure. In
the limit, the liquid and vapour densities are equal as
well as the flow speeds, so that a mean liquid fraction
of 0 � 5 is expected, compare the plot of η̄ in Figure 3.

0 0.2 0.4 0.6 0.8 1
Density ratio Μ

0

0.1

0.2

0.3

0.4

0.5

liq
ui

d
fr

ac
tio

n
Η

Figure 3: Average Liquid fraction η̄ as a function of
the density ratio µ.

3 Dominating Time Constants of the
Linearized Model

In this section the influence of some model parame-
ters on the eigenvalues of a linearization of the sys-
tem derived in section 2 is investigated. Models for
fluid flow exhibit two types of time constants: fast, hy-
draulic time constants for disturbances traveling with
the speed of sound and much slower thermal ones,
whose disturbances move at the flow speed. In two
phase flows, the coupling between thermal and hy-
draulic phenomena is much tighter than in one phase
flows, because a change in the hydraulic pressure is
tightly coupled to a change in the temperature. The
eigenvectors reveal that the 7 eigenvalues are tightly
coupled, but roughly their physical interpretation is as
follows:

� one mode comes from the overall mass balance
of the evaporator which depends on the ratio be-
tween the total mass and the sum of the mass
flows in and out of the evaporator and

� one for the overall energy balance which depends
on the ratio of the total heat capacity to the sum
of convective and heat transfer energy flows,

� one for each of the lengths of the subcooled and
the two-phase regions. These are a combina-
tion of the mass and energy balances for the re-
specitive region.

� Three more eigenvalues come from the energy
balances of the evaporator walls.

In [1] Bauer derived a more detailed, distributed model
of heterogeneous flow2 and validated it against mea-
surement data for the refrigerant R22. According to
[1], the advantage of the heterogenous model over the
homogeneous one is that the void fraction turns out to
be more realistic. Therefore, the dominant time con-
stants are modeled more accurately. The average void
fraction 1 � η̄ has a strong influence on the total fluid
mass in the evaporator, as can be seen clearly from
Figure 4. It can be concluded from this argument that

1 2 3 4 5 6 7 8
0.2

0.25

0.3

0.35

0.4

0.45

Velocity Slip

M
as

s
in

 th
e

2
ph

as
e

zo
ne

Figure 4: Total mass in the two-phase region as a func-
tion of velocity slip.

the void fraction γ̄ is a crucial parameter in the moving
boundary model. Using a good approximation of the
void fraction, which may be obtained from a detailed,
distributed model like in [1], is important for obtaining
realistic dynamic behaviour.
The slow modes in the overall system are mostly influ-
enced by the wall temperatures: higher heat capacities
and smaller heat transfer coefficients result in slower
modes. This means that the slowest mode usually is
governed by the pipe wall in the liquid region. Two
model parameters with a large influence on the slow
time constants are the void fraction γ̄ and the ratio
of the total heat capacities of fluid and pipe walls of
the evaporator pipes. The latter depend on the system
pressure and the pipe diameter. Correct estimation of

2Heterogeneous flow means that the flow speeds of the gas and
liquid phases can be different. A homogeneous flow assumption
is equivalent to the same flow speed for both phases.

Jensen J.M., Tummescheit H. Moving Boundary Models for Dynamic Simulations of Two−Phase Flows

The Modelica Association 241 Modelica 2002, March 18−19, 2002

the void fraction gets more important at lower pres-
sures because the slip increases due to smaller density
ratio µ and the heat capacity of the pipes is usually
smaller due to thinner pipe walls.
The root locus plot in Figure 5 shows the slow eigen-
values of the system, which are the dominating ones
for control design purposes. These vary significantly
when the slip ratio S (and thus the void fraction) is
varied from 1.0 to 8.0. In the example with approx.
31 bars the pressure is relatively high for the working
fluid R22 and therefore the slip ratio is not very far
from 1. Nonetheless, the slow eigenvalues move con-
siderably on the root locus. The change in the model
dynamics will be larger at lower pressures.

−0.8 −0.7 −0.6 −0.5 −0.4
−0.2

−0.1

0

0.1

0.2

Figure 5: Root Locus for the slow eigenvalues. Dia-
monds mark a slip ratio of 1.0, stars a slip ratio of the
test case of � 1.7. Slip ratios vary from 1.0 to 8.0.

4 Model Variants

The main effect of using a velocity slip estimate to cal-
culate the average void fraction is an improved model
of the fluid mass in the evaporator. In a model for con-
trol design around a narrow operating pressure – the
short transient case – a constant void fraction based
on the profile derived above, will give sufficiently ac-
curate results. Different slip correlations than the one
from above and numerical quadrature can be used to
find a good estimate of the mean void fraction. A fixed
void fraction will be less adequate when “long” tran-
sients over wide pressure ranges are to be simulated.
During the simulation of the start-up of a near- or su-
percritial once-through boiler, which is a classical case
for a moving boundary model (see [3]), the density ra-
tio µ will change by 3 orders of magnitude. In that
case the simple slip correlation S � µ1 � 3 works well to
model the fluid mass in the evaporator.

The model derived above is still too complex and has
too many states for some purposes, e. g., online dy-
namic optimization as it is done in Model Predictive
Control (MPC). There are several ways to reduce the
number of states in the moving boundary model. One
possibility is to assume that the 2-phase heat transfer
coefficient is much higher than the outer heat transfer
coefficient so that the wall temperature and the fluid
temperature in the evaporation region are equal. This
assumption may also be extended to the subcooled
and superheated regions. The model will loose ac-
curacy in the high frequency range but will be very
similar to the full model at low frequency range. An-
other possible simplification is to get rid of the states in
the superheated region, because it is usually short and
contains only few percent of the fluid mass. The dy-
namic model for the region can be replaced by a semi-
empirical algebraic relation for the superheat temper-
ature, see [4]. Investigation of these options for model
reduction is the goal of future work by the authors.

4.1 Boundary Models

The test simulations for the heat exchanger are per-
formed for a simple cycle containing a pump that sup-
plies the liquid flow into the evaporator and a nozzle
(turbine) at the end of the evaporator. The pump model
is defined by a simple expression for the mass flow

ṁpump � ηvρpumpVcylω (35)

where ηv is the volumetric efficiency, ρpump is the inlet
density to the pump, Vcyl is the cylinder volume and ω
is the number of revolutions per second. The specific
enthalpy at the inflow of the evaporator is hin and is a
constant below the saturated liquid enthalpy.
The model of the nozzle is computed as:

ṁnozzle � Cv

�
ρout � p � pc � � (36)

where Cv is a coefficient, ρout is the outlet density from
the evaporator, p is the pressure in the evaporator and
pc is a constant pressure lower than p.

5 Simulation Result

The evaporator in an organic rankine cycle (ORC)
is simulated using the three region moving boundary
model and the models for the pump and the nozzle.
The simulation program Dymola [5] has been used to
perform the simulations. The ORC is used to con-
vert thermal energy to electric energy in applications

Moving Boundary Models for Dynamic Simulations of Two−Phase Flows Jensen J.M., Tummescheit H.

Modelica 2002, March 18−19, 2002 242 The Modelica Association

with small temperature differences between the high
and the low temperature heat sources. The ORC can
thereby be used to improve the energy efficiency in
gas turbine power plants by converting the waste heat
energy in the exhaust gas to electricity. Simulation re-
sults for a test case of an evaporator pipe are shown in
Figure 6 to Figure 8.

−10 0 10 20 30 40 50 60 70 80 90
3.5

4

4.5

L 1 [m
]

−10 0 10 20 30 40 50 60 70 80 90
8

8.5

9

9.5

L 2 [
m

]

−10 0 10 20 30 40 50 60 70 80 90
1.5

2

2.5

3

Time

L 3 [m
]

Figure 6: Lengths of the three regions

Pump and nozzle parameters

ηv � 0 � 6 [-] Cv � 3 � 76E � 5 [m2]
ω � 60 [rps] pc � 1 � 4 [Mpa]
Vcyl � 1 � 30E � 5 [m3]

Evaporator steady state results

L � 15 [m] Q � 163 [kW]
Di � 0 � 020 [m] ṁ � 0 � 54 [kg � s]
Do � 0 � 022 [m] p � 3 � 6 [Mpa]
Cw � 385 [J � kgK] Tw1 � 388 � 8 [K]
ρw � 8 � 96E3 [kg � m3] Tw2 � 371 � 7 [K]
αi1 � 2451 [J � m2K] Tw3 � 449 � 5 [K]
αi2 � 11404 [J � m2K] Tr1 � 306 � 0 [K]
αi3 � 2071 [J � m2K] Tr2 � 352 � 3 [K]
αo � 500 [J � m2K] Tr3 � 384 � 0 [K]
Tamb � 573 � 1 [K] L1 � 3 � 9 �

m �
S � 1 � 67 [-] L2 � 8 � 7 �

m �
γ̄ � 0 � 665 [-] L3 � 2 � 4 �

m �

Table 2: Parameters and steady-state results

Three experiments are performed with parameters and
initial steady state results in table 2. At t � 0 s the
pump speed ω is increased by 5%, at t � 30 s the outer
heat transfer coefficient αo is increased by 10% and at
t � 60 s the nozzle coefficient Cv is increased by 10%.
Figure 6, 7 and 8 show the transient response of the
system.

−10 0 10 20 30 40 50 60 70 80 90
3

3.05

3.1

3.15

3.2

3.25
x 10

6

Time

P
re

ss
ur

e
 [

M
P

a]

Figure 7: Pressure in the evaporator

The length of the subcooled and the two-phase region
is seen to increase as the pump speed is increased (at
t=0s). Also the pressure and the heating effect is in-
creased which is expected. An increase in outer heat
transfer (at t=30s) results in shorter two-phase and su-
perheated regions as well as in increased heating ef-
fect. The larger nozzle coefficient (t � 60 s) results in
a decrease in pressure. The reduced pressure lowers
the boiling point and thus the fluid temperature in the
evaporation region. The length of the subcooled region
is therefore shrinking. The length of the two-phase re-
gion grows in this case but this trend depends on the
conditions. The lower evaporating temperature tends
to decrease the length of the two-phase region and the
larger latent heat increases it. The heating effect rises
in this case, but this trend depends on the conditions
as well. The model gives the right trends even though
no experimental data has been available to validate the
model.

−10 0 10 20 30 40 50 60 70 80 90
108

110

112

114

116

118

120

122

Time

T
ot

al
 h

ea
tin

g
ef

fe
ct

 in
 k

W

Figure 8: Heating effect to the evaporator

5.1 Conclusions

A new moving boundary model has been presented
describing the dynamics of two phase heat exchang-

Jensen J.M., Tummescheit H. Moving Boundary Models for Dynamic Simulations of Two−Phase Flows

The Modelica Association 243 Modelica 2002, March 18−19, 2002

ers with liquid at the inlet and vapour at the outlet.
The new model is numerically fast compared to dis-
cretized models and very robust to sudden changes in
the boundary conditions. The model is a 7th order
model (7 state variables), which is a suitable order for
control design. The model is also well suited for open
loop simulations for systems design and optimization.
It is shown that the average void fraction has a signifi-
cant influence on the system response. A new method
to calculate the average void fraction including the in-
fluence of the slip ratio is presented. The average void
fraction is computed from the symbolic solution to the
integral of the liquid fraction profile.

Appendix A: Leibniz's Rule

Leibniz’s rule for differentiation of integrals with time
varying limits reads ([8]):

d
dt

� z2

z1

f � z � t � dz � f � z2 � t � dz2

dt
� f � z1 � t � dz1

dt� � z2

z1

∂ f � z � t �
∂t

dz � (37)

Appendix B: Derivation of the Model
Equations

Mass Balance for the Two-Phase Region

The mass balance (2) is integrated over the two-phase
region from L1 to L1

�
L2 Applying Leibniz’s rule

gives for a constant area pipe

A
d
dt

� L1 � L2

L1

ρdz
�

Aρ � L1 � dL1

dt

� Aρ � L1
�

L2 � d � L1
�

L2 �
dt�

ṁ23 � ṁ12 � 0

(38)

The flow is assumed to be homogeneous at equilibrium
conditions with a mean density of ρ � γ̄ρg

� � 1 � γ̄ � ρl .
The mass balance for the two-phase region becomes

A 	 d
dt

� ρ2L2 � � � ρl � ρg � dL1

dt
� ρg

dL2

dt
� ṁ12 � ṁ23

(39)

where ρ2 � γ̄ρg
� � 1 � γ̄ � ρl . The time derivative of ρ2

is
dρ2

dt
� � γ̄

dρg

dp
� � 1 � γ̄ � dρl

dp �
dp
dt

(40)

which inserted into the mass balance (39) gives the fi-
nal mass balance for the two-phase region as stated in
(17).

Energy Balance for the Two-Phase Region

The energy balance (4) is integrated over the two-
phase region from L1 to L1

�
L2. Applying Leibniz’s

rule gives for a constant area pipe

A
d
dt

� L1 � L2

L1

ρhdz
�

Aρ � L1 � h � L1 � dL1

dt
� AL1

dp
dt

� Aρ � L1
�

L2 � h � L1
�

L2 � d � L1
�

L2 �
dt

� AL2
dp
dt�

ṁ23hg � ṁ12hl � πDiαi2L2 � Tw2 � Tr2 �
(41)

The first term is evaluated as

d
dt

� L1 � L2

L1

ρhdz � d
dt

� L1 � L2

L1

� γρghg
� � 1 � γ � ρlhl � dz

� d
dt

	 � γ̄ρghg
� � 1 � γ̄ � ρlhl � L2
� L2 	 γ̄

d � ρghg �
dp

� � 1 � γ̄ � d � ρlhl �
dp
 dp

dt� 	 γ̄ρghg
� � 1 � γ̄ � ρlhl
 dL2

dt
(42)

Inserting (42) into (41) gives the final energy balance
for the two-phase region as state in (18).

Mass Balance for the Superheated Region

The mass balance (2) is integrated over the super-
heated region from L1

�
L2 to L which for a constant

area pipe gives� L

L1 � L2

∂Aρ
∂t

dz
� � L

L1 � L2

∂ṁ
∂z

dz � 0 (43)

Applying Leibniz’s rule on the first term and integrat-
ing the second term give for a constant area pipe

A
d
dt

� L

L1 � L2

ρdz
�

Aρ � L1
�

L2 � d � L1
�

L2 �
dt�

ṁout � ṁ23 � 0 (44)

The mean density in the superheated region is ρ3 �
1
L3

� L
L1 � L2

ρdz � ρ � p � h3 � , which inserted in the mass
balance (44) gives

A 	 L3
dρ3

dt
� � ρg � ρ3 � dL1

dt
� � ρg � ρ3 � dL2

dt
� ṁ23 � ṁout (45)

The derivative of ρ3 is calculated as

dρ3

dt
� ∂ρ3

∂p

���
h

dp
dt

� ∂ρ3

∂h

���
p

dh
dt

� � 1
2

∂ρ3

∂h3

���
p

dhg

dp
� ∂ρ3

∂p

���
h �

dp
dt

� 1
2

∂ρ3

∂h3

���
p

dhout

dt
(46)

Moving Boundary Models for Dynamic Simulations of Two−Phase Flows Jensen J.M., Tummescheit H.

Modelica 2002, March 18−19, 2002 244 The Modelica Association

The expression for dρ3
dt is inserted into (45), which

gives the final mass balance for the superheated region
as stated in (19).

Energy Balance for the Superheated Region

The energy equation 4 is integrated over the super-
heated region from L1

�
L2 to L. Applying Leibniz’s

rule gives for a constant area pipe

A
d
dt

� L

L1 � L2

ρhdz
�

Aρ � L1
�

L2 � h � L1
�

L2 � d � L2 �
dt

� AL3
dp
dt

�
ṁouthout � ṁ23hg� πDiαi3L3 � Tw3 � Tr3 �

(47)

The first term is calculated as

d
dt

� L

L1 � L2

ρhdz � d
dt

� ρ̄3h̄3L3 �
� � 1

2
ρ̄3 � hg

�
hout � � d � L1

�
L2 �

dt �� 1
2

L3 � hg
�

hout � dρ̄3

dt� 1
2

ρ̄3L3 � dhg

dp
dp
dt

� dhout

dt �

(48)

where h̄3 � 1
2 � hg

�
hout � and ρ̄3 � ρ � p � h̄3 � . Equation

(48) and the expression for dρ̄3
dt from equation (46) is

inserted into (47), which after some rearranging gives
the final energy balance for the superheated region as
stated in (20).

Energy Balance for the Walls

For the wall region adjacent to the two-phase region
α � L1 and β � L1

�
L2, which inserted in (22) gives

CwρwAw � L2
dTw2

dt
� 	 Tw � L1 � � Tw2
 dL1

dt� 	 Tw2 � Tw � L1
�

L2 �
 dL2

dt �� αi2πDiL2 	 Tr2 � Tw2
� αoπDoL2 	 Tamb � Tw2

(49)

Tw � L1 � is given by (24), and Tw � L1
�

L2 � is given by

Tw � L1
�

L2 � � Tw3 for
dL2

dt �
0

Tw � L1
�

L2 � � Tw2 for
dL2

dt �
0

(50)

For the wall region adjacent to the superheated region
α � L1

�
L2 and β � L, which inserted in (22) gives

CwρwAw � L3
dTw3

dt
� 	 Tw � L1 � � Tw2
 dL1

dt� 	 Tw � L1
�

L2 � � Tw3
 � dL1

dt
� dL2

dt � �� αi3πDiL3 	 Tr3 � Tw3
 � αoπDoL3 	 Tamb � Tw3

(51)

References

[1] Olaf Bauer, Modelling of Two-Phase Flows with
Modelica, Masters Thesis ISRN LUTFD2/TRFT–
5629–SE, Department of Automatic Control,
Lund University, November 1999.

[2] B.T. Beck and G.L.Wedekind, A generalization of
the system mean void fraction model for transient
two-phase evaporation flows, Int. J. of Heat Trans-
fer 103 (1981), 81 – 85.

[3] S. Bittanti, M. Bottinelli, A. De Marco, M. Fac-
chetti, and W. Prandoni, Performance Assessment
of the Control System of Once-Through Boilers,
Proceedings of the 13th Conference on Process
Control ’01, June 2001.

[4] X.D. He and S. Liu, Multivariable Control of
Vapor Compression Systems, HVAC Research 4
(1998), 205 – 230.

[5] http://www.dynasim.se.

[6] J.M̃. Jensen and H.J. Hoegaard Knudsen, A new
moving boundary model for transient simula-
tions of dry-expansion evaporators, Proceedings
of the 15th International Conference on Efficiency,
Costs, Optimization, Simulation and Environmen-
tal Impact of Energy Systems, July 2002.

[7] N.B.O.L. Pettit M. Willatzen and L. Ploug-
Sørensen, A general dynamic simulation model for
evaporators and condensers in refrigeration, Int.
J. of Refrigeration 21 (1998), 398 – 414.

[8] N.E. Todreas and M.S Kazimi, Nuclear Systems
I, Thermal Hydraulic Fundamentals, Taylor and
Francis, 1993.

[9] P.B. Whalley, Boiling, Condensation and Gas-
Liquid Flow, 1987.

The Modelica Association 245 Modelica 2002, March 18−19, 2002

Session 9a

Mechatronic Applications

Modelica 2002, March 18−19, 2002 246 The Modelica Association

Hellgren J. Modelling of Hybrid Electric Vehicles in Modelica for Virtual Prototyping

The Modelica Association 247 Modelica 2002, March 18−19, 2002

Modelling of Hybrid Electric Vehicles in Modelica for
Virtual Prototyping

Jonas Hellgren
Machine and Vehicle Systems

Chalmers University of Technology, SE-412 96, Gothenburg, SWEDEN
jonas.hellgren@me.chalmers.se, www.mvd.chalmers.se/~jonash/

 1 Introduction
Environmental concerns and the decrease in cost of
electrical components make Hybrid Electrical Vehi-
cles (HEVs) more and more competitive. The major
difference between conventional vehicles and HEVs
is the presence of a buffer for temporary storage of
energy in HEVs. The buffer enables regenerative
braking and makes the Primary Power Unit (PPU)
more or less decoupled from the wheels. This gives a
potential for reducing fuel consumption and emis-
sions.

Prototyping is necessary for the design and evalua-
tion of HEVs. It is very expensive and time consum-
ing to build real prototypes. Virtual prototyping
(computer simulation) is therefore an almost neces-
sary complement. The aim of this paper is to describe
a library, developed in Modelica, whose purpose is to
evaluate HEVs. In the future, the library can be
extended with more components and configurations.

Modelica [1] is a language for modelling physical
systems. It is a standard proposed by an international
association. Modelica can handle problems in differ-
ent areas, e.g. mechanics, electricity, chemistry, fluid
dynamics and control theory.

The total system of an HEV is very complex. To
achieve reasonable computation time, fairly simple
models should be used. Another reason for using
simple models is that fewer parameters are needed. It
will be easier to update models in the future if fewer
parameters are used. A rule of thumb when model-
ling is to use a model that is as simple as possible but
still sufficiently accurate.

 2 Modelling of different HEV
configurations

HEVs can be configured in numerous ways. The
arrangement, type and size of components result in a
huge number of combinations. The most common
way to categorize HEVs is by using the definitions of
series and parallel HEVs. In series HEVs, there is no
mechanical connection between the PPU and the
wheels. In parallel HEVs, a part of the engine torque
affects the wheels directly. This nomenclature is not
always easy to adopt, however, because some drive-
line configurations are neither clear series nor paral-
lel ones. For example, the classification of split
HEVs is debatable.

The library includes four different types of HEVs.
The arrangements are illustrated on a large scale in
Figure 1.

Fig. 1: HEV configurations. Acronyms: ENG engine,
FC fuel cell, B buffer, G generator, ELM electric
machine, CH chassis, PG planetary gear and CVT
continuous variable transmission. Dashed lines
represent electrical connections and continuous lines
represent mechanical connections.

B

ELM ENGFC CH G

PG

ELM

ENG CH

G

B

ELM CH

1/ FC series HEV 2/ Series HEV

3/ Split HEV

CVT

B

ELM

ENG CH

4/ CVT parallel HV

GearB

Abstract: This paper presents a Modelica library made for the simulation of Hybrid Electrical Vehicles
(HEVs). The library consists of vehicle models, component models and models of surrounding systems. An
overview of the models within the library is given and some models are described more in detail. The major
purpose of the vehicle models is to predict vehicle characteristics, especially fuel consumption, for a given
vehicle and driving cycle. Modelica has been found useful for the simulation of HEVs.

Modelling of Hybrid Electric Vehicles in Modelica for Virtual Prototyping Hellgren J.

Modelica 2002, March 18−19, 2002 248 The Modelica Association

 The reasons for choosing these HEV types are:

• They are subject to industrial projects. For exam-
ple, the first HEV ever built for the public market,
Toyota Prius, is a split HEV.

• The configurations allow the engine to work at its
optimal line.

The reason why a series HEV can work at its optimal
line is explained by the fact that the PPU is totally
decoupled from the wheels. In other configurations,
such as the parallel CVT and split hybrid, a transmis-
sion between the engine and wheels makes the
engine speed controllable.

The relation between the vehicle and the surrounding
systems is illustrated in Figure 2. The environment
emits a driving cycle, i.e. speed and slope as func-
tions of time. The driver controls the vehicle in such
a way that the desired speed is managed. Figure 3
shows the implementation of a split HEV in Model-
ica.

Fig. 2: The relation between the vehicle and the
surrounding systems.

Fig. 3: Modelica model of a split HEV.

2.1 Example of simulation of an HEV
This section presents an example of a simulation of a
series HEV. The vehicle has a fuel cell as the primary
power unit and a super capacitor as the buffer. A city
bus is chosen as an example. Information about the
component sizing is given in Table 1 and the layout
is illustrated in Figure 4. It is interesting to note that
the required PPU size, expressed as maximum
power, is about half that of a conventional bus. This
is explained by the fact that the buffer assists in
heavy accelerations. When the vehicle decreases in
speed, power is regenerated into the buffer. The
buffer might seem to be oversized with respect to
power. The explanation is that the specific energy of
the super capacitor is crucial with regard to sizing.
The driver controls the target torque of the electric
motor. If the driver demands braking, the desired
motor torque will be negative. If the desired torque
exceeds the torque limit of the motor at braking, a
mechanical brake in the chassis will assist. The
mechanical brake also assists when the vehicle stands
still.

Fig. 4: Modelica model of a fuel cell HEV.

Vehicle

EnvironmentDriver

pedal request

speed

desired
speed

Table 1: Component sizes in the fuel cell HEV.

COMPONENT SIZE;
MASS

MAX POWER;
ENERGY

Chassis (with
propulsion units)

6; 17600 kg

Fuel cell 2; 200 kg 100 kW; -

Motor 5; 200 kg 250 kW; -

Super capacitor 8; 500 kg 900 kW; 7.5 MJ

Hellgren J. Modelling of Hybrid Electric Vehicles in Modelica for Virtual Prototyping

The Modelica Association 249 Modelica 2002, March 18−19, 2002

The driving cycle is a part of an urban city bus route
and is plotted as speed as a function of time in
Figure 5. Figure 6 also shows the cycle but with
speed versus position instead of time. Many starts
and stops are characteristic for the driving cycle. This
makes an HEV more interesting. In this case, the
vehicle manages to follow the desired speed almost
exactly. Figure 7 shows how State Of Charge (SOC)
in the buffer and motor temperature change during
the driving cycle. It can be seen that the SOC
increases at braking and decreases at acceleration.
Figure 8 reflects the control of the PPU by compar-
ing the power from the PPU to the power demand
from the chassis. According to the simulation, the
fuel consumption is 0.2 kg hydrogen/km (the energy
density of hydrogen is three times higher than the
energy density of diesel). This result is valid for this
particular combination of vehicle and driving cycle.

The HEV model in Figure 4 uses 287 variables, 12
states and 80 parameters. This reflects the complex-
ity of the model. Examples of states are: vehicle
speed, SOC, temperature of the electric machine and
power from the fuel cell.

Fig. 5: Driving cycle. Speed [m/s] versus time [s].

Fig. 6: Driving cycle equal to driving cycle in Figure 5
but with speed [m/s] versus position [m]

.

Fig. 7: SOC [%] (continuous line), motor temperature
[Celsius] (dotted line) and vehicle speed [m/s] (dashed
line) versus time [s].

Fig. 8: Power from PPU [W] (continuous line) and
power demand from chassis [W] (dashed line) versus
time [s].

 3 Modelling of components in HEVs
One major principle in modelling a component has
been to make it as simple as possible to change its
size. This is achieved by a SIZE parameter, which is
included in most components. A change of the SIZE
parameter affects some of the other parameters in a
component model such that the component model
behaves as though it has another size. When the SIZE
parameter in a component model is changed, the total
mass of the vehicle is changed automatically.
Another principle has been to use physical parame-
ters and to tune them in such a way that the model
behaves similarly to an existing component. For
example, the inner resistance in the battery model is
defined such that the efficiency of the battery model
is similar to a real battery.

Some component models are described more in detail
in this paper (underlined in Figure 9). In the
described component models, parameters (constant

Modelling of Hybrid Electric Vehicles in Modelica for Virtual Prototyping Hellgren J.

Modelica 2002, March 18−19, 2002 250 The Modelica Association

during simulation) are in upper case letters and vari-
ables (changing during simulation) are in lower case
letters.

Figure 9 shows the structure of the component model
library. The library can be expanded to include more
models in the future. The graphical interface makes it
very easy to replace a component model in a vehicle
model, e.g. replace a battery model with a super
capacitor model. This is done by a “drag and drop
procedure”.

Fig. 9: Structure of component library. AC stands for
alternating current, PM stands for permanent magnet
and DC stands for direct current. When possible, a
component uses sub-models that are included in the
standard Modelica library.

3.1 Model of fuel cell
A fuel cell is an electrochemical device that com-
bines hydrogen fuel and oxygen from the air to pro-
duce electricity, heat and water. Fuel cells operate
without combustion, so they are virtually pollution
free. In theory, a fuel cell can operate at much higher
efficiencies than internal combustion engines, but
auxiliary systems such as pumps and compressors
reduce the efficiency. The efficiency of a fuel cell is
approximately 50%. The fuel cell itself has no mov-
ing parts, and the fuel cell is thus a quiet and reliable
source of power. Individual fuel cells are normally
combined into a stack. The number of fuel cells in
the stack, i.e. the number of cells in series, deter-
mines the total voltage. Major disadvantages of fuel
cells are high capital cost and difficulties in handling
the fuel. For example, hydrogen, gasoline and metha-
nol are proposed as fuel.

Figure 10 illustrates the major idea of the model.
Three efficiencies have been defined: the efficiency
of fuel delivery ηfuel, the internal efficiency of a fuel
cell ηcell, the efficiency related to parasitic losses and
electrical conversion ηelsyst. The model is strongly
influenced by [2]. The SIZE parameter represents the
number of stacks in the system. The transient perfor-
mance, i.e. how fast the fuel cell can change power,
is expressed by low pass filtering the desired power

Table 2: Number of internal states and number of
parameters in the component models.

COMPONENT
MODEL

NUMBER
OF
INTERNAL
STATES

NUMBER
OF PARA-
METERS

AC machine 5 27

Auxiliaries 0 1

Component libraries

ElectricPrimary Buffers

Transmissions Chassis

Auxiliaries Controls

Machinespower units

Electric
Converters

PPUs = {diesel engine, fuel cell}
Buffers = {super capacitor, NiMH battery}
Elec.Machines = {AC machine, PM machine}

Chassis = {standard chassis}

Auxiliaries = {aux. city bus, aux. car}

Transmissions = {belt CVT}

Present contents of component libraries

Converters = {DC/DC converter}

Controls = {control FSM, analytical expression

Chassis 2 20

CVT 3 10

DC/DC converter 0 2

Diesel engine 2 6+data map

Fuel cell 2 16

NiMH battery 3 26

PM machine 5 30

Super capacitor 3 12

Table 2: Number of internal states and number of
parameters in the component models.

COMPONENT
MODEL

NUMBER
OF
INTERNAL
STATES

NUMBER
OF PARA-
METERS

Hellgren J. Modelling of Hybrid Electric Vehicles in Modelica for Virtual Prototyping

The Modelica Association 251 Modelica 2002, March 18−19, 2002

Pdes.The total power output from the fuel cell system
is Pout.

Fig. 10: Model of fuel cell. Aux represents auxiliary
systems and Conv represents a DC/DC converter.

Eq. 1 to Eq. 4 describe how total power output Pout,
desired power Pdes, power produced in one cell Pcell
and normalized power p are calculated and related to
each other.

(EQ 1)

(EQ 2)

(EQ 3)

(EQ 4)

The voltage in a cell Ucell decreases with p according
to Eq. 5 and Eq. 6.

(EQ 5)

(EQ 6)

 The calculation of the instantaneous fuel consump-
tion Fc [g/s] and total efficiency of the system ηtot
are described by Eq. 7 to Eq. 14.

(EQ 7)

(EQ 8)

(EQ 9)

(EQ 10)

(EQ 11)

(EQ 12)

(EQ 13)

(EQ 14)

The model is general and fairly simple and can there-
fore easily be adjusted to imitate almost any fuel cell
system by changing the parameters. The system pre-
sented here meets the targets set by DOE (the Depart-
ment Of Energy in USA) [3]. The targets are an
efficiency of 44% at full load, an efficiency of 55%

Electrical
poles

Desired
power
[Power] [Voltage, Current]

ηfuel ηcell ηelsyst

Pout filter Pdes()=

Pout Pcell NSER
NSTACKS ηelsyst⋅ ⋅ ⋅=

Pcell Ucell Icell⋅=

p
Pcell

PNOMCELL
---------------------------------=

Ucell ηv ECELL⋅=

ηv 1 1 p
PPC
------------– 

 + 
  2

=

Fc
Pout HFUEL⋅

ηtot
-----------------------------------=

Table 3: Notations for the fuel cell model.

NOTATION DESCRIPTION

α1, β0 Parameters that determine
parasitic losses

ECELL [V] Maximal voltage in a cell

ηEL [-] Efficiency of converter

ηMAX [-] Maximal efficiency in one
cell

ηREF [-] Efficiency of reformer

HFUEL [g/J] Mass of hydrogen to achieve
one Joule of energy

UFUEL [-] Amount of hydrogen utilized

NSER [-] Number of cells in series

NSTACKS [-] Number of stacks

PNOMCELL [W] Nominal power from a cell

Ppar [W] Parasitic losses

PPC [-] Part of maximal theoretical
power that is used in cell

PTOT [W] Nominal power from fuel cell
system

Ucell [V], Icell [A] Voltage and current in a cell

ηtot ηcell ηfuel ηelsyst⋅ ⋅=

ηcell ηv ηMAX⋅=

ηfuel UFUEL ηREF⋅=

ηelsyst ηEL ηpar⋅=

ηpar

Pout
Pout Ppar+
-------------------------------=

Ppar α1 PTOT β0 PTOT p⋅ ⋅+⋅=

PTOT PNOMCELL NSER NSTACKS⋅ ⋅=

Modelling of Hybrid Electric Vehicles in Modelica for Virtual Prototyping Hellgren J.

Modelica 2002, March 18−19, 2002 252 The Modelica Association

at part load and a response time of three seconds. Part
load is defined as 25% of full load and response is
defined as how quickly power is changed from zero
to maximal load. Figure 11 compares the model with
the DOE targets.

Fig. 11: Efficiency (ηtot) versus normalized power p.
The continuous line represents the model and the
circles represent DOE targets.

3.2 Model of DC/DC converter
The task of a DC/DC converter is to adjust the output
voltage of an electrical device. In an HEV the operat-
ing voltage of the buffer may be different from the
voltage range desired in the electrical machine. This
is an example of a situation in which a DC/DC con-
verter becomes useful. DC/DC means that a direct
current is transformed to a direct current with another
voltage and current. Unfortunately, this power trans-
formation is related to losses. The power losses in a
DC/DC converter are accurately described in [4].
The model takes into account the dominant losses
according to [4].

Fig. 12: Model of DC/DC converter.

Eq. 15 to Eq. 18 describe the model. Eq. 16 and
Eq. 17 imply that a higher quotient between voltage
on outside and inside results in a lower efficiency η.

(EQ 15)

(EQ 16)

(EQ 17)

(EQ 18)

The parameters in the model are adjusted in such a
way that the efficiency is close to 95%.

3.3 Model of super capacitor
Super capacitors are an energy storage technology
ideally suited for applications that need repeated
bursts of power for fractions of a second to several
minutes. High specific power but low specific energy
is characteristic.

The model illustrated in Figure 13 is influenced by
[5]. The parameters are taken from the data sheet for
an existing super capacitor “PC2500” described more
in detail in [6]. The SIZE parameter represents the
number of super capacitors in parallel. Due to the
definition of a leaking current Ileak, the model takes
into account that the capacitor is discharged even
when no current is requested. RI is the internal resis-
tance, C is the capacitance, IcapPos is the requested
current and Ucap is the voltage of the capacitor.

ηtot

p

Electrical
poles

Electrical
poles
[Voltage, Current]

[Voltage, Current]

P1 P2

Table 4: Notations for the converter model.

NOTATION DESCRIPTION

d Ratio of switching

Plosses [W] Total losses in the converter

ηMAX, KD Parameters determining the effi-
ciency of the converter

P1, P2 [W] Power in and power out from the
converter

v1, v2 Voltage on outside and inside

Plosses 1 η–() P1⋅≈

d 1
v2
v1
-----–=

η ηMAX d KD⋅–=

P2

P1 η⋅ P1 0>()

P1
η
------ P1 0<()







=

Hellgren J. Modelling of Hybrid Electric Vehicles in Modelica for Virtual Prototyping

The Modelica Association 253 Modelica 2002, March 18−19, 2002

Fig. 13: Model of super capacitor.

Eq. 19 to Eq. 24 describe current and voltage laws
for one capacitor. Most of the terms are described in
Table 5.

(EQ 19)

(EQ 20)

(EQ 21)

(EQ 22)

(EQ 23)

(EQ 24)

 The requested power P is positive at discharge and is
negative at charge. The following equations define
the energy level in the super capacitor Soc and the
efficiency η:

(EQ 25)

(EQ 26)

(EQ 27)

(EQ 28)

Figure 14 shows the simulation of a charge process
of a super capacitor model. Power is taken from the
capacitor and increases with time. The upper curve
corresponds to Soc starting at 70%. The lower curve
corresponds to a start value of 30%. The curves show
that efficiency is dependant on Soc and decreases
with power. The simulated efficiency corresponds to
data given in [6].

Fig. 14: Efficiency for super capacitor versus
normalized power for different start values of Soc.
Normalized power is defined as requested power
divided by maximum possible power.

3.4 Model of belt CVT
A Continuous Variable Transmission (CVT) allows
the speed ratio to change in a step less way. This
allows the engine to operate on its optimal line. One
disadvantage is that a CVT has a lower efficiency
than a conventional transmission.

Electrical
poles
[Voltage, Current]

IcapPos i1 Ileak+=

IcapPos IcapNeg+ 0=

Uc
Q
C
----=

Q· i1=

Ileak

Uc
RP
-------=

Ucap Uc RI IcapPos⋅+=

Soc
Uc UMIN–

UMAX UMIN–
--------------------------------------- 100⋅=

Table 5: Notations for the super capacitor model.

NOTATION DESCRIPTION

Uc [V], i1 [A] Internal voltage and internal
current in capacitor

Q [C] Charge in capacitor

RP [Ohm] Resistance determining the
leaking current Ileak

UMIN, UMAX [V] Permitted minimal and maxi-
mal voltage in capacitor

η P
P PLosses+

----------------------------------=

P Ucap IcapPos⋅=

PLosses ILeak
2

RP⋅ IcapPos
2

RI⋅+=

η

Normalized power

Modelling of Hybrid Electric Vehicles in Modelica for Virtual Prototyping Hellgren J.

Modelica 2002, March 18−19, 2002 254 The Modelica Association

A belt CVT, illustrated in Figure 16, is used here.
The clutch slips when the torque is too high, which
results in poor efficiency. The efficiency of the belt
ηbelt is a function of utilized torque, see Figure 15.
The SIZE parameter determines the mass and maxi-
mum torque capacity TMAX of the CVT.

Fig. 15: Efficiency of CVT belt as function of utilized
torque t.

Fig. 16: Model of belt CVT.

Eq. 29 to Eq. 33 describe how the output torque Tout,
the ratio of the CVT rcvt and the total ratio rtot are
calculated and related to each other. The filter func-
tion in Eq. 30 reflects the fact that there is a response
time in the system.

(EQ 29)

(EQ 30)

(EQ 31)

(EQ 32)

(EQ 33)

The parameters in the model are adjusted in such a
way that the maximum efficiency is close to 90%.

3.5 Model of chassis
The chassis model takes into account resistance
in the longitudinal direction. This resistance is
mainly a result of vehicle mass, air and tire roll-
ing resistance. From the SIZE parameter, it is
possible to choose chassis models that corre-
spond to the following vehicles: Volkswagen
Golf (small passenger car), Volvo V70 (large
passenger car), Toyota Previa (minibus), Chassis
corresponding to a mini truck, Volvo FL6 (large
truck), Volvo B10M (city bus), Volvo FL20
(heavy truck). The brake is necessary to make
the vehicle stand still if a slope is present or to
assist if the capacity of the electric braking in an
HEV is exceeded. The traction force Ftraction is
limited to prevent the wheels from skidding.
Figure 17 shows the layout of the chassis. Only
components from the standard Modelica library
are used. The gear efficiency depends on vehicle
configuration. A low gear efficiency corre-
sponds to the use of a differential while a high
gear efficiency corresponds to the use of wheel
motors.

η
 belt

t=T/TMAX1

Mechanical
axis

Mechanical
axis

Desired torque
on the In side
[-]

Tdes

T

Tout

[Torque,
Rot. speed]

[Torque,
Rot. speed]

Tout min TMAX T,()=

T filter Tdes() rcvt ηbelt⋅ ⋅=

rcvt min rMAX max rMIN rtot,(),()=

Table 6: Notations for the belt CVT model.

NOTATION DESCRIPTION

A, B, C Constants determining the
efficiency of the belt

rMAX, rMIN [-] Maximum and minimum
ratio

Tdes [Nm] The desired torque at the In
side

TMAX [Nm] The maximum torque that
the CVT can transmit

wIN, wOUT [Rad/s] Speed at IN and OUT side

rtot

wIn
wOut
-------------=

ηbelt B A B–

1 e
t C⋅

+

-----------------------+=

Hellgren J. Modelling of Hybrid Electric Vehicles in Modelica for Virtual Prototyping

The Modelica Association 255 Modelica 2002, March 18−19, 2002

 Eq. 34 to Eq. 37 describe the dynamics of the
vehicle in the longitudinal direction. Ftraction cal-
culated in Eq. 37 affects the wheel component in
Figure 17.

(EQ 34)

(EQ 35)

where

(EQ 36)

(EQ 37)

where

3.6 Model of controller
The controller controls the power from the PPU.
How this should be done is debatable and the aim of
research. In the simulations presented in this paper, a
Finite State Machine (FSM) is used as the control
algorithm. A more detailed description of how this
works is found in [7]. In practice, the control model
interprets data maps that contain information on the
FSM.

Another candidate to control the power produced in
the PPU is to use an analytical expression. Eq. 38
proposes how this power can be calculated. The
expression is influenced from [8].

(EQ 38)

Mechanical
axis

Present slope

Present speed
of the vehicle

[m/m]

[m/s][Torque,
Rot. speed]

Fig. 17: Model of chassis.

MASS MASSDRIVELINE MASSCOACH+ +=

MASSFRAME MASSPASSENGER+

Ftraction
Ftrnom Ftrnom FTRMAX<()

FTRMAX ς⋅ Ftrnom FTRMAX>()



=

ς sign TWheel()=

Ftrnom

TWheel
RWHEEL
-------------------------=

Ftraction Facc Fair Froll Fslope+ + +=

Facc MASS a γ⋅ ⋅=

Fair

CD A ρAIR v
2⋅ ⋅ ⋅

2
---=

Froll KF N 1 1

e
0.5 v⋅

-----------------–
 
 
 

⋅ ⋅=

Fslope MASS G α⋅ ⋅=

N MASS G α()asin()cos⋅ ⋅=

Table 7: Notations for the chassis model.

NOTATION DESCRIPTION

α [m/m] Road surface grade

a [m/s2] Acceleration of vehicle

CDA [m2] Air resistance of vehicle

Ftraction [N] Force between ground and wheel

Ftrnom [N] Traction force if vehicle is not

skidding

γ [−] Factor for influence of rotational
inertias of driven axle

G [m/s2] Constant of gravity

KF [-] Coefficient of rolling resistance

MASS [kg] Total mass of vehicle

N [N] Normal force between vehicle and
ground

v [m/s] Speed of vehicle

Table 8: Notations for Eq. 38.

NOTATION DESCRIPTION

PPPU Power requested from PPU

Soctar Desired Soc

K, τ Parameters

td
d

PPPU()
Pch K Soctar Soc–() PPPU–+()

τ
---=

Modelling of Hybrid Electric Vehicles in Modelica for Virtual Prototyping Hellgren J.

Modelica 2002, March 18−19, 2002 256 The Modelica Association

 4 Modelling of surrounding systems
in HEVs

The surrounding systems are more abstract models
and are necessary to be able to make the simulation.
The driving cycle in particular is extremely important
for the result of a simulation.

Fig. 18: Library of surrounding systems.

4.1 Model of environment
The environment model interprets data maps that
contain the driving cycles. Speed and slope are
described as functions of time. Alternatively, speed
and slope can be described as functions of position.

4.2 Model of driver
The driver model is simply a PID regulator that
forces the vehicle speed to be equal to the desired
speed, i.e. the speed that is given in the driving cycle.
Desired speed and vehicle speed are inputs and
requested traction torque is output.

 5 Conclusions and future work
Modelica has been found suitable for modelling and
simulating an HEV. Properties such as object orien-
tation, non casual modelling and an equation based
syntax have been found useful during the develop-
ment of the models presented in this paper. Much
modelling work would have been saved if more pub-
lic model libraries for Modelica had been available.
Unfortunately there is a lack of such libraries today.

In the future, additional vehicle configuration and
component models should be developed. More
detailed models that take more phenomena into
account should also be developed. Validation of the
virtual HEV models towards existing vehicles should
also be done.

REFERENCES

[1] Modelica, www.modelica.org, September 2001.

[2] Thorstensen B., “A parametric study of fuel cell sys-
tem efficiency under full and part load operation”, Journal
of Power Sources, Volume 92, Issues 1-2, Pages 9-16,
January 2001.

[3] www.energy.gov, September 2001.

[4] Alving B., “Calculating Power Losses in DC-DC
converters, including a proposed high efficiency converter
topology”, Master thesis work, Electrical and Computer
Engineering, Chalmers University of Technology, Goth-
enburg, Sweden, 1999.

[5] Axelsson F.,“Investigation of super capacitors in a
series hybrid vehicle”, Master Thesis at Control Eng.
Lab., Gothenburg, Chalmers University of Technology,
Sweden, 1998.

[6] Powercache, www.powercache.com, September
2001.

[7] Hellgren J. and Wahde M., “Evolving Finite State
Machines for the Propulsion Control of Hybrid Vehicles”,
Advances in Signal Processing and Computer Technolo-
gies, ISBN 960-8052-37-8, WSES, 2001.

[8] Andersson C., Jonasson K., Strandh P. and Alakula
M., “Simulation and verification of a hybrid bus”, Nordic
Workshop on Power and Industrial Electronics, Aalborg,
Denmark, 2000.

NOTATION

Environments = {city1, highway1, etc.}
Drivers = {driver normal}

Environment Driver

Library of surrounding systems

Contents of library of surrounding systems

NOTATION DESCRIPTION

CVT Continuous Variable Transmission

Data map A set of numbers presented in a vec-
tor or matrix

Normalized
power

Requested power divided with max-
imum power that can be delivered
to/from the device

Soc [%] State of charge in an energy buffer

Pelchen C., Schweiger C., Otter M. Modeling and Simulating the Efficiency of Gearboxes ...

The Modelica Association 257 Modelica 2002, March 18−19, 2002

Modeling and Simulating the Efficiency
of Gearboxes and of Planetary Gearboxes

Christoph Pelchen, ZF Friedrichshafen, Germany (Christoph.Pelchen@zf.com)
Christian Schweiger, DLR, Germany (Christian.Schweiger@dlr.de)

Martin Otter, DLR, Germany (Martin.Otter@dlr.de)

Abstract

It is shown how to model and simulate frictional ef-
fects present in gearboxes and in planetary gearboxes.
This includes modeling of gear wheel stucking and
sliding due to Coulomb friction between the gear teeth
leading to load torque dependent losses. This allows
reliable simulation of, e. g., stick-slip effects in servo
drives or gear shifts in automatic gearboxes. It is also
discussed how the friction characteristics can be mea-
sured in a useful way. The presented models are im-
plemented in Modelica and demonstrated at hand of
the simulation of an automatic gearbox.

1 Introduction

Gearbox dynamics due to friction, elasticity and back-
lash in the gear has often a strong impact on the per-
formance of the system in which the gearbox is con-
tained, such as for robots, machine tools, vehicles,
power trains. It is both difficult to simulate gearbox
effects and to get reasonable agreement between mea-
surements and dynamic simulations.

In the current Modelica standard library Mo-
delica.Mechanics.Rotational [5] several
model components are available to simulate gearbox
effects, especially bearing friction. Missing is the sat-
isfactory handling of mesh efficiency due to friction
between the teeth of gear wheels which leads to load
torque dependent losses. In this article it is shown in
detail how this problem can be solved for any gear-
box that has two or three external shafts, i. e., standard
gears and a large class of planetary gears.

Before going into the details of an appropriate gear
efficiency model, it is important to analyse the differ-
ent frictional effects in a gearbox. Friction is present
between two surfaces which slide on each other. In a
gearbox, this occurs in the gear bearings and between
the gear teeth which are in contact to each other. The
effect of these two cases is quite different.

1.1 Bearing Friction

The torques acting at a bearing are shown in figure 1.
The shaft in the bearing has the torques τA and τB on
the two sides. Losses due to friction are described by
the additional torque τbf. Torque equilibrium yields

τB � τA� τbf � (1)

where

τbf �

��
�

� 0: ω� 0
� 0: ω� 0

so that ω̇� 0: ω� 0
(2)

The friction torque τbf is essentially a function of the
shaft speed ω, the bearing load fN (=force perpen-
dicular to bearing axis), the bearing temperature T ,
the bearing construction and the used lubrication (for
more details, see, e. g. [6]). Since the bearing load is
usually constant (but not zero) and independent of the
gearbox load torque, and all other factors can be often
regarded as constant for certain operation conditions,
the bearing friction is essentially a function of the rel-
ative speed, τbf�ω�, and has a characteristic as given in
figure 2.

If ω �� 0 the friction torque τbf is computed from
the sliding friction characteristic according to figure 2.
If ω � 0 the bearing is stuck due to the bearing load
in combination with Coulomb friction, and therefore
the friction torque τbf is an unknown constraint torque
which is computed so that ω̇ vanishes. How to model
and simulate this effect is described in detail, e. g., in
[8].

τA τΒ

τbf

Figure 1: Torques at a bearing

Modeling and Simulating the Efficiency of Gearboxes ... Pelchen C., Schweiger C., Otter M.

Modelica 2002, March 18−19, 2002 258 The Modelica Association

0.4 0.2 0 0.2 0.4
1

0

1

shaft speed ω / ω
max

fr
ic

tio
n

to
rq

ue
 τ

bf
 /

τ bf
0

Figure 2: Typical bearing friction characteristic

1.2 Mesh Friction

In figure 3, two gear teeth in contact are shown. In
order that the teeth neither penetrate nor separate, the
normal velocities in contact point C need to be iden-
tical and therefore the tangential velocities are differ-
ent, i. e., the teeth slide on each other, see, e. g., [3]
(the tangential velocities are only identical, if ωA � 0
or if point C is at W, see figure 3). As a result, in con-
tact point C Coulomb friction fR � sv µ fN is present,
where fR is the friction force in the contact plane, fN is
the force perpendicular to the contact plane, sv � �1
depending on whether C is below or above pitch circle
rA and µ � µ�vrel �T � is the sliding friction coefficient
which is essentially a function of the relative veloc-
ity vrel between the contact planes and the temperature
T at the contact point. Note, that the contact planes

rB

rA

lA
fR

ωΒ

τΒ

dB

lB

ωΑ
τΑ

fN

dA

W
C

fR, fN act on tooth B and with
opposite sign on tooth A

tooth A

tooth B

sv=+1

sv=-1

α

α

Figure 3: Friction between gear wheel teeth

may become stuck to each other if vrel � 0, i. e., if
ωA � 0. Then, fR is a constraint force calculated from
the condition that ω̇A � 0. Torque equilibrium in fig-
ure 3 yields

0 � τA� fN lA � fR dA

0 � τB� fN lB � fR dB

fR � sv µ fN

� τB �
lB
�

1� sv µ dB
lB

�

lA
�

1� sv µ dA
lA

� τA �

Utilizing teeth contact geometry and gear ratio i

cosα �
lA
rA

�
lB
rB

�
lB
lA

�
rB

rA
� i

results in

τB � iηmf1 τA with ηmf1 :�
1� sv µ dB

lB

1� sv µ dA
lA

� (3)

Since dA�lA � dB�lB for sv � �1, dA�lA � dB�lB for
sv � �1, and 0 � µ � 1, it follows from (3) that ηmf1

is between 0 and 1.
In a similiar way it can be shown (see, e. g., [7])

that the relative velocity vrel is calculated as vrel �
k���ωA where k��� is a function of the geometric quan-
tities dA�dB� lA� lB. Since all these quantities can be
computed from gear-wheel constants and the absolute
angle ϕA of shaft A, µ � µ�ϕA�ωA�T � and therefore
ηmf1 � ηmf1�ϕA�ωA�T �.

The derivation above is only valid if ωA � 0, be-
cause the friction force at the driven tooth is always
directed in opposite direction to the relative sliding ve-
locity. If ωA � 0 the sign of the friction force changes,
yielding:

ηmf2 τB � iτA with ηmf2 :�
1� sv µ dA

lA

1� sv µ dB
lB

� (4)

The derivations assume that the ”right” side of tooth
edge A is in contact. If the ”left” side is in contact,
the sign of the normal force changes. Collecting ev-
erything together and neglecting the temperature and
position dependency of ηmf1����ηmf2��� finally results
in the basic formula for mesh friction:

η̂mf :�

������
�����

ηmf1��ωA�� :

�
τA ωA � 0 or
τA � 0 and ωA � 0

1�ηmf2��ωA�� :

�
τA ωA � 0 or
τA � 0 and ωA � 0

so that ω̇A � 0: ωA � 0

(5)

where ηmf1��ωA�� � �0;1� and ηmf2��ωA�� � �0;1� de-
note the mesh efficiencies for the different power flow
directions characterized by PA � τA ωA. Note, that the
two mesh efficiencies are a function of the absolute
value of ωA. Often, ηmf1 � ηmf2. However, there are
also cases where the two mesh efficiences are very dif-
ferent, e. g., for worm gears.

Pelchen C., Schweiger C., Otter M. Modeling and Simulating the Efficiency of Gearboxes ...

The Modelica Association 259 Modelica 2002, March 18−19, 2002

2 Standard Gear

In this section, a mathematical description of the fric-
tional effects present in a standard gear is presented
and an appropriate Modelica model is sketched. The
gear type under consideration is shown in figure 4.
Here, ωA denotes the angular velocity of the left shaft

A B

AA ωτ , BB ωτ ,

Figure 4: Speeds and cut-torques of a standard gear

and ωB denotes the angular velocity of the right shaft,
respectively. At the cut-planes of the two shafts, the
constraint torques τA and τB are present. The class of
gears to be examined in this section is formally defined
as:

Definition 1: A gear denoted as standard
gear in this article has the following prop-
erties:

� The gear has two external shafts.

� The gear has one degree of freedom.

� The time invariant constraint equation

ωA � iωB (6)

holds, where i is constant and not zero.
This constant is called gear ratio1

This definition includes a broad class of gears.

2.1 Mathematical Description

A standard gear may have several bearings, several
gear stages and several teeth in contact. Based on
the observations in section 1.1 and 1.2, and assuming
that all bearing losses are either transformed to bearing
friction τbf,A at shaft A or bearing friction τbf,B at shaft
B and that mesh friction η̂mf is present, the following
loss model is obtained

τB� τbf,B ��i η̂mf �τA� τbf,A� � (7)

Reordering of terms yields

τB � i��η̂mf τA �
1
i

τbf,B � η̂mf τbf,A� � (8)

1The following derivation is also valid for variable gear ratios,
such as a CVT gear. The only addition is that the bearing friction
term τ̂b f is not only a function of ωA but also of the actual gear
ratio i, due to (8) and (9).

The torque direction of τbf,B depends on the sign of
ωB due to equation (2) and the torque direction of τbf,A

depends on the sign of ωA. Since ωB � iωA, the torque
direction of τbf,B��i� depends also on the sign of ωA.
Therefore, all bearing friction terms can be collected to
one overall bearing friction variable τ̂bf which has the
properties that (a) the direction of this torque depends
on ωA and (b) the value depends on the same energy
flow directions as η̂mf does. As a result, the following
gear loss model is obtained:

τB � i��η̂mf τA � τ̂b f � (9)

where

η̂mf :�

������
�����

ηmf1��ωA�� :

�
τA ωA � 0 or
τA � 0 and ωA � 0

1�ηmf2��ωA�� :

�
τA ωA � 0 or
τA � 0 and ωA � 0

so that ω̇A � 0: ωA � 0
(10)

describes the mesh frictions with ηmf1��ωA��,
ηmf2��ωA�� � �0;1� and

τ̂bf :�

������
�����

τbf1�ωA� :

�
τA ωA � 0 or
τA � 0 and ωA � 0

τbf2�ωA� :

�
τA ωA � 0 or
τA � 0 and ωA � 0

so that ω̇A � 0: ωA � 0
(11)

describes the bearing frictions with

τ̂bf�ωA� �

�
� 0 : ωA � 0

� 0 : ωA � 0
� (12)

More detailed models are obtained by taking into ac-
count that ηmf1���, ηmf2��� are additionally functions
of the absolute position ϕA of shaft A and of the gear
temperature T , and τ̂bf��� is additionally also a func-
tion of T , respectively.

The model above describes especially the case
when the gear bearings and the teeth in contact to
each other are stuck. This occurs when ω � 0. Then,
η̂mf and τ̂bf are constraint variables which are com-
puted from the condition that the gear remains stuck,
or formulated mathematically that ω̇A � 0. If the
constraint variables become greater as their respective
sliding values at zero speed, the gear leaves the stuck
mode and starts sliding. Note, that the stuck mode
is both due to bearing friction (because the bearing
loads introduce Coulomb friction) and due to mesh
friction. Since in stuck mode there are two additional
unknowns (η̂mf, τ̂bf), but only one additional equation

Modeling and Simulating the Efficiency of Gearboxes ... Pelchen C., Schweiger C., Otter M.

Modelica 2002, March 18−19, 2002 260 The Modelica Association

(ω̇A � 0), there is an ambiguity so that either η̂mf or τ̂bf

can have an arbitrary value in this mode.
A direct implementation of model (9) is difficult.

The key idea from [9] is to transform this model into
a form close to the standard bearing friction model
which is well understood. This requires to collect all
loss effects in an additive loss torque ∆τ, i. e., to de-
scribe the mesh and bearing frictions by the equation

τB � i��τA �∆τ� (13)

instead of (9). Equation (13) implicitly defines the
newly introduced loss torque ∆τ, i. e., (9) and (13) are
two equations for the three unknowns τA, τB and ∆τ.

In sliding mode, equation (9) is replaced by the
combined equation of (9), (13)

�η̂mf τA� τ̂b f ��τA�∆τ

and therefore

∆τ � �1� η̂mf�τA � τ̂bf � (14)

In stuck mode, equation (9) is replaced by the con-
straint equation ω̇A � 0.

To summarize, the transformed gear loss model is
defined by (10), (11) and equations:

τB � i��τA �∆τ� (15)

∆τ �

�
�1� η̂mf�τA� τ̂bf : ωA �� 0

so that ω̇A � 0 : ωA � 0
(16)

Note, that by this transformation the previous ambigu-
ity in stuck mode is removed. Utilizing (10)-(12) in
(16) for the sliding mode, results in the equations of
table 1. The different regions to compute ∆τ are visu-

ωA τA ∆τ �
� 0 � 0 �1�ηmf1�τA� �τbf1� �� ∆τmax1 � 0�
� 0 � 0 �1�1�ηmf2�τA� �τbf2� �� ∆τmax2 � 0�
� 0 � 0 �1�1�ηmf2�τA��τbf2� �� ∆τmin1 � 0�
� 0 � 0 �1�ηmf1�τA��τbf1� �� ∆τmin2 � 0�

Table 1: ∆τ � ∆τ�ωA�τA� in sliding mode

alized in the upper part of figure 5. In sliding mode, ∆τ
has either a value on the upper or on the lower limiting
lines, depending on the sign of ωA. In stuck mode, ∆τ
has a value between the limiting lines such thatω̇A � 0.
Stuck mode is left, when ∆τ reaches one of the limiting
lines.

In the lower part of figure 5 the torque loss ∆τ is
shown using ωA as abscissa and τA as curve parameter.

ωA = 0

∆τ

τΑ

∆τmax1, ωA > 0

∆τmin2, ωA < 0
∆τ(ωΑ=0)

ωA

∆τ τΑ

τΑ

Figure 5: ∆τ in sliding and stuck mode

By this figure it can be clearly seen, that the transfor-
mation to ∆τ results in a friction characteristic which
is close to a pure bearing friction model. The stuck
mode is described in an identical way. Only the slid-
ing friction torque is no longer a function of solely ωA,
but additionally a function of τA.

2.2 Modelica Model

The gear loss model derived in the previous section
can be implemented as a Modelica model in a straight-
forward manner. The parameters to be provided are
the gear ratio i and table lossTable to define the
gear losses, see table 2. Tabulated values of the vari-
ables ηmf1, ηmf2, τbf1, τbf2 have to be given as function
of ωA � 0. The values for negative ωA are automat-
ically taken care off. Whenever ηmf1, ηmf2, τ̂bf1 or
τ̂bf2 are needed, they are determined by interpolation
in lossTable. The interface of this Modelica model
is therefore defined as

parameter Real i = 1;
parameter Real lossTable[:,5]

= [0, 1, 1, 0, 0];

�ωA� ηmf1 ηmf2 �τbf1� �τbf2�
...

...
...

...
...

Table 2: Format of table lossTable.

Pelchen C., Schweiger C., Otter M. Modeling and Simulating the Efficiency of Gearboxes ...

The Modelica Association 261 Modelica 2002, March 18−19, 2002

using the unit gear ratio and no losses as a default.
Internally, the gear loss model is based on the

BearingFriction model, because this model al-
ready implements the sliding/stuck handling in a satis-
factory way. The only enhancement is that the sliding
friction torque ∆τ is not only a function of ωA but also
of the unknown variable τA and of the relations τA � 0,
τA � 0.

During code generation, this results in an addi-
tional algebraic loop in which τA, ∆τ and the two re-
lations are contained. Due to the structure of equa-
tion (14), the continuous unknowns (τA, ∆τ) enter this
loop linearly. The resulting algebraic loop is a mixed
Real/Boolean system of equations, which is very sim-
iliar to the corresponding mixed system of equation of
a pure bearing friction model, and can be solved with
the same methods, see, e. g., [8].

2.3 Measurement of Gear Losses

Efficiency measurement data provided in gearbox cat-
alogues contain usually not enough information for a
dynamic simulation (e. g., the losses for ωA� 0 are not
given). The reason is that in many cases only the over-
all efficiency is included as a function of load torque
for some constant angular velocities ωA �� 0.

In order to obtain the data needed for the
lossTable of the Modelica model, the following
measurement method is proposed:

For m� 2 fixed load torques τB� j (e. g., nom-
inal torque and half of the nominal torque)
and n angular velocities ωA�k, the necessary
driving torques τA are measured which are
needed to drive the gear for positive and
negative energy flow PA � ωA τA, including
measurements near ωA � 0 (= the gear shafts
start to rotate).

As a result, the following values are obtained:

τA� j�ωA�k� � τB� j � j � 2 ��m � k � 1 ��n� �

For every fixed speed ωA�k, equation (9) can be formu-
lated in the unknowns η̂mf and τ̂bf. Collecting all equa-
tions together results in one linear system of equations�

����
�iτA�1�ωA�k� 1
�iτA�2�ωA�k� 1

...
...

�iτA�m�ωA�k� 1

�
����
�

η̂mf

τ̂bf

�
�

�
����

τB�1

τB�2
...

τB�m

�
���� (17)

for every fixed speed ωA�k. If more than two load
torque measurements are available, (17) has no solu-
tion and is solved in a least square sense. For two load

torque measurements, a unique solution exists

η̂mf�ωA�k� � �
τB�1� τB�2

i�τA�1� τA�2�
(18)

τ̂bf�ωA�k� �
1
i

τB�2� η̂mf τA�2 � (19)

Finally, ηmf1�ωA�k�, ηmf2�ωA�k�, τbf1�ωA�k� and
τbf2�ωA�k� can be easily determined from η̂mf�ωA�k�
and τ̂bf�ωA�k� based on the sign of ωA τA using equa-
tions (10) and (11).

As already mentioned, in gearbox catalogues usu-
ally the overall efficiency η � �PB�PA is provided as
function of the load torque τB. To demonstrate that the
presented loss model produces qualitatively the same
result, the overall efficiency of the following example
with the loss model

ηmf1 � 0�97

τbf1�τBmax � 0�01�ω2
B �2ωB �5�

is shown in figure 6. As can be seen, the typical hy-
perbolical curves are present, although the mesh effi-
ciency is constant.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

τ
B
 / τ

Bmax

η
(τ

B
,ω

B
)

ω
B
 = 0.1, 0.5, 1.0 rad/s

Figure 6: Overall efficiency as function of τB.

3 Planetary Gear

In this section the frictional effects of planetary gears
are mathematically described in a similiar way as in

A B C

AA , BB , CC ,

Figure 7: Speeds and cut-torques of a planetary gear

Modeling and Simulating the Efficiency of Gearboxes ... Pelchen C., Schweiger C., Otter M.

Modelica 2002, March 18−19, 2002 262 The Modelica Association

the previous section (based on [9]) and an appropriate
Modelica model is derived. The variables describing
a planetary gear are shown in figure 7, where ωA, ωB,
ωC denote the angular velocities of shafts A, B, C and
τA, τB, τC denote the torques at the cut planes of the
shafts, respectively. The examined gears are defined
as follows:

Definition 2: A gear denoted as planetary
gear in this article has the following proper-
ties:

� The gear has three external shafts.

� The gear has two degrees of freedom.

� The time invariant constraint equation

ωAB � i0 ωCB (20)

holds, with

ωAB � ωA�ωB

ωCB � ωC�ωB

where the so-called stationary gear ra-
tio i0 is constant and is in the range
i0 ��1 or i0 � 1 (for i0 outside of this
range, the role of shafts A and C has
just to be exchanged. However, i0 � 0
and i0 � 1 is never possible).

Note, that Willis’ equation, see, e. g. [4], is equivalent
to (20). A large class of planetary gears matches to this
definition. Some examples are shown in figure 8. The
stationary gear ratio i0 is usually computed from the
teeth number of the gear wheels. For example, for the
gearbox in the left upper corner of figure 8, i0 � zr�zs,
where zs is the number of teeth for the inner sun wheel
and zr is the number of teeth for the outer ring wheel
(teeth numbers are taken negative for internal teeth).

3.1 Mathematical Description

The relationship between the angular velocities of the
three shafts shown in figure 7 can be described using
relative kinematics yielding

ωA � ωB0�ωAB (21)

ωB � ωB0 (22)

ωC � ωB0�ωCB � (23)

The structure of (21)-(23) reflects the superposition of
two movement types:

Figure 8: Examples of planetary gears according to
definition 2 [4]

� Block movement. The whole gear rotates as one
fixed block with angular velocity ωB0:

ωA � ωB � ωC � ωB0 �

During this movement a power P1 is transmitted
solely by rigid coupling of the three shafts. As
the three shafts are not rotating relative to each
other, any losses due to friction between the teeth
of the gear wheels or in internal bearings cannot
arise, i. e., the block movement is without losses.

� Stationary gear movement. Shaft B is fixed rela-
tive to the inertial system:

ωB0 � 0 � ωA � ωAB ωC � ωCB �

During this movement a power P2 is transmit-
ted solely by sliding of teeth in all three gear
wheels resulting in power losses due to friction
between the teeth of the gear wheels and in in-
ternal bearings not related to the external shafts.
Since the shaft speeds are a function of ωAB�ωCB

and ωCB � ωAB�i0 due to (20), losses only occur,
if ωAB �� 0.

In order to achieve further equations energy flow con-
servation is considered according to figure 9 involving

planetary
gearbox

P∆

AP

BP

CP

Figure 9: Energy flow

Pelchen C., Schweiger C., Otter M. Modeling and Simulating the Efficiency of Gearboxes ...

The Modelica Association 263 Modelica 2002, March 18−19, 2002

the energy flows in the shafts, PA, PB, PC, and the fric-
tion losses ∆P which dissipate to heat:

P� PA �PB �PC �∆P � 0 (24)

with

PA � τA �ωB0 �ωAB� (25)

PB � τB ωB0 (26)

PC � τC �ωB0 �ωCB� � (27)

∆P ��∆τωAB � (28)

Since losses can only occur if ωAB �� 0, the power loss
∆P has been formulated as the product of ωAB and a,
yet unknown, virtual loss torque �∆τ. Using (24)-(27)
and (20) results in

P � ωB0 �τA � τB � τC�� �� �
P1

�ωAB �τA � τC�i0�∆τ�� �� �
P2

(29)

Since a planetary gearbox has two degrees of freedom
(see definition 2), the two speeds ωB0 and ωAB can
have arbitrary values which are independent from each
other. Therefore the speed factors must vanish

0 � τA � τB � τC (30)

0 � τA � τC�i0�∆τ (31)

By solving (31) for τC and (30) for τB, the two equa-
tions can be alternatively formulated as

τC � i0��τA �∆τ� (32)

τB � �i0�1�τA� i0 ∆τ (33)

When stationary gear movement occurs, i.e., ωB0 � 0,
the planetary gear reduces to a standard gear with two
external shafts where the losses are described accord-
ing to equation (9)

τC � i0 ��η̂mf τA � τ̂bf� (34)

where η̂mf�ωAB� describes mesh friction

η̂mf :�

������
�����

ηmf1��ωAB�� :

	
τA ωAB � 0 or
τA � 0 and ωAB � 0

1�ηmf2��ωAB�� :

	
τA ωAB � 0 or
τA � 0 and ωAB � 0

so that ω̇AB � 0: ωAB � 0
(35)

with ηmf1, ηmf2 � �0;1� and τ̂bf describes friction in the
internal bearings of the planetary gearbox (e. g., for a
standard planetary gearbox with sun, planet and ring

wheel, τ̂bf�ωAB� is the bearing friction torque in the
planet bearings)

τ̂bf :�

������
�����

τbf1�ωAB� :

	
τA ωAB � 0 or
τA � 0 and ωAB � 0

τbf2�ωAB� :

	
τA ωAB � 0 or
τA � 0 and ωAB � 0

so that ω̇AB � 0: ωAB � 0
(36)

with

τ̂bf�ωAB� �

� 0 : ωAB � 0

� 0 : ωAB � 0
� (37)

No losses will be additionally introduced when a block
movement is superpositioned, as discussed previously.
Therefore, (34) is also valid for a general movement.
Comparision of (34) with (32) results in

i0��τA �∆τ� � i0 ��η̂mf τA � τ̂bf�

and therefore

∆τ � �1� η̂mf�τA � τ̂bf � (38)

As energy can dissipate only,

∆P ��ωAB ∆τ
!
� 0 (39)

��ωAB ��1� η̂mf�τA � τ̂bf� (40)

���1� η̂mf�τA ωAB�ωAB τ̂bf (41)

Since

1� η̂mf � 0 for τA ωAB � 0

1� η̂mf � 0 for τA ωAB � 0

according to (35), the first term in (41) is never pos-
itive. With (37) the same also holds for the second
term and therefore ∆P is in fact never positive. Utiliz-
ing (35)-(37) and (38) for the sliding case, results in
the equations of table 3 to actually calculate ∆τ.

In the stuck mode the planetary gear rotates with-
out any losses as a block. Similar to Sec. 2 the torque
loss ∆τ is then defined implicitly by the constraint
equation ω̇AB � 0. The gear remains in sliding mode
until ωAB becomes zero. It remains in stuck mode as
long as the calculated torque loss ∆τ is lying in the
stuck region according to figure 10.

ωAB τA ∆τ �
� 0 � 0 �1�ηmf�τA � �τbf1� �� ∆τmax1 � 0�
� 0 � 0 �1�1�ηmf�τA � �τbf2� �� ∆τmax2 � 0�
� 0 � 0 �1�1�ηmf�τA��τbf2� �� ∆τmin1 � 0�
� 0 � 0 �1�ηmf�τA��τbf1� �� ∆τmin2 � 0�

Table 3: ∆τ � ∆τ�ωAB�τA� in sliding mode

Modeling and Simulating the Efficiency of Gearboxes ... Pelchen C., Schweiger C., Otter M.

Modelica 2002, March 18−19, 2002 264 The Modelica Association

ωAB = 0

∆τ

τΑ

∆τmax1, ωAB > 0

∆τmin2, ωAB < 0
∆τ(ωAB = 0)

Figure 10: ∆τ in sliding and stuck mode

�ωAB� ηmf1 ηmf2 �τbf1� �τbf2�
...

...
...

...
...

Table 4: Format of table lossTable

3.2 Modelica Model

The planetary gear loss model derived in this section
can be implemented as a Modelica model in a sim-
ilar way as described in Sec. 2. The parameters to
be provided are the stationary gear ratio i0 and table,
lossTable to define the gear losses, see table 4.

Whenever ηmf1, ηmf1, τbf1 or τbf2 are needed, they
are determined by interpolation in lossTable. The
interface of this Modelica model is therefore defined
as

parameter Real i = 1;
parameter Real lossTable[:,5]

= [0, 1, 1, 0, 0];

using the unit gear ratio and no losses as a default.
The comments about model interna given in Sec. 2 are
valid similarily for the planetary gear model.

This Modelica model can be connected with com-
ponent Modelica.Mechanics.Rotational.-
BearingFriction at each shaft to model addi-
tionally the friction influence of bearings related to
the external shafts. As a consequence multiple fric-
tion phases arise with the phenomena explained, e. g.,
in [8].

4 Simulation Results

In this section simulation results are presented for
models containing the standard and planetary gear
models with losses developed in the last sections, us-
ing the Modelica modeling and simulation environ-
ment Dymola, version 4.2a [1].

4.1 Standard gear with mesh friction

Figure 11 contains a Dymola screenshot of the model
under consideration. It is a standard gear with mesh
friction that is driven by a sinusoidal torque and has a
load torque which is linearly increasing.

In figure 12 and 13 results of a simulation are
shown for ηm f � 0�5 and ηm f � 0�9: The thicker lines
are the loss torques ∆τ whereas the thinner lines char-
acterize whether mesh friction is in forward sliding
(mode=+1), backward sliding (mode=-1) or stuck
(mode=0) mode.

As can be seen in the upper part of figure 12 from
the two stuck modes, the maximum loss torque is not
constant (as it is for bearing friction) but depends on
the driving torque. Additionally, figure 13 contains the
speed of inertia 2 for ηm f � 0�5. During stuck mode,
the velocity vanishes.

4.2 Gear shift dynamics of automatic gear

The mesh friction model for planetary gears as well as
the clutch friction model already available in the Mod-

i=2

gear

inertia1

J=1

inertia2

J=1.5
tau

torque1

tau

torque2
drive

freqHz={1}

load

duration={2}

Figure 11: Modelica composition diagram of gear
with mesh friction.

0 0.1 0.2 0.3 0.4 0.5

2

0

2

4

time [s]

∆τ
 [N

m
]

fo
r η

m
f=

0.
5

mode

0 0.1 0.2 0.3 0.4 0.5

2

0

2

4

time [s]

∆τ
 [N

m
] f

or
 η

m
f=

0.
9

mode

Figure 12: Loss torque ∆τ and mode in gear with mesh
friction ηm f � 0�5 and ηm f � 0�9.

Pelchen C., Schweiger C., Otter M. Modeling and Simulating the Efficiency of Gearboxes ...

The Modelica Association 265 Modelica 2002, March 18−19, 2002

0 0.1 0.2 0.3 0.4 0.5

0.02

0.01

0

0.01

time [s]

sp
ee

d
of

 in
er

tia
2

[m
/s

]

η
mf

=0.5

Figure 13: Speed of inertia 2 for ηm f � 0�5.

elica standard library are very well suited to simulate
the shift dynamics of automatic gearboxes reliably and
efficiently. As an example, the shift dynamics of the
automatic gearbox ZF 4HP22 is examined in more de-
tail. A schematic together with the gear shift table is
given in figure 14 (from [2]).

From this schematic it is straightforward to build
up the Modelica composition diagram from figure 18
containing the clutches, combined clutches and free
wheels, and the three planetary gears with mesh fric-
tion (ηm f � 0�975).

In order that simulations can be performed, a
model of the environment in which the automatic gear
operates is needed. A typical example of a longitudi-
nal dynamics model of a vehicle is shown in figure 19.
It consists of a driver, an engine, an automatic gearbox
with transmission control unit, an axle and a simple
1-dimensional vehicle model containing the most im-
portant drive resistances.

Signals, such as desired vehicle velocity or throttle
position, are transported between the components by a
signal bus. Via send and receive blocks, signals
can be send to or received from the bus connector bus

Gear C4 C5 C6 C7 C8 C11 C12

1 x x
2 x x x x
3 x x x x
4 x x x x
R x x x

C4

C5 C6 C7 C8
C11

C12

Figure 14: Gear shift table for gearbox ZF 4HP22.

which is a Modelica connector containing declarations
of all variables present in the bus.

Typical simulation results of the model are shown
in figure 15-17, especially in figure 15 the desired and
actual velocity of the vehicle in km/h, in figure 16 the
vehicle acceleration and the actual gear determined by
the simple transmission control unit, and in figure 17
the torque loss ∆τ of the right most planetary gearbox
p3.

0 50 100 150 200
0

100

200

300

time [s]

desired vehicle velocity
vehicle velocity

Figure 15: Desired and actual velocity of vehicle.

0 50 100 150 200

5

0

5

time [s]

ve
hi

cl
e

ac
ce

le
ra

tio
n

[m
/s

2]

gear

Figure 16: Vehicle acceleration and actual gear.

0 50 100 150 200
4

2

0

2

4

time [s]

p3
 lo

ss
 to

rq
ue

 ∆
τ

[N
m

]

gear

Figure 17: Loss torque ∆τ in planetary gear p3.

Modeling and Simulating the Efficiency of Gearboxes ... Pelchen C., Schweiger C., Otter M.

Modelica 2002, March 18−19, 2002 266 The Modelica Association

a b

i_0=-70/30

p1

i_0=-70/30

p2

fix2=0

ine...

J=1e-4

i_0=-70/30

p3

ine...

J=1e-4

fix3=0fix1=0

C4 C5

C
6

C
12

C
8

C11

Figure 18: Modelica composition diagram of automatic gearbox ZF 4HP22.

������

��

��

����������
��
����	
��

�

����

����
��

�
�
�
��
��
�
�
�
�
	

��
��

Figure 19: Modelica composition diagram of vehicle
longitudinal dynamics.

5 Conclusions and Outlook

A loss model for a broad class of standard gears
and planetary gears has been presented which in-
cludes Coulomb friction in the gearbox bearings and
Coulomb friction between the gear teeth. Most impor-
tant, the locking and unlocking of the friction elements
are handeled, including the friction between the gear
teeth. This allows to model and simulate the stick-slip
effect of standard and planetary gears as function of
the shaft speeds and the driving or load torque which
is essential for the design of servo drives.

The usual approach to model mesh friction as an
element which switches between two different effi-
ciencies, leads in such situations to chattering, i. e.,
very fast switching between the two possible modes
which in turn results in very small step sizes and prac-
tically stops the simulation. The new approach de-
scribed here will lead to much more reliable and more
efficient simulations.

The gear losses in standard gears have been im-
plemented in a new model LossyGear which will
be available in the next version of the Modelica.-
Mechanics.Rotational library. The gear loss

model for planetary gears has been implemented in a
new model LossyPlanetary which will be avail-
able in the next version of the PowerTrain library.

6 Acknowledgements

This work was in parts supported by ”Bayerisches
Staatsministerium für Wirtschaft, Verkehr und Tech-
nologie” under contract AZ300-3245.2-3/01 for
the project ”Test und Optimierung elektronischer
Steuergeräte mit Hardware-in-the-Loop Simulation”,
and by the European Commission under contract IST-
199-11979 for the project ”Real-time simulation for
design of multi-physics systems”.

References

[1] Dymola: “Homepage: http://www.dynasim.se/.”

[2] Förster H.: Automatische Fahrzeuggetriebe. Springer,
1991.

[3] Köhler G., and Rögnitz G.: Maschinenteile, Teil 2.
Teubner, 8th ed., 1992.

[4] Loomann J.: Zahnradgetriebe. Springer, 3 rd ed., 1996.

[5] Modelica libraries: “Homepage:
http://www.modelica.org/libraries.shtml.”

[6] Niemann G., Winter H., and Höhn B.: Maschinenele-
mente, Band 1. Springer 3rd ed., 2001.

[7] Niemann G., and Winter H.: Maschinenelemente, Band
2. Springer, 2nd ed., 1989.

[8] Otter M., Elmqvist H., and Mattsson S.-E.: “Hybrid
Modeling in Modelica based on the Synchronous Data
Flow Principle,” in CACSD’99, Hawaii, USA, Au-
gust 22–26, 1999.

[9] Pelchen C.: “Wirkungsgradbehandlung bei Planeten-
satz und Standübersetzung.” Personal communication
to M. Otter and C. Schweiger, Nov. 2001.

Andreasson J., Jarlmark J. Modularised Tyre Modelling in Modelica

The Modelica Association 267 Modelica 2002, March 18−19, 2002

Modularised Tyre Modelling in Modelica

Johan Andreasson and Jonas Jarlmark
Div. of Vehicle Dynamics

Dept. of Vehicle Engineering
Royal Institute of Technology

SWEDEN
E-mail: {johan,jonask}@fkt.kth.se

Abstract

Good tyre models are essential for driving sim-
ulation of all ground vehicles using pneumatic
tyres. However, tyre behaviour is extremely com-
plex, often requiring different models for the var-
ious behaviours. This paper presents an imple-
mented tyre model library that takes advantage of
the modular modelling possibilities in Modelica to
combine different models. For example, the differ-
ent sub models representing tyre-to-road contact
can be combined with various models for tyre belt
behaviour. The library can be used together with
vehicle models in one, two and three dimensions.

1 Introduction

Complex tyre behaviour is a direct result of the
tyre construction. While looking much like a sim-
ple rubber doughnut attached to the rim, the tyre
construction is vastly more complex, figure 1.

The two main functions of the tyre, is force gen-
eration in the road plane and suspension of the ve-
hicle mass. The force generation is made possible
by the rubber tread, causing a high friction coeffi-
cient with the road surface. The suspension of the
vehicle mass is managed by the carcass, consist-
ing of the belt, radial cords and beads. The radial
cords work like the spokes of a bicycle rim; a pre-
tension must be exerted by pressurised air inside
the tyre to carry the loads. Because of the two
main functions of the tyre, modelling of the be-
haviour can be split into modelling the functions
of the tyre, rather than modelling the tyre itself.

Naturally, there are more areas to take into ac-
count when the combination of components for the
tyre is to be selected and calculated. Areas such
as comfort, traction and cornering are covered by

Figure 1: The tyre construction of a normal pas-
senger car tyre. 1 - tread, 2 - sidewall, 3 - radial
cord, 7 - belt, 9 - bead.

the main functions. There are also issues such as
rolling radius, steering behaviour, force feed back,
vibrations, sound radiation, water dispersion, di-
rectional stability to be considered when designing
a tyre.

Depending on the type of modelling required,
single, several or all areas involved need to have
exclusive models allocated. The selection of the
areas of interest are made by the modeller. There-
fore, it can be of great help to posses a flexible way
to add and subtract function models of the tyre.

When examining the main functions, the de-
mand made on precision, processing time and
comprehension, generates a need for different
models for the same function. The suspension
function is mostly modelled dynamically and is
used for comfort purposes. A simple model could

Modularised Tyre Modelling in Modelica Andreasson J., Jarlmark J.

Modelica 2002, March 18−19, 2002 268 The Modelica Association

be a spring - mass - damper system with one de-
gree of freedom. If more complexity is required,
a rigid or flexible belt model connected with pre-
tensioned springs and dampers to the rim with
correct geometry as presented by Böhm [1] will
give a fairly good representation, figure 2. The
most complex models are the full FE-models with
anisotropic cord, internal rubber damping, com-
plex friction behaviour and temperature calcula-
tion.

Rim

Belt

Figure 2: Rigid belt model with pre-tensioned
springs.

For lateral and longitudinal direction, force gen-
eration models for cornering and traction are often
empirical models, where measured data are fitted
to polynomials to give an analytical function, fig-
ure 3, however, physical models also exist. A sim-
ple modelling approach is the use of a cornering
stiffness; a linear relation between force and slip,
valid only in a very limited area of handling. A
simple but wider model would be a curve fit of the
forces as a function of slip angle and slip ratio with
saturation and load dependency. A more com-
plex models is the Magic Formula [2], developed
by TU Delft and Volvo Cars Corporation. This
model also includes force due to camber, rolling
radius changes and rolling resistance. The Magic
Formula will give lateral and longitudinal force,
aligning moment and driving moment from vari-
ous analytical functions. All these models assume
point contact and do not take into account the
width or length of the contact patch. This as-
sumption simplifies the calculations and reduces
the need for accurate road data.

2 Definitions

Because of the tyre complexity, several reference
frames are necessary to model its behaviour. To

-15 -10 -5 5 10 15

4

2

-2

-4

Fy [kN]

α [o]

Figure 3: Typical appearance for the lateral force,
Fy, as function of slip angle, α, in this case gen-
erated with the Magic Formula, [3].

ensure that the model structure allows the sim-
ple addition and reuse of components within new
models, the modelling is based on two interna-
tional standards; DIN and TYDEX. According to
the DIN coordinate representation, illustrated in
figure 4, x points forward, y to the left and z right
up. The TYDEX definition of the carrier frame,
C, and contact frame, W , is shown in figure 5. The
carrier frame is fixed at the car’s suspension and
the contact frame is located at the intersection
of the carrier frame’s z-axis and the road plane.
Generally, the contact point is not located at the
origin of frame W and therefore a frame W ′ is in-
troduced. Frame R, located at the rim, is used
since the forces and torques generated by the tyre
cannot act directly at the carrier.

z

x
y

ψ

ϕ
θ

Figure 4: The coordinates according to DIN. Yaw,
pitch and roll are indicated with ψ, θ and ϕ, re-
spectively.

Andreasson J., Jarlmark J. Modularised Tyre Modelling in Modelica

The Modelica Association 269 Modelica 2002, March 18−19, 2002

C

R

W
W ′

γ

Figure 5: The frames used in the modelling. The
deformation of the tyre belt results in a displace-
ment of the contact point from W to W ′. The
carrier frame, C, and the rim frame, R, do not
rotate with the wheel.

3 Model structure

The models that this modularisation is based on
all assumes that the tyre-road contact patch can
be approximated by a point. This assumption is
used to define the cuts at the tyre-road, the tyre
rim and the rim-carrier. With this modularisa-
tion, a tyre can be described with three parts, hub,
tyre belt and tyre-road contact, as shown in fig-
ure 6. These components are described in more
detail below, the frames referred to are indicated
in figure 5.

tyreB
elt

hub

fx
fy

t
z

tyreRoad

carrierFramecarrierFrame wheelAxis

tyreB
elt

hub

f x

f
y

t
z

tyreRoad

carrierFramecarrierFrame wheelAxis

C

R

W ′

Figure 6: The tyre models consists of three main
subcomponents: The hub, the tyre belt and the
tyre-road contact.

3.1 Hub

The hub is mounted on the carrier and allows
the wheel and drive axis to rotate around the y-
axis. Since none of the frames rotates with the
wheel, the Modelica-model of the hub transforms
the forces and torques acting at the rim frame, R,
to the carrier frame, C and the drive axis. This
cannot be done by a standard component since
the torque around the y-axis only should act at
the drive axis.

3.2 Tyre belt

The tyre belt carries the load on the wheel dis-
tributing the forces from the tyre-road contact
patch to the rim. As mentioned earlier, the patch
is approximated with a point. The Modelica-
model of the tyre belt describes the relation be-
tween the contact point frame, W ′, and the rim
frame, R. There are several ways of implement-
ing this where the simplest rim model neglects the
”horizontal” deformation of the tyre belt which
gives W ′ = W .

3.3 Tyre-road contact

The tyre-road contact generates friction forces and
torques that act on the tyre belt. The Modelica
model calculates and applies these to the contact
point frame, W ′. Most of these models are em-
pirical and generates forces as functions of slip,
camber angle etc. An example is the Magic For-
mula model used in figure 3.

4 Utilities

In addition to the main components described in
section 3.1-3.3, other components are realised to
simplify the extension of the Wheels library. Some
of which are described in more detail below.

4.1 State handler

This component is introduced since the tyre mod-
els are not strictly physical. This is due to the
modularisation and to the fact that some tyre
states cannot be calculated from the simpler mod-
els. For example, x−y vehicle models, as the bicy-
cle model [3], require that the normal force and the
camber angle are given as parameters. More de-
tailed models, where this information is required,

Modularised Tyre Modelling in Modelica Andreasson J., Jarlmark J.

Modelica 2002, March 18−19, 2002 270 The Modelica Association

can be used in a convenient way by using this state
handler.

4.2 Contact point

The ContactPoint component is used within the
TyreBelt to calculate frame W . Depending on
the implementation this can be implemented in
several ways. As described in [4], external road
information can be provided via the inner/outer
Modelica constructs. Information needed to cal-
culate W is the road normal and altitude as a
function of longitude and latitude.

4.3 Camber angle

The camber angle is the angle between the road
normal and the z-axis of the carrier frame, indi-
cated with γ in figure 5. The implementation in
Modelica is more general and calculates the angle
between the z-axes of any pair of frames.

4.4 Tyre radius

There are at least three different tyre radii, un-
deflected radius, R, effective rolling radius, Re

and loaded radius, Rl. The loaded radius is the
wheel centre’s height over ground, while the ef-
fective rolling radius is a measure of how far a
free rolling tyre travels per revolution. Generally,
Rl < Re < R. This means that the rolling tyre
travels farther per revolution than determined by
using the wheel’s centre height as rolling radius.
Mixing these definitions would thus lead to erro-
neous simulation results.

In the Wheels library, the loaded radius, can be
calculated at any time, while the effective rolling
radius as well as the undeflected radius must be
given as parameters or functions.

5 Interfaces

As mentioned earlier, the Wheels library can
be used in one, two and three dimensions.
The interfaces for these are taken from the
Modelica.Mechanics.Translational (1D) and
ModelicaAdditions.MultiBody (3D), [5]. To
handle the the two-dimensional models, a li-
brary MultiBody2D has been realised. Addition-
ally, for example, the interfaces from Modelica.
Mechanics.Rotational are used for the wheel

axis and thus, the wheels can be connected with
available packages for power-trains.

To guarantee that the different tyre models are
replaceable, they all are based on interface models,
BaseWheel[*], where [*] is the dimensions they
are meant for, e.g. BaseWheelXY for a wheel in
the XY plane. In total, seven different interfaces
are realisable, X, Y, Z, XY, XZ, YZ and XYZ.

5.1 MultiBody2D

This library is used to describe two-
dimensional mechanical systems and is based
on the same ideas as the three dimensional
ModelicaAdditions.MultiBody library, [5].
Instead of three DOF each for translation and
rotation as in the 3D-case, this library has two
DOF for translation and one DOF for rotation,
allowing only planar motion. The Modelica
definition of the interface is:

connector Frame a
Modelica.SIunits.Position r0[2];
Real S[2, 2];
Modelica.SIunits.Velocity v[2];
Modelica.SIunits.AngularVelocity w;
Modelica.SIunits.Acceleration a[2];
Modelica.SIunits.AngularAcceleration z;
flow Modelica.SIunits.Force f[2];
flow Modelica.SIunits.Torque t;

end Frame a;

In figure 7, parts of the MultiBody2D-library are
shown.

Library

Interfaces

Library

Parts

Library

Joints

Library

Forces

Library

CutJoints

Library

Sensors

Library

Visualisers

Revolute Prismatic= Planar

InertialSystem

r=

FrameTranslation Body Body2

TwoD2ThreeD ThreeD2TwoD
ShapeBody= Shape

Figure 7: The MultiBody2D library. The parts
indicated provide an interface to the Modelica-

Additions.Multibody library.

Andreasson J., Jarlmark J. Modularised Tyre Modelling in Modelica

The Modelica Association 271 Modelica 2002, March 18−19, 2002

6 Usage

To get a better idea of how the Wheels library can
be used, some examples and aspects are presented
below.

6.1 Bicycle model

The bicycle model is a very simple model of a ve-
hicle. However, it provides essential information
about a vehicle’s behaviour. The motion is re-
stricted to the x-y plane and the, normally, two
wheel per axis are replaced by one single wheel,
i.e. a bicycle with the centre of gravity in the
ground plane.

In figure 8, a bicycle model of a car with a trailer
is shown. The bicycle is connected to an iner-
tial system (1) via a planar joint (2) allowing x-y
translation and rotation around z. The bicycle
consist of a body (3) with mass and inertia, trans-
lations (4,5) from the centre of gravity to the front
and rear wheels and a revolute joint for the steer-
ing (6). The wheels (7,8) could be of any kind as
long as they use the BaseWheelXY interface. Ad-
ditionally, a connector COG (9) makes it possible to
attach further components to the model. In this
case a trailer is attached, it would also be possible
to add, for example, aero dynamical models and
sensors.

inertialSystem

x
y

r={-1,0}

rear

r={0.7,0}

front

pl
an

ar

fro
nt

S
te

er
in

g

body

box
CoG

phi

delta

steeringy

x

y

x

re
ar

W
he

el y

x

y

x

fro
nt

W
he

el

trailer car

Lane

change

COG

re
ar

W
he

el

pl
an

ar

steering

rear front

fr
on

tW
he

el

inertialSystem

Lane
change

body

1 2

3

45

6

7 8

9

Figure 8: An implementation of a bicycle model
with the MultiBody2D library, note how simple it
is to add a trailer.

6.2 Switching tyre models

Modelica provides a convenient way of re-
placing models with the same interface using

replaceable and redeclare. To illustrate how
this works, an example with a replaceable front
wheel in a bicycle model in the x-y plane is dis-
cussed.

Since all wheel models for the x-y plane have the
same interface, BaseWheelXY, this is used within
the declaration of the bicycle model:

model Bicycle
replaceable BaseWheelXY frontWheel;
...

end Bicycle;

Whenever a bicycle model is used, the tyre model
can easily be replaced with any x-y model:

model AnyXY
extends BaseWheelXY;
...

end AnyXY;

model BicycleTest
Bicycle bicycle(redeclare
AnyXY frontWheel);
...

end BicycleTest;

Without this feature, a new model, in this case
the Bicycle model, would have to be realised for
each combination of wheel models studied.

6.3 Parameterisation

The more complex a tyre model gets, the more pa-
rameters are required. As an example, the Magic
Formula model to calculate the steady-state forces
and torques acting at the contact point requires 73
parameters. Since the parameter sets differ from
model to model, it would be lengthy to define each
parameter value within a redeclare phrase as de-
scribed in section 6.2.

Instead, the parameter sets are gathered in
records that are used like structural variables.
These records can then be treated as single pa-
rameters and be stored as models in the library.

6.4 Adding components for visualisa-
tion

Due to the modularisation, additional components
can easily be attached. To illustrate this, an ex-
ample where animation information is added to
the tyre is shown. In figure 9, components named
contact and contactPatch are added. contact

Modularised Tyre Modelling in Modelica Andreasson J., Jarlmark J.

Modelica 2002, March 18−19, 2002 272 The Modelica Association

provides visual information about the forces as
vector shapes acting at the cut. In this case, the

carrierFramecarrierFrame driveShaft

tyreB
elt

fx

f
y

t
z

tyreRoad

hub

contactP
atch

box

contact

carrierFrame driveShaft

Figure 9: Since the components are separated it
is easy to add additional information, in this case
graphical information.

contact point forces are visualised but this com-
ponent could of course be attached at any cut to
illustrate forces. contactPatch is an ordinary box
shape that visualises the contact point as a square.
This is a very simple way to to illustrate the tyre
belt deformation. Figure 10 shows a snapshot of
the animation result.

Figure 10: These animation pictures shows forces
in x-, y- and z- direction of the W ′ frame. The
tyre belt deformation is indicated by the red square.

6.5 Mixing dimensions

Up to this point it has been assumed that the tyre
model used has the same dimensions as the car
model that is used. However this is not a necessity
as will be shown in the following example.

Assume that the y-z motion of a car is to be
studied, when driving with constant speed on a
highway, and that an XYZ model is to be used.
With the component TwoD2ThreeD, a connection
between the tyre model in 3D and the car in 2D
can be made as illustrated in figure 11. The addi-
tional information needed for the 3D frame, such
as longitudinal speed, is given as parameters.

rTw oD2ThreeD

rightWheel

lTw oD2ThreeD

leftW heel

chassis

2D cuts

3D cut 3D cut

Figure 11: An example of how dimensions can be
mixed. The TwoD2ThreeD component, allows a 3D
wheel to be connected to a 2D car model.

6.6 Choosing accurate models

Even if the modularisation eases the modelling
work, the need to understand the models, in or-
der to know their limitations is still a necessity.
Performing manoeuvres that takes the tyre model
outside the valid range may have fatal conse-
quences as seen in the following example:

With a vehicle model, two steering step inputs
of 0.03 rad and 0.2 rad at the front wheels are
simulated. First, a linear tyre-road contact model
is used and then, the same simulations are per-
formed with a Magic Formula tyre-road contact
model. In the first case, the wheel slip is low and
both models behave similarly, but for the second
case, the linear model is no longer relevant, fig-
ure 12.

In the above example, the limitation of the lin-
ear model is deliberately made obvious, but often
it is harder to detect when the range of the model’s
validity is exceeded. To help the user avoid these
situations, the plan is to add an alert procedure
that checks crucial variables against model limita-
tions. This function is not yet implemented.

6.7 Case study

To give an example of the usage of the Wheels
library and further illustrate the necessity of cor-

Andreasson J., Jarlmark J. Modularised Tyre Modelling in Modelica

The Modelica Association 273 Modelica 2002, March 18−19, 2002

0 0.4 0.8 1.2 1.6 2 2.4 2.8
0

0.1

0 0.4 0.8 1.2 1.6 2 2.4 2.8
0

1

Linear
Magic Formula

ψ̇

ψ̇

t

t

Figure 12: The plots show the yaw speed response.
The upper plot shows similar results for both mod-
els while the lower plot shows how the linear model
lacks ability to predict skidding. Obviously, this
manoeuvre is outside the model’s range of valid-
ity.

rect tyre models, a parameter study is performed.
The concepts understeer and oversteer are famil-
iar to many and a widely spread opinion is that
a car with more ”weight on the front wheels” will
understeer while more ”weight on the rear wheels”
will make the car oversteer.

To show the limitation of this theory a variation
of the location of the centre of gravity is compared
to a variation of the tyres’ maximum side force.
The results are shown with the understeer gra-
dient, Kus, which is a quantification of how much
more one has to turn the steering wheel to increase
the lateral acceleration, compared to a neutral car.
Mathematically this is defined as

Kus =
1
is

∂δH

∂ay
− ∂δA

∂ay
(1)

where δH is the steering wheel angle and is the
ratio between the steering wheel angle and the
wheel angle. δA, called the Ackermann angle, is
the wheel angle required to turn the car at low
speed with no slip and ay is the lateral accelera-
tion.

Positive Kus thus means that the driver has to
turn the steering wheel more to get the desired
motion compared to driving a neutral car, i.e. the
car understeers. If Kus is negative, less input has
to be given and the car oversteers.

To perform the variation, the variables λ and µ

are introduced. λ indicates the distance from the
front wheels to the centre of gravity. µ scales the
height of the lateral force peak, shown at about
α = 5o in figure 3. Thus µ = 1 does not affect the
tyre and λ = 0.5 means that the centre of gravity
is located half way between the wheel axes. The
variation is done according to:

λ0 λ = 0.50
λ− λ = 0.45
λ+ λ = 0.55
µ0 µfront = 1.0, µrear = 1.0
µ− µfront = 0.9, µrear = 1.1
µ+ µfront = 1.1, µrear = 0.9

The simulation is made using a bicycle model at
constant speed. The steering wheel input is given
as series of step increase. Between each step, the
car stabilises and the lateral acceleration is logged.
This information is then used to calculate Kus.

The result of the simulations is shown in fig-
ure 13. At low lateral accelerations, Kus depends
solely on λ and the theory presented above holds.
As ay increases, µ gets more important and for
high ay, when the car skids, the tyre choice domi-
nates. Neglecting this effect when designing a car
would thus lead to unknown behaviour in critical
situations.

1 2 3 4 5 6 7 8 9 10
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05
λ−,µ−
λ+,µ−
λ0,µ0

λ−,µ+

λ+,µ+

Kus

ay

Figure 13: Result of the parameter variation.

Modularised Tyre Modelling in Modelica Andreasson J., Jarlmark J.

Modelica 2002, March 18−19, 2002 274 The Modelica Association

7 Limitations

The largest limitation of the modularisation is
that the selection of model accuracy must be prob-
lem based. This will require complete understand-
ing of the problem by the user to be able to use
the apropriate models. Another limit of the mod-
ularisation presented, is that the contact patch is
assumed to be a point. This assumption is not
valid for situations such as; driving on uneven sur-
faces, hitting pavements or crossing potholes. Ad-
ditionally, when the steering input changes rapidly
compared to the speed, for example when parking,
the slip cannot be assumed to be constant over the
whole patch which makes it much harder to use a
contact point approximation.

8 Conclusions

The suggested division of the tyre model into hub,
belt and road contact has simplified the reuse of
model components and thus, made it easy to ex-
tend the Wheels library and to add new function-
ality. At the same time the coupling of behaviour
that are functions of two or more parts is more
complicated than without the separation.

The possibility to quickly replace the tyre mod-
els or sub-components when switching model ac-
curacy will be of great advantage and this possi-
bility will most certainly be used more frequently
as the selection of components grows.

9 Acknowledgements

The authors would like thank Sven-Erik Mattsson
and Hans Olsson at Dynasim AB for their sup-
port, Martin Otter at DLR for support and code
sharing and Boris Thorvald at Scania CV AB for
constructive comments.

References

[1] Böhm, Mechanik des Gürtelreifens Ingenieur-
Archiv XXXV 1966, pp 82-101.

[2] Bakker, Pacejka, Lidner. A New Tire Model
with an Application in Vehicle Dynamics
Studies SAE paper 890087

[3] Gillespie. Fundamentasls of Vehicle Dynam-
ics ISBN 1-56091-199-9.

[4] Andreasson, Möller, Otter. Modeling of a
Racing Car with Modelica’s Multi-Body Li-
brary. Paper presented at the Modelica Work-
shop 2000, Oct. 23-24, 2000, Lund, Sweden.

[5] Modelica Association ModelicaAdditions.
MultiBody
http://www.Modelica.org/library/library.html

[6] The Modelica Association Modelica specifica-
tion, v1.4 http://www.modelica.org/

Moormann D., Looye G. The Modelica Flight Dynamics Library

The Modelica Association 275 Modelica 2002, March 18−19, 2002

The Modelica Flight Dynamics Library

D. Moormann and G. Looye
German Aerospace Center (DLR)

Institute of Robotics and Mechatronics
Oberpfaffenhofen, D-82234 Wessling, Germany

phone: +49 8153 28 1068 / fax: +49 8153 28 1441
E-Mail: Dieter.Moormann@dlr.de, Gertjan.Looye@dlr.de

Abstract

The Modelica Flight Dynamics Library has been de-
veloped to model 6-degrees-of-freedom, nonlinear
flight dynamics and flight systems. Using this li-
brary the multidisciplinary interaction between flight
dynamics and systems can easily be understood and
analyzed. In this contribution the main benefits of the
Flight Dynamics Library, concerning model building
and efficient code generation – in particular for non-
linear parametric simulations and trim computations –
are discussed. The library has been successfully ap-
plied to the development of aircraft models for several
flight control system design projects.

1 Introduction

The design of aircraft requires contributions from dif-
ferent disciplines that are usually represented by dif-
ferent specialized groups within the aircraft develop-
ment process. In design and evaluation of controlled
flight system dynamics this is obvious.
In particular, the basic flight dynamics model con-
sists of a description of aircraft geometry and mass to-
gether with equations of motion and of environmental
influences such as gravity, atmosphere, and wind/gust.
Basic flight dynamics are affected by aerodynamics
and propulsion, two other distinct disciplines involved.
The flight dynamics interact with the onboard sys-
tems, which can be grouped into motivators, sensors,
and controls. Note that motivators consist of control
surfaces such as elevators, and actuators which drive
them.
Optimizing the interaction between flight dynamics
and systems is an important area of investigation to
improve efficiency of operation. For example, con-
trol surfaces can be designed to be ’just-right’ in size
and dynamic performance in order to minimize mass

and drag of the aircraft, while still guaranteeing the re-
quired overall aircraft flight characteristics in case of
failures.

Traditional aircraft models are built using domain spe-
cific software packages that best solve their specific
task with respect to the different disciplines involved,
e.g., flight mechanics, propulsion, controls and hy-
draulics. As a drawback, those packages usually have
very limited capabilities with respect to other domains
and thereby it is quite cumbersome to link the different
model components together. Hence, to develop a com-
prehensive aircraft dynamics model with low engi-
neering effort, it is necessary to apply a model descrip-
tion form that is well suited for all domains involved
and meets the requirements for multidisciplinary air-
craft model integration. This description form has to
be equally expressive for flight dynamics and for sys-
tems, which includes mechanical, electrical, hydrauli-
cal, and discrete digital control elements.

For this purpose we propose an object-oriented mod-
eling approach, developed as a general tool for a wide
variety of systems described by differential and alge-
braic equations. The advantage of such an approach is
that it is easy to understand and that it can be used to
visualize the hierarchical decomposition of a complete
system. For each discipline, reusable domain specific
model libraries can be built to encapsulate pertinent
knowledge. The ability to work with submodels of
different granularity is helpful for the design of flight
control systems, where it is necessary to work with
system models and flight dynamics models concur-
rently. During the design iteration process it should
be possible to adjust both the refinement of the sys-
tem model and the complexity of the flight dynamics
model.

An important feature of object diagrams is that they
are not limited to block diagrams with signal-directed
input/output behavior. In an object diagram, for ex-

The Modelica Flight Dynamics Library Moormann D., Looye G.

Modelica 2002, March 18−19, 2002 276 The Modelica Association

ample, the constituents of flight dynamics can be con-
nected naturally according to their physical energy
flow interaction and it is not required to transform all
objects into a mathematical block diagram form as it
has to be done for block oriented control modeling en-
vironments such as MATLAB-SIMULINK.
This paper describes how nonlinear aircraft dynamics
models can be composed using the MODELICA-Flight
Dynamics Library. Its main benefits concerning model
composition using object-oriented structuring princi-
ples are presented in section 2. Its benefits result-
ing from an efficient mathematical code generation are
discussed in section 3, where special emphasis is put
on code generation for efficient parametric simulation
and on highly accurate and efficient trim procedures.

2 Interactive multi-point model com-
position via hierarchical object-
diagrams

An aircraft consists of a variety of different systems,
which represent the interacting disciplines involved in
aircraft engineering (e.g. flight mechanics, aerody-
namics, engine dynamics).

TAP 1

TAP2

BGR

motivator dynamics

AC

MOTI

aerodynamics

engine dynamicssensor dynamics

SENS

COG

rigid body dynamics

gravity

atmosphere

wind

1... n

1... n

Figure 1: Domain specific reference points of flight
dynamics and system models

Models of aircraft dynamics should be described in a
notation close to the aircraft physics. The most natural
way of modeling physical systems is as physical ob-
jects and phenomena, which are connected according
to their physical energy flow interaction and kinematic
constraints. This is different from modeling via signal
flows or input-output block diagrams as traditionally
used for controller modeling.

The ’local’ description of each aircraft component (see
Fig. 1) with respect to its intrinsic reference points
(e.g., Center of Gravity COG, Body Geometric Ref-
erence BGR, Thrust Application Point TAP, Aerody-
namic Center AC) in its domain specific coordinate
system supports ’multi-point’ modeling. The multi-
point modeling approach allows, e.g., the proper han-
dling of center of gravity variations and sensor posi-
tioning without any additional modeling effort, which
is usually a very time-consuming and error-prone pro-
cess.
A multi-point model also becomes necessary, when,
e.g., the coupling effects between ’aircraft’ and ’air
flow’ need to be modeled with higher accuracy than
can be obtained by using a ordinary one-point model,
where all the force, moment and velocity vectors are
referred to the aircraft’s center of gravity only [2].

Figure 2: Local differential air velocity due to wing
downwash and engine flow [2]

It is obvious from Fig. 2, that the local airflow is dif-
ferent for different points at the airframe due to air-
craft rotation, changing wind fields, wing downwash
and engine flow. The complete local airspeed �Va for
each point P can be calculated from the local inertial
speed �V (P) and the local speed of the airflow �Vw(P):

�Va(P) =�V (P)−�Vw(P) .

Above equation can be expanded to identify all partial
velocity vectors to give the complete airspeed at the
point considered:

�Va(P) =�V (COG)−�Vw(COG) + ∆�V (P,�ω)

−∆�Vw(P)−∆�Vwdw (P) .

The total local airspeed is summed up by the inertial
velocity of the center of gravity �V (COG), the speed of
wind at COG �Vw(COG), the additional airspeed due to
aircraft rotation ω at P about COG ∆�V (P), the effect
of wind gradients due to its offset from COG ∆�Vw(P)

and the effect of wing downwash and engine flow at P
∆�Vwdw (P).

Moormann D., Looye G. The Modelica Flight Dynamics Library

The Modelica Association 277 Modelica 2002, March 18−19, 2002

Using a 2-point-aerodynamics approach it is quite con-
venient to properly model the influence of aircraft ro-
tation, wing downwash and wind gradients. According

BGR

controls

toAWC

AWC
AWCtoATC

ATC

aeroTailplane

aeroWingBody
downWash

Figure 3: 2-point-aerodynamics object diagram with
respect to the aircraft geometric reference BGR

to the object model of Fig. 3 this is done by separately
describing the aerodynamics of wing/body (with re-
spect to the Aerodynamic Wing Center AWC) and of
the tailplane (with respect to the Aerodynamic Tail
Center ATC). Between the aircraft body geometric
reference BGR and these two aerodynamic reference
points there are geometric offsets, which are explic-
itly made visible by the instances ’toAWC’ and ’AWC-
toATC’ of a validated coordinate transformation class.
The advantage of this approach is that the influence of
aircraft rotation ∆�V (P) and the effect of wind gradients
∆�Vw(P) of above equation are automatically correctly
handled by generic transformation objects.
In the same way, using the Flight Dynamics Library,
all interactions between components of Fig. 1 can be
properly formulated. In order to make the understand-
ing of all submodels easy, each component of the li-
brary is described in its own coordinate system. Grav-
ity, wind, and atmosphere are conveniently described
in an earth related coordinate system, aerodynamics
in a wind coordinate system, and engines in a system
which is related to the body-fixed coordinate system.
Therefore, in addition to the basic aircraft components,
coordinate transformations are also detailed and han-
dled as objects in the Flight Dynamics Library (see
upper part of Fig. 4). Except for aerodynamics and
engine objects all other objects are independent of a
specific aircraft type.
The objects that constitute the rigid-body flight dy-
namics are interconnected according the object dia-
gram of the bottom part of Fig. 4. Center point of
the flight dynamics object model are the body geomet-
ric reference BGR and the center of gravity COG to-
gether with the body-object, which describes the mass
properties and equations of motion of an aircraft. The

Flight Dynamics Library
 Main library

Connect Trafo Body

Engine Aero Environ

Systems Examples

“drag & drop“

motivators

toCOG

BGR
COG

aerodynamics

engine1

engine2

sensors
body

gravity

wind

atmosphere

6-dof

Figure 4: Interactive “drag & drop”-model building,
top: flight dynamics class library, bottom: flight dy-
namics object-diagram

connections between objects represent their interac-
tion. The complete aircraft consists of a body (fuse-
lage and wing), which is powered by one or more en-
gines. The aerodynamics describes the effects of the
airflow over the aircraft. The aircraft is influenced by
gravity and the surrounding atmosphere and winds.
Additional dynamics is resulting from models of mo-
tivators and of sensors.
The connectors used to describe the interaction be-
tween flight dynamics objects, as specified by bold
solid lines in the object diagram of Fig. 4, are the
same as those used within the MODELICA-Multibody
Library1. The connector contains all variables which
specifies the orientation, position and the correspond-
ing speeds and accelerations with respect to some in-
ertia. For aircraft usually some point at the earth’s sur-
face together with a ’north-east-down’ coordinate sys-
tem is defined as inertial reference. Additional connec-
tor variables are the force and moment vector, acting

1URL: http://www.modelica.org/library/ModelicaAdditions/
docu/ModelicaAdditions MultiBody.html

The Modelica Flight Dynamics Library Moormann D., Looye G.

Modelica 2002, March 18−19, 2002 278 The Modelica Association

at the origin of the point defined by the connector and
solved in the coordinate system of the connector.
Specific for aircraft are the models of gravity, atmo-
sphere and wind/gust. For multi-point models it is es-
sential to properly formulate these models as fields,
which usually vary with inertial position. For this pur-
pose MODELICA offers the concept of ’dynamic scop-
ing’ [8]. Using this concept gravity fields, wind/gust
fields and atmospheric data depending on the iner-
tial position of individual aircraft components can
be specified. Without any user effort the 2-point-
aerodynamics of Fig. 3 is automatically handled cor-
rectly, because e.g. the wind field (and its gradients)
are inherited position dependent to the aerodynamics
models of wing/body and of the tailplane.

Flight Dynamics Library
Sublibrary: Body

or

or

or

longitud

Quat

6-dof

Gyro

6-dof
description

longitudinal
description

Quaternion
description

Gyro
description

motivators

toCOG

BGR
COG

aerodynamics

engine1

engine2

sensors
body

gravity

wind

atmosphere

6-dof

Figure 5: Local exchange of sub-components

In the Flight Dynamics Library different representa-
tions of one specific component can be found (see
Fig. 5). There is a class with six degrees of freedom
body, and another class with three degrees of free-
dom bodyLong that can be used to generate a nonlin-
ear simulation model for the longitudinal motion only.
The ordinary formulation of the equations of motion
can be exchanged by a representation using quater-

nions. There are also wind, atmosphere and gravity
models of different complexity. Existing codes for
aerodynamics and engine models can easily be reused
by using templates.

An important aspect of object-oriented modeling is the
hierarchical structure and local encapsulation of ob-
jects. With the graphical user interface of DYMOLA,
it can be zoomed into objects to display their inter-
nal structure. Zooming into the engine-object in the
lower left part of Fig. 6 results in the engine model
as detailed in the top left of this figure. It shows that
the engine dynamics are described with respect to the
thrust application point TAP. This is the most natu-
ral point at the airframe to formulate propulsion ef-
fects. The thrust application point is connected to the
aircraft reference BGR via a transformation object to-
TAP, which details the offset in position and orienta-
tion from TAP with respect to BGR. Depending on
this offset the generic transformation object is instan-
tiated with the particular parameter values (top right
of Fig. 6). As a result, the local engine forces and
moments with respect to BGR are automatically com-
puted.

Zooming into the body-object in the lower left part of
Fig. 6 shows the equation layer of this component as
displayed in the lower right part of this figure. Ob-
jects, which form the physical model, contain declar-
ative mathematical equations, not assignments as is
common in simulation languages. This makes the un-
derstanding and engineering reuse much easier as op-
posed to simulation code put in a form mainly for com-
putational execution. A generic object with declarative
equations can fulfill different application tasks. For
example, the object toCOG which does the transfor-
mations between COG and BGR is used for trans-
forming velocities with respect to COG to velocities
with respect to BGR, as required as an interim step for
aerodynamics and thrust calculations. The same object
is used for the transformation of forces and moments
from the BGR reference to the COG-reference, as re-
quired for solving the equations of motion within the
body-object.

When connecting objects, only the relation between
them is defined, and not the order in which the ob-
ject equations are finally solved. Here the computer
is used to sort the object equations automatically by a
symbolic equation handler rather than performing this
process manually. This aspect is handled in the fol-
lowing section.

Moormann D., Looye G. The Modelica Flight Dynamics Library

The Modelica Association 279 Modelica 2002, March 18−19, 2002

toTAP

// Transformation matrix between bodyfixed and geodetic axes,
// according to DIN 9300
 bTg = [cos(theta)*cos(psi),
 cos(theta)*sin(psi),
 -sin(theta);
 sin(phi)*sin(theta)*cos(psi) - cos(phi)*sin(psi),
 sin(phi)*sin(theta)*sin(psi) + cos(phi)*cos(psi),
 sin(phi)*cos(theta);
 cos(phi)*sin(theta)*cos(psi) + sin(phi)*sin(psi),
 cos(phi)*sin(theta)*sin(psi) - sin(phi)*cos(psi),
 cos(phi)*cos(theta)];

// rotational equations of motion
 Mb = I * zb + cross(wb,(I*wb));
 // rotational acceleration
 // = time derivative of rotational velocity
 zb = [der(p), der(q), der(r)];
 wb = [p , q , r];

 // Time derivative of Euler Angles

TrafoEnginetoTAP

BGRthrottle

TAP

thrust application point
thrust

motivators

toCOG

BGR
COG

aerodynamics

engine1

engine2

sensors

body

gravity

wind

atmosphere

6-dof

Figure 6: Zoom into an hierarchical structured object-diagram

3 Equation-based model building
and efficient simulation code gen-
eration

From the model, that is graphically specified by a set
of object diagrams, simulation models and documen-
tation of the flight dynamics and systems can be gen-
erated automatically.

In the modeling process the object model is composed
using different libraries and aircraft specific parameter
data (see Fig. 7). The equation handler of DYMOLA

solves the equations according to inputs and outputs of
the complete aircraft model for a particular task. Equa-
tions, that are formulated in an object, but not needed
for the specified configuration, are automatically re-
moved in the following model building process. The
result is a nonlinear symbolic state space description
with a minimum number of equations for this task.
Models for efficient parametric nonlinear simulations
(section 3.1) can be automatically generated from ob-
ject models of the Flight Dynamics Library, using the
left branch of Fig. 7.

Due to MODELICAs equation-based approach it is pos-
sible to invert the interacting flight dynamics and flight
systems model symbolically to the highest possible

extend. This allows to generate so called ’inverse
models’ which can be used for trim computations or
which become nonlinear Dynamic Inversion (DI) con-
trol code [5] within a flight computer. The inversion
according to the middle and right branch of Fig. 7 is
mainly done by exchanging the external inputs and
outputs while still using the same object model which
has already been used to generate code for the simula-
tion model. The equation handler of DYMOLA is used
to solve all equations according to one of the above
specified tasks. The derivation of an highly accurate
and very efficient trim code is discussed in section 3.2,
the DI-code generation is detailed in [5] and not pre-
sented here.

All generated models can be simulated with DYMOLA

or with SIMULINK, using DYMOLAS S-function
model generator. Additionally, automatic code gen-
eration is possible for the real-time engineering flight
simulator AVDS (section 3.3).

3.1 Efficient parameterized simulation mod-
els

Generally a simulator requires that system models are
transferred to a state space description:

The Modelica Flight Dynamics Library Moormann D., Looye G.

Modelica 2002, March 18−19, 2002 280 The Modelica Association

simulation-

code generation

phycial system model

system parameters

trim-code operational

(automatic)

components libraries

physical modelling

 code
e.g. Simulink-
 S-funktion

(realtime)
flight simulator

e.g. AVDS

(automatic)

e.g. Simulink-
S-function e.g. C, Ada

flight control laws

(interactive)

u y
u y

u y,y,...

8 8

mathematical

 DI Code

sorted & solved
equations for

simulation

sorted & solved
equations for

trimming

sorted & solved
equations for

dynamic inversion (DI)

input da
input de
input dr

output Vcas
output V
output Vground
output p
output q...

...

input V
input gamma
input beta

output da
output de
output dr
output u
output v...

...

output da
output de
output dr

input p_dot
input q_dot
input r_dot
input u
input v...

...
.

specification
of model

model building

inputs / outputs
for a particular task

Figure 7: Equation based model building process

ẋ = f (x,us,par, t)
ys = g (x,us,par, t) .

To achieve such a standard description from an ob-
ject model it is only necessary to assign the aerody-
namic and engine controls as simulation inputs us and
the measurement and evaluation signals as simulation
outputs ys. For the generation of simulation models
the state vector x, which consists of the 12 basic flight
dynamics states and of additional states of engine dy-
namics, actuator- and sensor dynamics, is automati-
cally considered as known. Additional inputs are the
simulation time t and the parameter vector par (e.g.
mass, center of gravity position, wing area). Depend-

ing on all inputs time derivative of the state vector ẋ
and the output vector ys is computed. Fig. 8 defines a
typical set of inputs, outputs, and states of a flight dy-
namics model. A typical set of flight dynamics states
consist of the velocity (V), the angle of attack (α),
the angle of sideslip (β), the angular velocities (p, q,
r), the attitude (φ, θ, ψ) and the inertial position (x,
y, z). Simulation model inputs are the aerodynamic
control surface deflections of tailplane (dt), elevator
(de), aileron (da) and rudder (dr), the engine con-
trols (throttle1, throttle2) and, for example, additional
gust inputs (u gust,v gust,w gust). Typical simula-
tion model outputs are the measurements signals such
as height, V , α, β and the roll angle φ and the evalua-
tion signal such as the flight path angle γ and the load

Moormann D., Looye G. The Modelica Flight Dynamics Library

The Modelica Association 281 Modelica 2002, March 18−19, 2002

states der(states) control inputs outputs

 V der(V) = 0 dt height

α der(α) = 0 de = const V

β der(β) = 0 da γ = 0

p der(p) = 0 dr α

q der(q) = 0 throttle1 = const nz

r der(r) = 0 throttle2 = const β

φ der(φ) = 0 u_gust = const φ

θ der(θ) v_gust = const

ψ = 0 der(ψ) w_gust = const

x = 0 der(x)

y = 0 der(y)

z der(z)

Figure 8: Inputs, outputs, and states of a flight dynam-
ics model (actuator, sensor models are omitted here)

factor nz. For a detailed definition of these variables
see, e.g. [1].
Automatic code generation, for example for
SIMULINK, is possible separately for subcompo-
nents as specified in Fig. 9 as well as for the complete
aircraft model. The latter approach has the advan-
tage that the transformation equations, which are
in particular necessary for multi-point models, can
be sorted (and eliminated) according the specified
task. Algebraic loops, which occur if, e.g., the
aerodynamic forces depend on accelerations, can be
solved automatically using tearing [3].
Before starting a simulation, the initial, stationary in-
puts and states for a desired point of the flight envelope
have to be calculated by a trim procedure. This aspect
is dealt with in the following section.

3.2 Accurate trim computation

Trim calculations of complex flight system dynamics
models are a very challenging computational task, in-
volving the numerical solution of a system of nonlin-
ear equations to calculate the stationary values of state
and control variables. The difficulties mainly arise be-
cause of the lack of differentiability in aerodynamic
and engine models due to the presence of various look-
up tables used for linear interpolations. These severe
nonlinearities as well as the presence of, e.g., control
surface deflection limiters make the numerical solution
of this high order system of equations very challeng-
ing.

Simulation environments, such as
MATALB/SIMULINK, offer trim routines for this
task that use the simulation model to perform trim
calculations, which are driven by a numerical op-
timization algorithm. For this purpose the state
derivatives ẋ and outputs of the of the simulation
model ys are set equal to their desired trim values ẋtr

and ytr:

ẋ = ẋtr

ys = ytr

The trim values of states x and simulation inputs us are
calculated using the following constraint equation:

ẋtr − f (x,us,par, t) = 0

ytr −g (x,us,par, t) = 0

The advantage of this numerical approach, using the
complete simulation model, is that consistency be-
tween simulation model and trim computation is au-
tomatically guaranteed by using the same model. The
disadvantage of this approach, which is achieved by a
very high number of model evaluation of the simula-
tion model, is its rather high calculation time and its
comparatively low accuracy (’miss-trim’). The inac-
curacy, which increases with the complexity and non-
linearity of the model, results from this procedure ne-
glecting the fact that some of the states directly de-
pend on each other. For example, actuator and sensor
states are treated as independent from the flight dy-
namics states and inputs even though they are directly
related to them.
An alternative is to trim the subcomponents of the air-
craft model (see Fig. 9) separately. First the flight dy-
namics submodel is trimmed. The trim values of this
submodel are taken to trim in three additional steps the
actuator, engine and sensor dynamics models, again
using the same numerical trim approach. The trim
computation is more accurate compared to the above
one-step-approach, but usually more time consuming.
Computation time and accuracy can be improved, if
actuator and sensor model variables are not trimmed
by an optimizer but directly set by the user. For ex-
ample, actuator states and inputs can often be directly
related to flight dynamics inputs and sensor states and
outputs to flight dynamics outputs. The disadvantage
of this approach is, that the procedure takes more engi-
neer interaction and therefore increases the likeliness
of errors, if submodels change during design.
A third option for trim computations, which is base
on model inversion, is proposed here. The symbolic

The Modelica Flight Dynamics Library Moormann D., Looye G.

Modelica 2002, March 18−19, 2002 282 The Modelica Association

1

y_s

sensors

sensor dynamicsflightdyn

flight dynamics
(12 states)

engines

engine dynamic

actuators

actuator dynamics

m m MuMu1

u_s

dt_Cmd
de_Cmd
da_Cmd
dr_Cmd

throttle1_Cmd
throttle2_Cmd

throttle1
throttle2

dt
de
da
dr

u_gust
v_gust
w_gust

height_Meas
V_Meas

alpha_Meas
beta_Meas

phi_Meas

height
V
alpha
beta
phi

gamma
nz

Figure 9: SIMULINK-block diagram of the flight system dynamics

engine of DYMOLA allows to generate C-code for an
’inverse model’ to serve for trimming. To serve this
purpose the inputs and outputs of the simulation model
are inverted. The states derivatives ẋ become known,
also the outputs of the simulation model ys, which are
now the inputs of the trim model ut . The unknown
variables are the the inputs of the simulation model us

= yt and the states x:

yt = us = h (ut , ẋ,par, t)
x = j (ut , ẋ,par, t) .

One trim condition is specified in Fig. 8. In con-
trast to the simulation model code generation of sec-
tion 3.1, where the variables are column-wise known
or unknown, the known variables of the trim model
(trim inputs) are shaded grey, whereas the unknown
variables (trim outputs) are not. For each variable
of the simulation model changed from known to un-
known, one other variable is changed from unknown
to known. The balance of known to unknown vari-
ables is kept equal. The inputs of the trim model are
the desired trim conditions (such as velocity V and an-
gle of attack α) and the outputs are the corresponding
equilibrium values of trimmed state and aerodynamic
and engine control vectors. DYMOLA generates essen-
tially explicit equations for the inverse model by solv-
ing the high order nonlinear equation symbolically to
the highest possible extend. Even if it is not possible
to determine a symbolic solution, DYMOLA is still able
to reduce the burden of solving numerically a high or-
der system of nonlinear equations to the solution of a
small core system of nonlinear equations which ulti-
mately must be solved numerically.
The proposed trim approach based on model inversion
was compared to the traditional approach in the HIRM

benchmark flight dynamics model of the GARTEUR
Flight Mechanics Action Group on ”’New Analysis
Techniques for Clearance of Flight Control Laws”’
[4]. An optimization based clearance process for flight
control systems requires highly precise computations
of trim values, because these values are the base for the
following nonlinear or linear analysis. Even very small
inaccuracies in trim values can corrupt the optimiza-
tion progress. Here the trim computation based on
an inverse model has proven its advantage compared
to a standard optimization based trim approach. An-
other advantage of the inverse model trim approach is
its computational time efficiency. Trimming the same,
highly nonlinear flight dynamics model took, depend-
ing on the trim point, between 15 and 65 seconds using
conventional trimming, just 50 to 70 milliseconds us-
ing the inverse model. Both trim computations were
done within MATLAB/SIMULINK on a 400MHz per-
sonal computer [6].

3.3 Interactive Real-time Simulation using
the Engineering Flight Simulator AVDS

For the evaluation of critical flight conditions and for
the validation of flight control systems an aircraft an-
imation tool can help the design engineer to analyze
the aircraft performance. The Aircraft Visual Design
Simulator (AVDS [7]) is such a tool to fill the gap be-
tween batch and motion-based simulation by allowing
the flight control design engineer to quickly test and
re-test response in a real-time environment on a low-
cost PC (Fig. 10).
Fig. 11 illustrates the data flow within the interactive
mode of AVDS, which allows the design engineer to
virtually ’fly’ the aircraft. Using, e.g. the cockpit-view
together with the head-up display (HUD) of Fig. 10,

Moormann D., Looye G. The Modelica Flight Dynamics Library

The Modelica Association 283 Modelica 2002, March 18−19, 2002

������������	

��� ���

���������	
���
�����
�
��

����
������
�������
	���

�����

��	��

�����������	
�

�
	���	�
�����

����
��

�����
��

��������
�
����
���� �
���
�����

�� �
�	
�
�����

� ��
�	
�
�����

�
���
����
����
��

������

�������

������
����
��!� ������
���
���!�

�
������������ �� �
�
����������

� ��
�
����������

Figure 11: AVDS data flow in interactive simulation

Figure 10: AVDS interactive real-time flight simulation

the engineer controls the aircraft via input devices
like mouse, keyboards and other control instruments.
These commands are transferred to the flight control
system (FCS) and result in the controls of the flight
system dynamics model (FSD). For the implementa-
tion of flight dynamics models AVDS offers an inter-
face which consists of C-subroutines for controller and
flight dynamics with systems with its corresponding
set of parameters.
To avoid a manual re-implementation of these model
codes, we propose to automatically generate the
AVDS-codes and their parameter sets starting from the
same object model as used for the parametric simula-
tion (section 3.1). The big advantage using the MOD-
ELICA-AVDS interface is the complete automation of
the code generation. The trim computation (as detailed
in section 3.2) is already included in the code. This
means that neither initial states of flight dynamics or
systems have to be directly assigned by the user nor
that an external, separate trim tool has to be used to
specify flight conditions in AVDS.
The strategy of interfacing MODELICA flight dynam-
ics models to AVDS can be transferred to any other
flight simulator. The symbolic equation handler of
DYMOLA guarantees a highly efficient model code.
Different levels of detail do not have any influence on
the interface structure. The only limit is the computa-
tional power of the platform which is used to run the
flight simulator.

The Modelica Flight Dynamics Library Moormann D., Looye G.

Modelica 2002, March 18−19, 2002 284 The Modelica Association

4 Conclusion

Complex aircraft models including actuator and sen-
sor dynamics in addition to electronic flight control
systems, are aggregated from contributions of many
different disciplines involved. This paper shows that
complex models are best comprehended if each dis-
ciplinary contribution is described in its own specific
domain. For flight dynamics, the MODELICA Flight
Dynamics Library serves this purpose.
For systematic and transparent modeling, it turned out
to be important to describe all aircraft components and
physical phenomena locally with respect to their in-
trinsic reference points, which usually have an offset
in position and orientation from the aircraft’s body ge-
ometric reference BGR.
The computer aided model building technique allows
the modeling of engineering systems such as flight dy-
namics on a physical level in the form of declarative
mathematical equations specifying energy exchange
and kinematic constraints.
The equation-based modeling language of MODELICA

allows the generation of codes for an inverse model to
serve for trimming. Such a model has as inputs the
desired trim conditions and as outputs the correspond-
ing equilibrium values of trimmed state and controls
vector. The equation handler of DYMOLA generates
essentially explicit equations for the inverse model by
solving the high order nonlinear equation to the high-
est possible extend symbolically. Thus, the trimming
procedure based on such an inverse model has proven
to be very accurate and fast compared to conventional
optimization based trim procedure.
The code generation facility of DYMOLA al-
lows the use of different simulators, (e.g.,
MATALB/SIMULINK, DYMOLA’s own simula-
tion environment, the flight simulator AVDS) as a
run-time environment for model execution. Using the
Flight Dynamics Library offers the opportunity that
trim code is automatically included into the simulation
model and executed at simulation start. This means
that no separate trim tool has to be used.

References

[1] R. Brockhaus. Flugregelung. Springer Verlag,
Berlin, 1994.

[2] R. Brockhaus. A Mathematical Multi-Point
Model for Aircraft Motion in Moving Air.
Zeitschrift für Flugwissenschaften und Wel-
traumforschung, pages. 187-184, 1987.

[3] H. Elmqvist und M. Otter. Methods for Tearing
Systems of Equations in Object-Oriented Mod-
eling. In Proceedings ESM’94 European Simu-
lation Multiconference, pp. 326-332, Barcelona,
Spain, 1994.

[4] GARTEUR FM(AG11). Scope of a new GAR-
TEUR Flight Mechanics Action Group on ”’New
Analysis Techniques for Clearance of Flight
Control Laws”’. Group for Aeronautical Re-
search and Technology in Europe (GARTEUR),
Technical Report GARTEUR TP-119-1, 1999.

[5] G. Looye. Design of Autopilot Control Laws
with Nonlinear Dynamic Inversion at Automa-
tisierungstechnik, pp. 523-531, No. 12, 2001.

[6] D. Moormann. Automatisierte Modellbildung
der Flugsystemdynamik. Dissertation, RWTH
Aachen. VDI Fortschrittsberichte, Mess-,
Steuerungs- und Regelungstechnik, Reihe 8,
No. 931, 2002.

[7] S.J. Rasmussen and S.G. Breslin. AVDS: A
Flight Systems Design Tool for Visualization and
Engineer-in-the-Loop Simulation. AIAA Mod-
eling and Simulation Technologies Conference,
No. AIAA-3467-97, 1997.

[8] M. Tiller. Introduction to Physical Modeling
with Modelica. The Kluwer International Series
in Engineering and Computer Sciences. ISBN
0792373677, 2001.

Aberger M., Otter M. Modeling Friction in Modelica with the Lund−Grenoble Friction Model

The Modelica Association 285 Modelica 2002, March 18−19, 2002

��������	,�������	��	��������	+��&
�&�	-����.����
��	,�������	�����

������	�
�����
���
����������������������������

���
������������������
��� ���������
!�"�
�����"
��#������
$%	&	&�������$'����

�
����(
������)��'�����(*+'(
�

������	!����
��,�-�����
����������

.�����'������,�����"��
���!�"�
�����"��
�%/���&�0���������1���
��

!
����(-����)���(��

�
������
�����������	�
���������
��������������	��	�������������

����	���������	������������
���� ��	��	����������
�������	��
��	��	������
���������������
���������	�����������	�������	���

	�����	
���	��	�������
���	�������������	���������	�
���
���
�� ���������
� ���� ������	���� 	��
	�
���	��
� ���� ��������� �	��� ���� ��	��	��� �����
� ���	������ 	�� ���� �����	��

���������	���������	
�	���
��
���
������
�����	���������������������� ���	��	����������
�������
����������	������

/	 0&�	����������	-�.��	�����

&'&� ��
���(���������
���� �
���� !�
�����������"� ������ #$%� 	
� �� �����	�
��	��	��� ������ �	��� ���� �����	��� ���
���� �����	��
����������������

�����
�	������������ �
�	��
����������
��	��	������&
�����
��
��
���'��������	����
���	��	����
��
����������� ��

��� ��� ��	
���
� 	�� ��������� ���� �����
���� ���
���� �
� ��� �����
	��� ��� ����
	���	�	��� (���
������������
����������	
���
��	����	��
������������
������	�
������������	������	�������	����&
��	����
���# %�

�
���

��
"!�

�
� �� !)"

� � � � �
�
��

	

 ��� �

�
�

�

)
"! ��� ���

�����
�

� !$"

� � ������
���

��
� ��� �� !*"

� � � ���

��
�� ����� �� � !+"

,�������������
���������������	
�����������	�������	
����

�	����

� ��� ���� ��	
���
�� ��!�"� 	
� ���� ����	��
�����	�	����� ��� ��
��	��
� ���� �����	��� 	�������� ���
��
����� ���� ��	��� ���� ����	��� 	
� ���	���� ��� 	
� ���� �	����
�	
��

� ��	��	��� �����	�	����� ��� 	
� ���� -�
����� ��	��	��
����������	
�����
���	����	��	���������� � �

��
�� � ��������� 	

����.��	���/������	���������
���	����!�"����	��
��������
�������� �������	��� ������
� ��� ���� �����	��� �����	��
�������� ���� ����

�����
�� ����
	���	�	��� ����� ��� ���
�
����������	
��	������������
���������	��������	�	���

� �
��

��� � � !0"

,	��������
���������	��������	�	�������� � �
��

��
 � ���
������	
��	

	���	���
���#)%��	�����������	�

��

��

��
��

�
�

�
�

� ! "

���������	�����������������	��������	�	������!�"� ��

���� 	����������� 	�� ���� �����	��� ������ ����

�� ��
	����	�	��� ��� ���

���� ���������
� ���� ��� ����� ����
��
��� 	�� ���� �	�����
���� '�� 	
� �������� ������� �	��	�
��� ��
	����	��� ���� �����	�� ���������
� ��� ���� ���� ��	��� 	

��
��
������ 	�� #0%�� ,	��� ��� 	�����
	��� �
����� ��
���������
� �����������	������ ���� 	����	�	���	��������

�	
�
�

1���
������
����� ���	��� 23 ����� � ���� �������� ��	
���
�������	���	
��	��������
���!)"

� � � ��� ��
��

��� !4"

5��������������	��������������
���������	���������	��	��
���&
������
������
��������	���	

� � � �
� � � � � � ������

������

��

����

���

��

�

��
�
��

	

 ���

��

�
��

��
�

�

�

� !6"

'�� ���� ���
���� �����	��� 	
� ���� ����� ����� 	�������	��

����
�� ���� 	�	�	������
����� ���
��� !)"��
����� ��� ����
���

��� ����� 23 ����� � ���� 2�� � 	�� ������ ��� ���	�� !����
���
	���"����/
� 	�� ���� ��	��	��� ���&
����� ����
�������� ���

	�
���	���� .	�
���	��� �����	����
� �	���
�	�/�
�	�
���	���
���� ����� 	�������	��� ������
� �	��� ���	����

����
	��� ���� ����� �	��	�
��	�
� ��� ����
��� ���� ����/
����� ���&
�� 	�� �����	�� ��
�
�� �
���	����� 	�� ���� �����	��
���������� 	
� ����
���
��	����� ���
���� ��� 	������� ���
���	��	�	��� ���� ���
����� ��� ����
	�
���	���� ��� �
�	�	���
7��������&
��	���	
�	�����
���

��

�
�
� ��

������	
����
�

2�	���
�
��
��

��
���

� !8"

����� ��	����
� ��
����� ������ ����������� ������
�
	��� !	�
�����	���� ������ ���
�� ������� ��� �� �����	��� ��	����
� ��

Modeling Friction in Modelica with the Lund−Grenoble Friction Model Aberger M., Otter M.

Modelica 2002, March 18−19, 2002 286 The Modelica Association

�����"�� 9��	�	�������� 	�� 	
�

��
�� ���
����� ���� �������
��	
�����������	�������
�	��	
�
�����������������������
����
���	����
�� 7���� ������
� � ���� �	
�

��� 	�� ����� ����	�
�������9����
����������	�����������
���	���������������
	

�

)
�

��� � !)2"

���� ���������
� ��� ���� �
���� ��	��	��� ������ ������
��
���������������	���	�����
���	�����������	��	������&
�
�����
� ���� ���� ���� ��� ���� ����� �	������ :��
������
���	��
������������������������
������	����	��# %

	

�

��

��

�

$

)2)2

2)�2

��

�

�

�

��

�

������	�	
�����	����	��������������

�;���������	��	�������
�	�������	�������	���������
�����	�������������	���������
�����	�� ���������
���
������� ����

�� ����� ������	��
�

���	���������
�	����

���������	�������	����&
��	���

&')� (���������
���*������
�
��� ���	��� ���� �����	�� �����	�
�� ��� ����
	���	�	��
�
���� ������� ����
����
	�
���	��
� �
� 	�� #$%� ���
����������

	���(�������
�
	�
���	������	���#+%������
�����	��� ������ �
���� ������� ���� �
���� ��

��
� �����
&
��	���	������	���������

��
�	��#$%��.�	�/�
�	�����	���	

�����	���������	�
�����
�
���
��	�����	��	����'��	
���

��
�������������������	��	���	
�������������
��������
�	���
����
���
�	�	���

���� �����	����� 	
�
����� 	�� 1	�
���)�� 9�� 	����	�� �	��
	<)�/�����	��� ��	��	��� ��� �������
��� 	
� ���������� ��� �

��	����	���
�	����

��<$�=�3��������������������
��	��
	
������	����	�����
��������
����������	�������<2�)����3
�
���� 	����	�� 	
���	�	��������� ��
������ ���� ���&
������� ���

��	���	�����
�
��	��������������	��	������&
����
�������

����
��	��� ���&
��� ���� ��
����� �	
���������� ������
�
,������������	������&
��������
���������/���������&
��
	�� ��	
� ��
�� ������	������� � �

�
2 �� �� ���� 	����	��
����
� ��

������� ���� ���� ��	��	��� ������
�
� ���	���� �
�� ��� ���
.��	���/� �������� ����
��	��� ��������
�� ���� ����
��	��
���&
�� ������
�
�� ���� 	����	��
���
� ����� ���� ���
��	��	��� ���&
�� 	�����
�
� �
�� ��� ����.��	���/� ������� ���
���� �����	���
���
������ ����������� ������
� 	�
����� ���
���������
���� ���� ��	��	�������������
����� 	��������)�
>�����
�������� ���� ��

	�	��� 	��&
��	��� ! "� 	
� ���

��	
�	����	������
�������

.	�
���	��� ��� �� �	����� 	����������	��� ��� ���� �
���
������

	��� ���� 	�������	��� �����	���� (9..�� �	��� �
�����	��� ��������������<)2��� ����
� �����������

��
?����
����/� ����� ���&
�� 	
� ���� �	��� ���� ������ ���� ����
���
	���� �
�	����	��
� 	�� ���� ����
���� ��	��	��� ���&
��
��	
� ��

��� 	
�
����
���������� ����

�� ����
����
	��

��
��'��(���
	��������
��
������������	��������������������
����
������������&
���#+%�

�������� ��� ���	�����
���� 	���������
� ������ ���	����
� �

������ ����� ����� ���� ������ �� ������	���� ��
��
��
����������� '�� ��� ������ 	�������	��� 	
� ���	������� ��	

����������	
�

�����
���������
����
��	����������������	��
����������� .	���� �� 	
� 	�� ���� ������ ���)2���� ����
����
	��
�������������	
������	������
�	������������
����������	���

9
� ��� ��� ���������� ����
	�
���	��� ��

��� 	
� 	�������
����� ��
���	��� ����
����� ���	����� �� 	
� 	�����
���?� ���
�
�	����	��
� ��� ���� ��	��	��� ���&
�� �	
������� ��	��� ���
	����	��	
������	����������	��	������&
����������������	��
�����	���
��
���	���

	���	�������	��������	����(9..�
���� �� �����	��� ���������� ��� ���<)2��� 	
�
����� 	�
1	�
���$�

'�� 1	�
��� 0�� ����
������ ���	���	��� ��� ���� ��	
���
�������	����������� 	
����
�����9
��������
����������
����
������
������	
����	����������������������	�����������

�	�	����������
�
�/����	��������	������
���9��	���������
��
� ��� ������� ��	
�
����� ������� ��� ����
��� �� �������

��
�	���� '�� ������ ��� �	��� ���� 	���������� �� �	��� ��� ��	

	�
��	���� ��
����� ������ 	
� ��	������� 	�� ���� �����	��
����������������������������
�
	�������	�����
�	������
����	����� �
�	�	���� 7������� �&
��	���� ��	
� �����	&
�
	������
� ���� &
��	��� ��� ���� �
���� ������
	�
���	��
�
������� �����
���
�	��� �� ���
	�������� �	��������� 	�� ���
�����	��� ��� ���� ��	��	��� ������ 	
� ���
���� ����

	�
���	��� �	��� �	�������� ���������
�� '�� 1	�
��� *� ���
��	��	������&
��	
�
��������������	������������
����<)2��

���� ���<)2�	�� ���� �	��������� �������� ���
�� ���

	�
���	��
�	
���

�������	������������/���������&
�
�

��������/���������&
�� 	
� �������� ��� �����������	������
���� ����� ��� 	�����
�� ��� ���� ����	��� ���&
��� ���� ������
�	���	
������	�����������
�	�/	�����������/�������.	���
�����
���������� 	
� �������	��������� �� ����	�������/
��������&
�����������������������
	�
����������/�����
���&
�� ���� �� �����	��� ���������� ���<)2��� 	
� �
@)�0�=��
���������������
���<)2�	�	��	
��
@)�+6�=�����	
���

��� 	

��
�� ���	����� �	��� 	�������	��� �����	���
� �	��� �	���

����
	���

1	�
���)?�.	�
���	���
��
������
�	�/�
�	�����	����	������
�
������	��	���������

��)2� #=�3���%

�� *) �$* #=�
3���%

�� 2�+ #=�
3���%

��) #=�%

��)�0 #=�%

�� 2�22) #���3
%

������)?�A������������
�
���������
������	��	���������

Aberger M., Otter M. Modeling Friction in Modelica with the Lund−Grenoble Friction Model

The Modelica Association 287 Modelica 2002, March 18−19, 2002

'�� 1	�
��� +� ���� ���
���� �����	���� ���� �����	��� ������ ��
���� 	����	�� ���� ���� �����	��� ������ ��� ����
��	��� ���

����������
������ �������� ��	
���� �������	��� �� ���� ���
���	���	��� ��� ���� ��	
���� �������	��� ����
����� 	�
1	�
��� 0�� ����
���	��� ������� 	
� ��<)2

��� ���
�� ��

��

����� ����	���� �	��� ���� 	�������	��� �����	���� (9..�
������ �������������<)2���������������&
��	���	������	��
������

��
�	��#$%�

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

T im e [s]

F
ric

tio
n

to
rq

ue
 [

N
m

]

1	�
���$?�1�	��	������&
����������
�����������	���
�

���	���!
��	���	��"������	���
���	���!��
�����	��"�

0 5 10 15 20 25
0

0.5

1

1.5

T im e [s]

F
ric

tio
n

to
rq

ue
 [

N
m

]

1	�
���*?�1�	��	������&
����������
�����������	��
(9..�������������������<)2���!
��	���	��"����

���<)2���!��
�����	��"�

0 5 10 15 20 25
0

0.5

1

1.5

2

T im e [s]

A
ng

ul
ar

 v
el

oc
ity

 [
ra

d/
s]

R
ot

at
io

n
an

gl
e

[r
ad

]

1	�
���+?�9��
���������	���!
��	���	��"�������	��������
!��
�����	��"��������	����	�����������	���������������

��	���!��������	��"�

0 5 10 15 20 25
0

0.5

1

1.5

T im e [s]

S
ca

le
d

av
er

ag
e

br
is

tle
 d

ef
le

ct
io

n
[r

ad
]

0 5 10 15 20 25

-40

-20

0

T im e [s]

S
ca

le
d

de
riv

at
iv

e
of

br
is

tle
 d

ef
le

ct
io

n
[r

ad
/s

]

1	�
���0?�.����������������	
�����������	���!���"����

���������	���	����������������	
�����������	���!������"�

&'+� ��� ����������,
-�����

��
������*������.����������
��

'�� ���� �����	���
�������� �	������� ��	��	��� �������
7���	��1�	��	��� 	
����
������	������
���	�
� ���� �����	��
���
���� ���������	��� ������ ��� ������ ����� ���� �����	��

������� ���	
��
�� 	����� ���� �����	������������ 	
� ������
���
������� ��
�����	
� 	
� 	�� ������
�� ��� �������������	����
�
���� ������ ��	��� ��
��	��
� ��
�� ����
����� �����	��
��������
�	������
�
�/����	���

�������������1	�
���)���
�
	�
��������� ������	��� ���
�
���� ������ �	��� ���������� 7���	��1�	��	��� ����
�	�����������	���������	�
�:����	�������������������

��������
��������������
�����	��������)������.��	���/
�����	��� 	
� �������
����� ��	��� �����
����
� ��� ��
����
������
��	��������	��	������&
�����������	����	��
����
���
�������� ���������� ��
	���	�	��� ���������	���	��� ���� ���
���������� 7���	��1�	��	��� 	
�

���� ���� -�
����
��	��	���	
�
��������<)�=����������
�	��	������&
��	
�
�����
��<)�0�=��� ���������� ���� ����������
���	��� 	�� ���
7���	��1�	��	��� ������ 	
?� �������<#� 2��)B�)��)�+%� ���
����<)�0�

��� ���	���� ���
����� ��

��
� ����
	�
���	��
� �	��� ���
�
������������������	�������������������<)2���	
��������
�����
���������
��
��	�������
���
�
�������<$022������

	�
���	��� �	��� ��� ��<$0�
�� 1��� ����
	�
���	��
� ��	

����������
��
����
�/�������
������������������
��
	��

�� �	��� (������ ���
	��� +�)��� $22)�24�))�� ��� ���

	�	���� 	�������	��� �	��
� ���� ����
	�
���	��
� ���
����
������ (���
	�� �	��� ��
� ����
���� 	�� ���� (C.
�	������ ����
	�
���	��
� ����� ���������� ��� �
$�A���	
��'''��	��� 22��5������4 6��7�:9��

���� ������ ��
� ����	���� �	��� ���� �	���
���� D	

��
-EE�����	����!���
	���+�)"��-���	�	��� �����������	��
���� �=>� ����	���� !���
	��� ���
� $�8)� "� ���� ���

�����������	���
���	���	��(��������&
	��
��������
����
	�������	���
����
	��� ��� ��<02��
� ���� ���� �
���� �����
�����

	��� ���� 	�������	��� �����	���� :F1'G+� !<
:
����F
��������������������+��	����	����
����
	��"����
����	�� �� �������	��� ��

���� 9��
��� �������
����
	��� 	

Modeling Friction in Modelica with the Lund−Grenoble Friction Model Aberger M., Otter M.

Modelica 2002, March 18−19, 2002 288 The Modelica Association

��

	���� ��� ���� �=>� ����	���� ���	��
� �C*� !����
���	�	���	��"���� �C2�!������	�	���	��"�����������
����
	�������	���
����
	���	
����������������	�������	��
��C)
!(������ ����
��"�� �C$�� ���� �C
�� ���� ���
��� ���� ��	

������������	�
����
����������������	����

>
	��������	���
����D	

���-EE�����	�����	���(�����
����
��
�����������	�����

����	��������
�������������
	����������:F1'G+���&
	��
������	�
��	����������
���

	��������<)��
����� ���� ���� ����	�	��H
������������	��
�	����
����
	��� !H>�H:"� ��<2�8��
�� ��� ���	���� �
�������	��� ��

��� ���� �	���� ����� 	�������	���� �
���	�
�� 	����������
����
	��� ��� ��<$��
� 	
� ��&
	����
�	��������� 	�������	��� 	
���
���	���(������ �����	&
�
����������	���
	�
���	�����������
��
����
������	
����	���
�	�������	���	�	������
����
����
��	�����������	�	��H
���
�������� .����� ���	����� �� ����� ���� �
���� ������ ��

��� �
� I��
�.����J�� .	�
���	���
���	
�	�
� ���

����	����	��������$�

1��� ���� ������ �	��� 7���	��1�	��	���� ���� ���	�
�
	����������
����
	���	

��<4��
�����:F1'G+�������<+��

���� H>�H:�� ��
����	������ D��	��	��
� 	�� ���� ���	�
�
��

	����	�������	���
����
	����������	�

��=>�����	���
���	��
� ��
� ���� ��
������� 1��� ���� ������	
	���� ���

����
����
	��
��
�	�������
���������������

����������
	���������
��	����	����
����
	��������
	�
���	���
���	
�	�

����

����	����	��������*�

���� �	��������� 	�� ���� -A>��	��� ���� 	�������	��� ��� ���
�
���� ������ ���� ���� 7���	��1�	��	��� ������ 	
� ���

	��	�	������
���������
	������������1���������������
�����
�� ���� -A>��	��� ���� ���� ���	�����
����
	��
	����������(9..�� 	
� �������� ��� ���� �
����� ��� �
���	��
���� K����	��� ����
��	��
���	��� ���� ���
��0� ��� � �	��

�	��������������
�����������
��	�������7���	��1�	��	��
������� ���� �	��������
� 	�� ���� �
����� ��� K����	��
����
��	��
�����	�������	�	�
��
����
	��
��������������
���/��������
�	����

���� �����	�������	����&
��	��
���� ���
�
����������

9� ������	
��� ��� ���� ��	��	��� ���&
�� ��� ���
7���	��1�	��	��� ������ ���� ��� ���� �
���� ������ 	

����� 	�� 1	�
��� �� ���� �	��������� ��� ���
�� ���

	�
������ ��	��	��� ���&
�
� 	
� �� ��

��� ��� �	�������� ����/
����� ���&
�
� ��� ���������
�� 1��� ���� �
���������� ���
����/� ����� ���&
�� 	
� ����	��� ���� 	�� 	
� ������	������
���)�+6�=��� ���� ���� 7���	��1�	��	��� ������ ���� ����/
��������&
��	
����
���������<)�0�=����������/
� 	�� ���

	�
������ ��	��	��� ���&
������� ���� 	����	��
���
� ��� ���
������� 	�� ���� 7���	��1�	��	��� ������ ����

�� ��� ���

	���	�	��� ���������	���	��� ���� �������	��� ��� ���
.��	���/��������

'�������	��
�����	��� (9..� :F1'G+ H>�H: �'GH(

�C(H
-A>��	������
	�������	���#
% 2�828)�$*)�28 2�640

-A>��	������
�����:'(
	��������#�
%

2�* * 2�+8+ 2�+* 2�* 2

=��������

��
��	��
 $064 $0*4 $06 $0*)

=������
���
)4*$ $0222 *2222)$022
=������1�
����
��	��
 0 $)22222 *2222)$022

=������5�
����
��	��
 +8 $ $02$2 *22++)$0)6

=�����
K����	���
����
��	��

080 � � �

=������
����
�����
 +*)8 +*)4

�	��
	�������	��

����
	���#
%

)�06�)2��)2�� 2�)�)2�� $�)2��

����
	�������	��

����
	���#
%

)�)8)2�� 2�8�)2�� $�)2��

����
	�������	��
�����

0 +))

������$?�.	�
���	���
���	
�	�
���������
����������

'�������	��������	��� (9..� :F1'G+ H>�H:
-A>��	������
	�������	���#
% 2�6+4)�$+)�$$

-A>��	����������
�:'(�	��������#�
% 2�**8 2�+86 2�+68

=��������

�����	��
 $0)8 $0)4 $0)8
=������
���
 2 $0222 *2222
=������1�����
��	��
 820)22222 *2222
=������5�����
��	��
 $6 + $02)2 *22)2
=������K����	���
����
��	��
)$2 � �

=������
����������
 8 8 8
�	���	�������	���
����

	���#
%)�48�)2��)2�� 2�)�)2��

�����	�������	���
����

	���#
% +�))2�� 2�8�)2��

�����	�������	�������� 0 +)

������*?�.	�
���	���
���	
�	�
��������7���	��1�	��	��
������

Aberger M., Otter M. Modeling Friction in Modelica with the Lund−Grenoble Friction Model

The Modelica Association 289 Modelica 2002, March 18−19, 2002

0 5 10 15 20 25
0

0.5

1

1.5
F

ric
tio

n
to

rq
ue

 [
N

m
]

T im e [s]

1	�
��� ?�1�	��	������&
����������
����������!
��	���	��"
�����������7���	��1�	��	���������!��
�����	��"�

�	 -�.��	#����&	������

)'&� ��
���(���������

�1/1/	 #����&	+��&	-�.��	,�������
1�	��	��� ���&
�� �� 	�� ��
����
� 	
�

����� ��
��	���� �
� �
�
���	��� ��� ���� ��	��	��� �����	�	���� � �

�
�� �� ��	��� 	
� 	�

�
������
���	���������������	������
���������	�������������
��������������������������������������
������������	��
��/�
� 	���� ����
��� ���� ��������� ��� ���� ���	��� ���� ���
�

���	��
����������	��	����	
��	�
�	��
?

�����
��"!��� � !))"

�����
���������� #$%� ���� ��� �������� ���

��� �� ��
���
��
��	��	��?

�
���

��

�

�

� "!�

�
� �� !)$"

� � � � �
�
��

	

 ��� �

�
�

�

)
"! ���� ����

�����
�

� !)*"

�����
��

��
��

� �
�
�

�
	

 ��� �����

���
!)+"

��������� 	
� ����-�
����� ��	��	��� �����	�	���� ������� 	

����
���	�� ��	��	��� �����	�	����� ��	
� ������ 	
� �������� ��
�����
����������	���	���������	��#*%�

'�����������	������������������������������	
�����	���
�
�	��
��
	�������	����������	���������

���
��

�� ���� !)0"

������ �������	�
��������� ���������	
�� 	
�����	�����

����������

'�� ���� �����	��� ���
���� �����	��� ���
� ���� ���	
�� ��

	�
���	���
������ ���� 	�	�	��� ���
�� ��� ���
��� !)$"��
��
��
��� ����
����

��� ����� 23 ����� � ���� 2�� � ��� ���	�
���/
�	��������	��	������&
���������
������������
	�
���	���
9��	��� �� 7������� �
�	�	���� �&
��	��� 	
� 	�����
���� ��
��	����� ��� ������ ���
����� ������
���� ��� 	����� ����������
������
�
	����9
� ��������������	
�����������	��� 	
�
����

��������� ��� ������
����� ���	����
�� ��
�� ��
���	��� 	

	�����
����������

�1/1�	 !���2���#����&	+��&	-�.��	,�������
9� ����������
���� 	
� ��� �������� ������ �� ��
���� 	

���������� 	�� ��������� ��� �� ����� ������� ��	
�
���	��
�������� 	
� ������� ��� ��
����� ���� ���	�
	��� ��� ���
��	��	��� ���&
����	�����
��� ��� ���
���� 	�� �� ����������
��
��� ��� ����	�	���� ���������� 	�� ��������� ��� �� ��
���
�����������'��������
����	
����/����������	��	������&
��	

����
������

���������� ��
�

��
��

�� �
�
�

�
	

 ��� ����� !) "

������ �	
�� ��
� ��� ��� ����	���� �
� �����������,	��� ��	

�����������������	�
����	��	������&
��	
����	���������
������
����	
����/���������
����������	���	

)22
���

�� �

������
����	
����/����������������������	
�����������	��
�� 	
� �����	���� 9��� ������ �&
��	��
� ����
	�	���� ��� ���
��
����
�����	������
���	���������

)')� ��� ������������
������
���
���� �����	�
�� ��� ���� �
���� �����
� ���� ��
����
� 	

������������������
���������
�������������	���
�������
�	������

�1�1/	 �� $��
���	���� ����	.���
�'
9�
	���	�	��� ������ ��� �� *������ �
�����	�� �������� 	

	�
������� ���� ������ �	��� ���������
� ����� ���

�������� �����	��� �����	����� �	������ 	
�
����� 	�
1	�
���4���������������
����������
����
��������/�
����

�����	��������+��������������
�	���������	��������0��9

�	���	���
�&
�����������	�
�������	���������	��	����<+�

	
�
	�
������

	��� �<+222� �
��
�� 	�������
� ���
	����������(9..���	����������	����������������<)2�
�

����
���� ������ �	��� ���� �
���� ��
���� 	
�
����� 	�
1	�
���6��7��/�
�����������������
��	�
��������	�������
�
������
�����	������	�������������������������
�������
�
���� ��
����
� ����
����� 	�������� �������������	��
�
���� ��
����
� 	
�
�
������ �����

	��� 	�������	��
�����	���
��	������	����
����
	���������	������
����
	���	

�����
�����

1	�
���4?�*�������
�����	����������������

Modeling Friction in Modelica with the Lund−Grenoble Friction Model Aberger M., Otter M.

Modelica 2002, March 18−19, 2002 290 The Modelica Association

�
�L��
 #2��2�0% �
���/) �
����) �

��L���)2 #=%

������+?�A��������
��������
����������
����
��������/�
�

���� -) -$ 7) 7$
2
) �� ��
$ �� ��
* �� ��

������0?������
�	��������������
����
��������/�
�

��
)2� #�3���%

�� *22 #�
3���%

�� 2 #�
3���%

�� 2�0 #=�3=%

�� 2�0 #=�3=%

����) �
�	
��
)2 #=%

�� 2�22) #���3
%

������ ?�A��������
���������
������
����
�

1	�
���6?�*�������
�����	�����������������	����
���
��
����
�

���������	��������	����������	��
����������
����
�
���
��
	�	���� �����	�
��� ���� ���
���� �����	��� ��� ���� ����
�	���
�������� ��
����
� 	
�
����� 	�� 1	�
��� 8�� 	�
������	
��� ��� ���� ������ �	��� ���� �
���� ��
���� ���

�	���	�����������������	�������������	
�
�	������
������
���� ��	��	��� ���&
�
� ��� ����
�������� ���� ���� �
���
��
����
�����
�����	��1	�
���)2��������	
�����	��������
	�� ���� ��	��	��� ���&
�� ���� ��
���� -$�� 1��� ���� �
���
��
���� -)� ���/
� ������� ��� ����
�	���	��� ��	��
�� ���
��	��	������&
�
�����������/�
����������
������
����
����

����� 	�� 1	�
���))�� ���� ��	��	��� ���&
�� ��� ���� �
���
��
����7)�
���
����/
��������
�	���	�����	��
���������
���� ��
���� ���
�
�
�/������ ��	��	��� ���&
����� �����
���
��
���� 7$�
���
�
����
����� �
�	����	��
� ������ ���

�	���	��� ��	���� ,	��� !))"� ���� ���� ���
��
���������	���	�����������
����������
����
��������	�
�
��	��	��� ���&
�� ��� ���� ��
���� 	
� ���
<0�=�����	
� 	
� ���
�����
��
��	������	��������
������
����
�

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

T im e [s]

A
ng

ul
ar

 v
el

oc
ity

 [
ra

d/
s]

1	�
���8?�9��
���������	�����������

0 1 2 3 4
-15

-10

-5

0

T im e [s]
F

ric
tio

n
to

rq
ue

Lu
G

re
 c

lu
tc

h
C

1
[N

m
]

0 1 2 3 4
-5

-4

-3

-2

-1

0

T im e [s]

F
ric

tio
n

to
rq

ue
Lu

G
re

 c
lu

tc
h

C
2

[N
m

]

0 1 2 3 4
-5

-4

-3

-2

-1

0

T im e [s]

F
ric

tio
n

to
rq

ue
st

an
da

rd
 c

lu
tc

h
C

1
[N

m
]

0 1 2 3 4
-5

-4

-3

-2

-1

0

T im e [s]

F
ric

tio
n

to
rq

ue
 s

ta
nd

ar
d

cl
ut

ch
 C

2
[N

m
]

1	�
���)2?�1�	��	������&
�
�����
��������
�������
��
����
�

0 1 2 3 4
-6

-4

-2

0

2

T im e [s]

F
ric

tio
n

to
rq

ue
Lu

G
re

 c
lu

tc
h

B
1

[N
m

]

0 1 2 3 4
-5

-4

-3

-2

-1

0

T im e [s]

F
ric

tio
n

to
rq

ue
Lu

G
re

 c
lu

tc
h

B
2

[N
m

]

0 1 2 3 4
-5

-4

-3

-2

-1

0

T im e [s]

F
ric

tio
n

to
rq

ue
 b

ra
ke

 B
2

[N
m

]

0 1 2 3 4
-5

-4

-3

-2

-1

0

T im e [s]

F
ric

tio
n

to
rq

ue
 b

ra
ke

 B
1

[N
m

]

1	�
���))?�1�	��	������&
�
�����
������
����
����
���/�
�

��������������������	��	������&
�������������
���
�	����

��� ���� ��	
���
� ��� ��<)2

�� 	
�
����� 	�� 1	�
���)$� !���
����	������������	
���
�	
�/�������
����������<*22"�����
����	�
�������������/
���������
������
����-)�	
��	�����
���� ���/� ����� ��
���� 7)� ���
�
�
�/� 	
�
�������� ���
������	
�������������
���������	����������������	������

�������� ������
���
� ����� ���� �	��� ����
�	���	��� 	

������
���

Aberger M., Otter M. Modeling Friction in Modelica with the Lund−Grenoble Friction Model

The Modelica Association 291 Modelica 2002, March 18−19, 2002

��������������������	��	������&
�������������
�������	��
���������	
���
���<*2�	
�
�����	��1	�
���)*�!����
�	����

	
�/�������
�������<)2

�"��������	��������������/
�������
�
������
����-)�	
�
������������������
����	
����	������
5����������������	�
��
�����������/
������������
����

����
�
�/�����	�����
������� ����������
������
�	����	��
�
����������	
�������������
���������	����������������	��
����
��������������
���
�����������	�������
�	���	���	

����
�� 	����	����� �
�� ������ ����
����� �
�	����	��
� 	�� ���
���
���������	�������������
�	���	���

���� ���
���� ���������	��� ��� ���� ����� �	���
�������
��
����
� ���� ���/�
� ���� �	��� �
���� ��
����
� �	��
�	�������� �����	�� ���������
� 	
�
����� 	�� 1	�
���)+�
���� ���	�
�� ���������	��� �	��� �
���� ��
����
� 	

�	����� ����� �	���
�������� ��
����
� ���� ���/�
�
'�����
	��� ����
�	����

� ��� ���� ��	
���
� 	�� ���� �
���
��
����
���

��
�	���	��������/
��������
�	���	�����	��
�
,���� ���� ����	��� ��� ���� ��	
���
� 	
� ���
����
�
�	����	��
����
�������������������	���	
������	���

0 1 2 3 4
-20

-15

-10

-5

0

T im e [s]

F
ric

tio
n

to
rq

ue
Lu

G
re

 c
lu

tc
h

C
1

[N
m

]

0 1 2 3 4
-5

-4

-3

-2

-1

0

T im e [s]

F
ric

tio
n

to
rq

ue
Lu

G
re

 c
lu

tc
h

C
2

[N
m

]

0 1 2 3 4
-6

-4

-2

0

T im e [s]

F
ric

tio
n

to
rq

ue
Lu

G
re

 c
lu

tc
h

B
1

[N
m

]

0 1 2 3 4
-5

-4

-3

-2

-1

0

T im e [s]

F
ric

tio
n

to
rq

ue
Lu

G
re

 c
lu

tc
h

B
2

[N
m

]

1	�
���)$?�1�	��	������&
������
������
����
�-)��-$�
7)������7$��	��������	����	��	������������
���<)2

�

������<*22�

0 1 2 3 4
-6

-4

-2

0

2

F
ric

tio
n

to
rq

ue
Lu

G
re

 c
lu

tc
h

C
1

[N
m

]

T im e [s]
0 1 2 3 4

-6

-4

-2

0

2

T im e [s]

F
ric

tio
n

to
rq

ue
Lu

G
re

 c
lu

tc
h

C
2

[N
m

]

0 1 2 3 4
-6

-4

-2

0

2

T im e [s]

F
ric

tio
n

to
rq

ue
Lu

G
re

 c
lu

tc
h

B
1

[N
m

]

0 1 2 3 4
-6

-4

-2

0

2

F
ric

tio
n

to
rq

ue
Lu

G
re

 c
lu

tc
h

B
2

[N
m

]

T im e [s]

1	�
���)*?�1�	��	������&
������
������
����
�-)��-$�
7)������7$��	��������	����	��	������������
���<)2

�

������<*2�

0 1 2 3 4
-0.5

0

0.5

1

1.5

2

2.5

T im e [s]

A
cc

el
er

at
io

n
of

 lo
ad

 [
ra

d/
s]

0 1 2 3 4
-0.5

0

0.5

1

1.5

2

2.5

T im e [s]

A
cc

el
er

at
io

n
of

 lo
ad

 [
ra

d/
s]

0 1 2 3 4
-0.5

0

0.5

1

1.5

2

2.5

T im e [s]

A
cc

el
er

at
io

n
of

 lo
ad

 [
ra

d/
s]

0 1 2 3 4
-0.5

0

0.5

1

1.5

2

2.5

T im e [s]

A
cc

el
er

at
io

n
of

 lo
ad

 [
ra

d/
s]

1	�
���)+?�9��������	������������	���
����������
����

�������/�
�!��������"���
������
����
����������	�
���������
���<)2

��������<*22�!�����	���"�������	�
���������
���<)2

��������<*22�!�����������"�����
�����	�����������
���<)2

��������<*2�!��������	���"�

�1�1�	 #��	�����	+��&	���� ����	.���
9� ��������� ������ ��� �� ���� ������ ���	�� �	��� ��
�
�����	�� �������� ��
�
	�
������� ���� ������ ��� ���
�
�����	����������	
�
�����	��1	�
���)0����������	�
�
��
#4%��9�����
����
�������
�����������
������	��	���������
���� ���������
� ��� ���� �
���� ��
����
� ����
����� 	�
������ 4�� ���� ���	�
�� ������� ������ 	
� ����
�����
����

��	��	
��	�������������������
�����1�������
	�
���	��
�����<$22�
��	����������(9..����
�

����	����������	��
���������� ���<)2��� ���� =<)222� �
��
�� 	�������
�� ���
������ �	��� �
���� ��
����
� 	
�
�
������ �����

	��
	�������	��� �����	���
� �	��� �� �	����
����
	���� ����
:F1'G+��������	��������
�����
����
	��
������������	

��
��
�
������ �	��� 	�������	��� �����	����(9..�� ����
����
�	����

����������	
���
�	
����
���������<)2

����������
����	������ ������	
���
� 	
� 	�� ���� ������2�22*�����
��*�
,���� ����
�	����

� ��� ���� ��	
���
� 	
� 	�����
���� ���

	�
���	����	�����
��	�����
�
���
����������������

���������
������ ���������	���
����������
����
������	��
�
������
����
�	
�
�����	���1	�
���) ��������	
�������
�����	���������	�����������	�����������������������
�	�����
��)$$�
�����������������	���	
�������
	����	��������
���
��
����
�!��	���	
�&
��	���	����������"�	��������
��������
�������	���
����������
����
������� ���� �����	��� 	
� ���
������
	���� ���� ���������
��� ��� ���� ���� �	���
�������
��
����
������	����
������
����
�	
�
�����	��1	�
���)4�
������ ����
����� �	��������
� �������� ���� ���� �
���
�
�
���	����� ��� ��)$$�
� ������ ���� �����	��� ��� ���� ���� 	

������
	�����������	�
�����������	����	��� �����
���
��
����
�	
�����@)2

���3
����������������
�����	
�	�����
��
��������	�
������ ���
�� ���/
� ������
� ��� ���� �����	�
���������
�� ,���� ���� ����	��� ��� ���� ��	
���
� 	

	�����
����������
�	����

����������	
���
�	
�������
������
����	�
�������������/
�	�����
�
�

Modeling Friction in Modelica with the Lund−Grenoble Friction Model Aberger M., Otter M.

Modelica 2002, March 18−19, 2002 292 The Modelica Association

��
)2� #�3���%

�� 2�2* #�
3���%

�� 2 #�
3���%

�� 2�)$ #=�3=%

�� 2�)++ #=�3=%

����) �

�� 2�0 #���3
%

������4?�A��������
���������
������
����
�

1	�
���)0?�9
�����	����������������

0 50 100 150 200
0

50

100

150

200

Time [s]

V
el

oc
ity

 o
f c

ar
 [

km
/h

]

0 50 100 150 200
0

50

100

150

200

Time [s]

V
el

oc
ity

 o
f c

ar
 [

km
/h

]

1	�
���) ?�D����	�����������	���
����������
����
�!���"
�����
������
����
�!������"�

0 50 100 150 200
-10

-5

0

5

10

Time [s]

A
cc

el
er

at
io

n
of

 c
ar

 [
m

/s
2]

0 50 100 150 200
-10

-5

0

5

10

A
cc

el
er

at
io

n
of

 c
ar

 [
m

/s
2]

Time [s]

1	�
���)4?�9��������	�����������	���
����������
����

!���"������
������
����
�!������"�

#����������
�����	��������
���������	�����	��	������
����
���������
���� ��
����
� ����� ����� 	����������� ��
��� ��� ���
������������������������
������	��	���������#$%����	

������ ��
������

���

���

�
���� ���� �������������
	��
��� ������
���� ��	��	��� ������
� # %�� ���� ��	��	��� �����

���
� ��� ��� �����

	���� ���� ��	
� �
���
��� ����

�� ���
!
�	��"��	�������	����&
��	�����
��	��	��� �����
���� ��
	��
����	���	������
���������������

'�� ��	
� ���	���� 	�� ��
� 	���
�	������ �������� ���� �
���
��	��	��� ������ ��
� ��
�� ���������
� �����

��� 	�

	�
���	��
�� H
���	������ ���� ������	��� ���� ������	��

	�
���	����������
�	��������	�
�����
�����	����������

��
�����
������'���
��
��
����������
���������

��
�������
���	�����	��������	��	�����������	
������	����	����������
9
���������������������
	�
���	����	���	
��	������
	�����

�	��� �	�������	��� �&
��	��� 	
�
������� 9� ������	��
����������
������ ��� ��� ����� ��� �����
� ���
�� 	�� ���
������ ����

�� �����	��� ���
����� �����
� 	
� �����

���������	�� 	�� ������	���
	�
���	����5�������� 	��
���

�����������
����������
�!���
�����	���
	�	���"�����������
���	�	�	�����	�����
������������������
�����������
�	�����	�
������������	���������	�����
	�
���	��
�

,������	��	����������
����������	��������
�������
�	��	

���� ��
�� 	�� �
�����	�� �������� �����
�� �
���� ��
��
��
���� �����
�
���� ��� ��� ����

	���?� 1	����
����
	��
	���������
�� �
� ������� ���� ������	���
	�
���	���� ��
��
�����������	���	������������
����
�
������

�� 	����
����
��

	�����������
���	�	���!��������������
�����
����
	��
"�
>
	�������

�������������

���������	��������	�����
����

	��� 	���������� (9..��� ��

����� 	��
	�
���	��
� ��	��
����&
	���
��
	�	�������������	���������������	���
���
��	��	��� ���������
�� ���� ����� ������� ��� 	�
���	�	�	�
� 	�
�����	�����������������
�

Aberger M., Otter M. Modeling Friction in Modelica with the Lund−Grenoble Friction Model

The Modelica Association 293 Modelica 2002, March 18−19, 2002

"�
������$&�
#)% =�� 7��������� ���� :�� C������� I=���

���� ���

.
��	�	���� -���	�	��
� ���� A�

	�	��� ��� ���� �
���
1�	��	��������J������
��������
���
��
���� ��
�
!��������D����+0��$222�

#$% -��-��
��
����,	���5��C�

����F��K��M
��N������A�
�	
��	�
/	��I9�=�������������-����������.�
���

�	��� 1�	��	��J�� ����
 ��������
���
 ��
 ���� ��
�
!��������D����+2��)880�

#*% -�� -��
��
� ��� ,	��� A�� �
	����
�� I(����	�� �	��
1�	��	��� �����
� ���� D��	���� �����	��
-������J�� !���������
 ��
 "��
�
��
 ���
 !�������
A����	���9�	�����
(����)888�

#+% (�������"����

�#�
�
����.����������
	���+�)�
����?33��������
	��
��

#0% ����O�������I-�����	
����������1�	��	��������
J�
$�����
 �%��
��
 &���
 ����
����
 ��
 ���%�������
>�	���
	�������
����)88 �

% 5�� C�

���� I-������� ��� .�
���
� �	��� 1�	��	��J�
'%��
 �%��
��
 &���
 ����
����
 ��
 ���%�������
>�	���
	�������
����)88 �

#4% ���C������-��.������������5��H��&�	
���I�����	��
����:����	���.	�
���	���������9
�����	���������

	��� �����	��J�� '����
 �(()*+
 ��������
(
 ����
��
 (� ���
� �� A�

�
�� ��������� ���
))0�)$)��)884�

�$$����'

��� �����
������������,
-�����
��
��
���'5@
���	�0'5@
�����
� #��
�+	�� 0
��
��������A�����+�
A�+)� �+�
��	�	�� ���
��
������"1���A�����+�
"15 �	��
�������
���
1 	�
��+��
��#���

������������"1
8�
;5��	�5B���
��
������������"1
8�
;5��	�5B+���
�����������������	�5B���
-�0C&��
��0�
������������"1
. #5��
:���+�	!�*���
����
�������������������#&�������0C&�
��0�
�������������������#&���,�=
���0C&��
��0�
�����������������DC��
����0C�&
����5�0�

��"1
. #5��
:���+�	!�*�0.��
��(���0�
��"1
. #5��
.++���
�	�� ���0�*��	0�
��"1
. #���D��	�
	����0�
��	�������
0�
��"1
. #5��
:���+�	!�D���	�
	����0�D��	0�
��"1
8�
;5��	�5�0E
�+	�� �	�
;5�0�

�������#�0����>�?0�
��"1
. #���D"	�
	�0"	�
	����5�����D0�
�������� �D� �#�08
�##�
���� 	�0�
�	���
��
�����1 �	����+� ��	�� �
�������
�
�
���������
����D"	�
	�����# �*��#�DC�
������
�
��D��D"	�
	��
����
������

�����"(������ ���++���
�	�� �
��*���
���()���
������
���*��

�����/����+	�� �����
��	���
��D����
���D��
��D�����*�DC�������*��D�#��

�����E
�+	�� �	�
;5�
��#�������#&����	�5B+����	�5B����	�5B+��
������������������(���*�*��F����
��	�5�����#&���D�DC���#&���D��DC�	�5B��*�

�����<;5����
�5&����	�
;5��
����� #�B�
	�5������ #�B�
	�5���	�5�����

�����8
�##�
���� 	��*)� ��D��	��
��D� �#���D��G���
��
�'5@
���	�

��
���������,
-���.�������
��
���H�5	+)'5@
��0'5@
��H�5	+)�&����0
��
��������A�����+�
A�+)� �+�
��	�	�� ���
�
������"1���A�����+�
"15 �	��

��
����������A�����+�
���+7�
1 	�
��+���
�������
���
1 	�
��+��
H�&(��� 	�

�����������������&5�B���
��
�����������������&5�B+���
������������"1
. #5��
:���+�	!�*���
����
�������������������#&����
��
�������������������#&�������
�������������������#&���,�=
���
�������������������#&����
��
�����������������DC��
����0C�&
����5�0�
�����������������+#�������0@��&
�+� �	
0
������������"1
E�
+��� B&�������

���
1 9�
	�� 9�
	��� ��� ����

��"1
. #5��
:���+�	!�*B
���0���
��(���0�
��"1
. #5��
.++���
�	�� ��B
���
��"1
. #���D��	�
	����0�
��	�������
0�
��"1
. #5��
:���+�	!�D���	�
	����0�D��	0�
��"1
8�
;5��	�5�0E
�+	�� �	�
;5�0�
��"1
E�
+��� �0C�
&�����
+���� B&���5�0�

�������#�0����>�?0�
��"1
. #���D"	�
	�0"	�
	����5�����D0�
�������� �D� �#�08
�##�
���� 	�0�
�������� ��
���
�������5�0 �
&���D�����
+��� (5	�>�

�?0�
�	���
��
�����1 �	����+� ��	�� �
�������
�
�
���������
����D"	�
	�����# �*B
����#�DC�
������
�
��D��D"	�
	��
����
������

���������	����;5� 	�	���
��*B
�����
���()�B
����
���B
�����
���*B
����

Modeling Friction in Modelica with the Lund−Grenoble Friction Model Aberger M., Otter M.

Modelica 2002, March 18−19, 2002 294 The Modelica Association

�����C�
&�����
+��� ���
�+	
���
�� �G���
��5���� 9�
	
��# ��>�?�
���
�����5�G����
��� ���
���
���������������� B&���5�

�����/����+	�� �����
��	���
��D����
���D��
��D����
���
��������������
���������*B
���DC�������*B
����D�#��

��#�������#&����&5�B+����&5�B����&5�B+��
�����������������(���*B
���*��F����

�����E
�+	�� �	�
;5�
��	�5���
���
���������������+���� �
�����������#&���D�DC�����#&���D��DC��

������������#&���*B
����

�����8
�##�
���� 	��*)� ��D��	��
��D� �#���D��G���
��
�H�5	+)'5@
��

%���!�����
���������,
-���.�������
&�����I �J�!H�5	+)'5@
�
�����������0E
��*)����� ��+�5	+)0

��
��������A�����+�
A�+)� �+�
��	�	�� ���
��
������"1���A�����+�
"15 �	��
��
����������A�����+�
���+7�
1 	�
��+���
�������
���
1 	�
��+��
H�&(��� 	�

�����������������&5�B���
��
�����������������&5�B+���
������������"1
. #5��
:���+�	!�*���
����
�������������������#&����
��
�������������������#&�������
�������������������#&���,�=
���
�������������������#&����
��
�����������������DC��
����0C�&
����5�0�
�����������������+#�������0@��
�+� �	
0
������������"1
E�
+��� B&�������

���
1 9�
	�� 9�
	��� ��� ����

��"1
. #5��
:���+�	!�*B
���0���
��(���0�
��"1
. #5��
.++���
�	�� ��B
���
��"1
. #���D��	�
	����0�
��	�������
0�
��"1
. #5��
:���+�	!�D���	�
	����0�D��	0�
��"1
8�
;5��	�5�0E
�+	�� �	�
;5�0�
��"1
E�
+��� �0C�
&�����
+��� B&���5�0�

�������#�0����>�?0�
��"1
. #���D"	�
	�0"	�
	����5�����D0�
�������� �D� �#�08
�##�
���� 	�0�
�������� ��
���
�������� ���+7���
�������5�0 �
&���D�����
+��� (5	�>�

�?0�
��������

����������������+&�������
�	���
��
�����1 �	����+� ��	�� �
�������
�
�
���������
����D"	�
	�����# �*B
����#�DC�
������
�
��D��D"	�
	��
����
������

���������	����;5� 	�	���
��*B
�����
���()�B
����
���B
�����
���*B
����

�����C�
&�����
+��� ���
�+	
���
�� �G���
��5���� 9�
	
��# ��>�?�
���
�����5�G����
��� ���
���
���������������� B&���5�
����+7�����D�G���

�����/����+	�� �����
��	���
��D����
���D��
��D�����*B
���DC�������*B
����D�#��

�����E
�+	�� �	�
;5�
��#�������#&����&5�B+����&5�B����&5�B+��
������������������(���*B
���*��F����
��	�5���
����+7�������
��������������� B&���+&������#&���D�DC
���������������#&���D��DC�����#&���*B
���
��������������
���
��������������
������������+#���� �
��������������#&���D�DC�����#&���D��DC��
��������������#&���*B
�����
��
�I �J�!H�5	+)'5@
��

The Modelica Association 295 Modelica 2002, March 18−19, 2002

Session 9b

Special Methods and Tools

Modelica 2002, March 18−19, 2002 296 The Modelica Association

Fritzson P., Aronsson P., Bunus P., Engelson V., Saldamli L., Johansson H., Karström A. Open Source ...

The Modelica Association 297 Modelica 2002, March 18−19, 2002

0&�	!$��	������	��������	%��3���

%����	,��������	%����	���������	%����	"�����	4��� 	���������	-����	����� ���
������	5�&��������	�������	6�����7 �

23�$4��2����
������3������������
���
���������
���������� ���'����
���.�����
����
#"���"������+5�����������������#3%
/��/������+5������#6����

7����'������8)��
(��'(��

�!
�� ����$4
0
�����������
�
�	

#3%
/���
����+5������#6����
7�����+�
����
�8)�
��"���("��

�
������
���� �����
�
����
�������� ��������� ��
� ����	���
������

� ������	��� 	�� ������� ����
�� '�� 	
� �����
���������	���� �
� �� �
������������ ���� ���� ��� �������

��������� ��	
� ������ ��
��	��
� ��� ������� ��� �������� ��
�����
�
���� �����	��� ���	�������� ��� �� ������ ������
��
��� ��� �� �������
���	�	���	��� ��� �����	���
�����	������ ��� AH�97�� (���������� ��� -���
���� ���
'�������	��� .�	������ �	�/N�	��� >�	���
	���� .������
�����
���������
	������ ����
�
��������	��
�������	�	���
	�������	��� ����
���	����� ���	�������� ���� ��
�� ��� ���
�����

	���� �����	����� ���� �
���	��� ����
� ��� ���
�����	�������
�����
�������
��������
�����������
���	�

�����	�
����������	���$�2�

���� ������������ ����� 	
� ��� ����	��� ���
������

	�
���	��� ����
�	���

������� ��� ���
�� ���� ��

� �������
�����
����
�����������&
��	����������������	�����	���	

���� ����� �

����� ��� ���� ����
����� A������ ���� 	��	���� ��
�����	�
��� ��� ��	
� �����
�
���� ���;����� ����� ��� ����	��
	����������	��
� ��� �
���	���� �����	���
� �
� �����	��
�
���	��
�� ������� ����
� ��� ���� ���	��������� ��
�����	�
�	��
��������	����	�
���������
�
������������ ���
����� ���������
� ��� ���� �����
�
���� �����	��
���	��������	
����	������
�����������
�A
��	���	���
��
�A��� ���� �	������ ���������
� ���� ���	������
����� ���

���� ����	�	��
� �
� ����
�������������	��� �	������� ���

�
�����
���������
�
�
������	���
����,	����
���	�
��
���� .
�� .����� .����	
�� 9� ��������/� �������� ��
�
��	�����
	�����������	����
���
���������������������
��� ���� �
������
�
���� 	
� ���
�� ��� ���� ������������ ��
������	�����-��������������
���������	����

/	 ������������	���	%��3���
.����

���������
�
���������	������������
��	����	����	
������
��
������
����������������������������
?
�� ����
���������� ����� 	
� ��� �������� ��� ���	�	���

	�������	��� ����
���	����� ���	�������� ������
�� ��
���������

	���������	����������
���	�������
�������
�����	��� ����
����� �
� ����� �
� �� ��������� ������

���	��
�����	��
���	�	���	��� ��� ���� ����
����� '�
�
��
��
��������	���

����������������	��������
����
�	����	�
�� �����	��� 	
� ����� �����

	���� �
� �
����
���	����� ����
���� ���� ������������ ���
����
�	��� ��� ����� ���� ������ ���� �	��� �����
�
���	���� �����	���
�� ����� ���� ��������
�
���
��
	����
���	��� ����	����� �&
��	���
�
���
�� ��� ��
�����������	�	���	��������	���
��������������	�����
������������	���	��
�

�� ���� ���������� ����� 	
� ��� ����� �� ������� ��������
	����������	��� ��� ���� �����	��� ����
����
	���
�	���
	�
���	�������&
��	�����
��������
����
���	�	����� ���	�	�	�
� 	�� ���� ��������	��
���	��������� �
� ����� �
� ������	���� ���	�	�	�
� ���
��
���������������	������	���	������
������
	�����
������ ��
������ ���	�	�	�
��5�������� �
�� ����� 	
� ���
��� ������ ���� ������ ��� ������������ ���� &
��	��
����	���� ��� �
������ �������	��� �����	��
���	�������
� ����� ���� ������� ������ �����

��&
	�	�����������������
	
��������	�	���	���������
�����	�������	����

���� ���������� ������
�� ������������
� ���� 	

�
���� ���
�����
�
����	����������	�������������	������	�������
	���
����
�����������	�	�����������������	��?
�� (����������������
������������������
���
��������

�����	���� 	���
�	��� �����
���	�� ���� �����	�

�����	�
��.
�����
���	�	���	����������

�������

	
�
�
������ ���� �
�
��� �����	��� 	����������
� ��
����	�	��� ��
�����	�� ����������� �
� �� /	��� ��
����������	����������	���

�� ���
��
��	���
������������
�����������	������
������
���� ����
����� ����� ����

�� 	�� �	����
	
��
��
��
���
�����
	
��
�
���� 	����	�	���	���� ������ �
� ����� �

�����	��� �������
� ����� ��&
	��� ����	��� �	�������	��
�&
��	��
�

�� ���
��
�� 	���
�� ��� �������� ������
�� ����������

����
������

	����

������������	������������	�	���
��

�������	�
���	�	��������	����
�����������	�
������

�� %������	� ��������������� ��
���$����� ����� ��
�������� ���� ������������ ��� ����	���� �����	��
���������������	������������������������������

Open Source ... Fritzson P., Aronsson P., Bunus P., Engelson V., Saldamli L., Johansson H., Karström A.

Modelica 2002, March 18−19, 2002 298 The Modelica Association

�� %������	� 	���

��
�

������ ���� �&
��	��� ��
��
����
���
�

��� �
� �����	���� ��� ��/�� ����� ����
��
	������

��

�� ������������
���	��	���� �	��������� !�����	���"�����
�������
������������	������	���	�������	�
�

�� &������"������ ���� ��	���	��� �����	&
�
� ���
	����������	����������
�����	��������

��
�

���� ��������� �������
���	�	���	��� ���� �����	��� 	

����������	��'��������������
�����	��� 	
��
�������� ���
��
�� ���
���� ���� �	�����

���
�����	�
�
���	�	���	��
������	
��� ��	
�
���	�	���	��� 	
�

��� �
� 	��
�� ���
�
�����	�� �������	��� ��� �����	��� ����
�����
	����������	��
���	��������������������
�
���������	��
���	���������

	��� ���� :��� ����	���� �������	��� ����
���������� ��� AH�97�� ���� ���	���	�	��� ��� �� ������

���	�	���	��� ���	�	����
� ����
���� ��
	��� ��
������ ��
���� ����
���� ���
��
��
� ��� �	���� ����
����� ��� ���
����
������
�������
�	�����	���	�
���
�������������	�
�

���� �����
�
���� �����	��� ���	�������� ��

����	��
��� ��
�������� ���� ����
������
	��� 	���
� ������ 	�

���

�
��� ���� ���

��	����� ��� ���� �����	��
9

��	��	��� ���� ���
	�����	��� ������	��� ��

	���
	���

	���	���������	�	��������	���
��������

���� �
������ ���
	��� ��� ���� �����
�
���������	��
���	�������� �����
���
�� ��� ���� �����

	���� �����	����
���� �
���	��� ����
� ��� �����	��� ��� ��� ����
���
	�������	������ ���� �����	��� �
���	��
� ��� ��� ����	���
	�������	�	����-���������������������-������	
�����	���
�	������	���������
�	�	����
���	��
��������
���	����	������
9�� ��������� �
���	��� �	������ 	�������	��� �� �9A9-F

�
��� ���� ������ ��
	�� �����	���
� 	
� ��
��
����
������������

�	 0&�	!$��	������	��������
������� ���

���� 	�������	��� �����
�
���� �����	��� ���	�������
�
�����������
	
�
��������������	������������
?
�� ��� ������
����� �������� ���	����� ����� ���
�
� ���

	��������
��������
����������	��������

	��
� ���
����
��	���� ����
�

	��� �������� ��
�� �����	�

	����� �	
����� ���	�	�	�
�� ���� �������	��� ��� �	��
����
� ���� �����	�� 	����	�	��
� 	�� �������
�� '�� 	

��
����������:����	����	��������	���	
����	������	�
��
���	�
������>�	���	
��	�
�	��
�

�� �� ��	���
��
��������� ����
���	��� �����	��� ��� -
�������	�����
�����������������	�	������	�	�	��
���
���

�
�� �
���	��
�� ���� ���	����
�� .
��� ���	�	�	��

���� ��� ������	�����

������	����� ��� ����	���� ����
�	����	�
�

�� ��� ���
������ ��	� ��������� ��	����� ��	
� ���
��
�
�������� ����
��
� ����	���� �	����� ����� ����
����
�����������

	��
������
���	��
��'�������
�
���	�
�	��� ��
��

������
	�
���	��� ��� �&
��	��� ��
��
�����
�� ��&
	�	��� �
���	����
�����
� �
� ����� �

�����������	������	�	�	�
����������	
��������������	�
����
�������������	�������
����

�� ������������	����	������9����������	�����������

���
,�� �����
�� ���� ��	���	��� ��������� ��
� H���
�

��	�����
��������������������	�������������������
�
�
��������
	��
��9���
�H���
���������������	��
���� �� �����	���
������ �	���	���	��� ���� ���
>����H�	���������	������
�����	�

������������������
������ 	
� ��
�� ��
���	��� �����	��� ��	���� ����
������	��
� ����
������ ���
���� �������� ���� ���/

/������
� ���� �������
�

	��� �	�������� �����

#�����	��%��7���� ����H���
������ ���� ����
���	��
��	�����	��
������	��������	�����������	��
��
�	��
��	�	���� ��	��� ������	
�� ��
����
� ���� ����� ���
��/�
�	���������������

�� ��
�����
��� ��	��� �	������ ��	
� 	
� �� �����	���
�������	��� ��	����� ���� ���������� ��
��� �����
��
	�������������	���	�
�����
���������	������

�
�
��	
������ ��� ����
�
���� 	
� ���� ���� 	������������9
K���� ��
��� ���������� 	
� ��������
����
������������

��������	

������
�

����
������	
��������

����������

�
�����		
�����	�����
�

�������		
�����	�����
�

���

������������������	����
���������������
�
���������	��
���	���������9����
����������������������������������
	�������	���
�

	��� �������� ����	��
� �������
� ���

���
� ��

��
� ����� ����
��	��� �����

	��
� ����� ���
����
��������������
��������������	����������	����	
����
����	�����������

�1/	 �����������	�������	+��&
�'� $���

���� ������	��� 	
� ��� 	�������	���
�

	��� �	��� ���� ����

�
���� �����	��� ���	�������� 	���
�	���
���
�������
� ���� �������
�� 1	�
�� ���
����� ����
�
����
��	�����
����
��	�������������	��?

��������	
������
�
�����

,������������

	������������������������

	�����������
��� �������������
��
��	��������

	���)?)$�� ������
�����
	�� ���� ���	����� ��� ���� ����� ���� ���� ���
�� ��� ���
�����

	���	
����
�����

������������
��������	���������������� ��!��"��#��$�
%������������&

�����
���	���bubblesort� 	
�������� ���
���� ��	
�������
	�� ��
����	��� ������� ����
������ ��

��� 	
� ���
����
����������	��� 	�
� ������=���� ����� ���� ��

��� ������� 	
� ��
�����Real[:]��	�
����	������
�Real[12]��
	������	
�	

���� ��������� ����� ��� ���� �
���	��� ��

���� ���� 	��
�
Integer� ������� ��
� �
�����	������ ���������� ��� �
Real� ������� ������	��� ��� ���������	��� ����� �����	��
�
��
�

���'�''
�(�	�)�*

Fritzson P., Aronsson P., Bunus P., Engelson V., Saldamli L., Johansson H., Karström A. Open Source ...

The Modelica Association 299 Modelica 2002, March 18−19, 2002

��+��
�������������������%��$��#��"��!�
 ���������&

=��������������������������
���������	���	������
	�����
�����	�����������	�	���	����1	�
�� ����� 	����
���������	�
�����	�	��������	�	���
���������	�����
	����������������
���
�����?

��������	���),(�-�
��.������,*
��+��
�"��%��
����/��/��/�������������������&�
����/������������������������!&�
�������� �������������������� !&�
������������������������������#&�
�������/ ��������������������� &�
����������������������������� &&

����� ����� ����
	������ �����	���� 	����������� �
� ���
�����	��� �
���	��� simplex1�� ��	
� �
���	��� ���
��

��
�� ��

��
�� ��	��� ���� �����
������ �
� �� �
���� ��� ��
�
���
������
�
?

���(�-�
���)�*
��0��
���
��+��
�$����%��%�� ��!�������������&
��+��
����
��������	��%
��������	���

'�� 	
���

	���� �������
�����������

	���������12:-1:1�
����
�����������

���	�����	���

	�������write��������?

���1	���)���/����,��(�����,*

,��������������/� ����
������ ��

��� ����� ���� �	��� 	�����
���	�����y?

���2����	���),��(�����,*
��������	�������������������%��$��#��"�
!�� ���������&

'�� 	
� ��
�� ��

	���� ��� �	��� ������	���
�
���� �������

�	�� ���� system�
�	�	��� �
���	���� 9� �������� 	

����	���� �
� ��
��	��� ���
������ ���� �������� �����

���
� system� ����	��� ��� ���� >='G� �������� cat�
��	��� ����� �
��
�
� ���� �������
� ��� ���� �	��
bubblesort.mo���������
��
��
������

���(2(��-),
���'�''
�(�	��-�,*
3��
�����'�''
�(�	�
��������+��
�����4
���������+��
�(�5�)���*��24
�	���
���
��+��
��4
�
��	��6-
��2�����4
��3�	��������(�5�)���*�
���
����3�	�7������(�5�)���*�
���
�������3�2������2�7���6��

�����������2���4
������2�������2�7�4
������2�7������4

�����������34
��������3�	4
������3�	4
����'�''
�(�	�4

9������� �
	���	�� �������� 	
� cd�� ����
���
��
������
	���
����� ��������� ���� ��

��	��� �
������ �	�������� 	

���
������
���
��	���

���
�),��,*
��	�����,86�-�8���3	8-���
�
�,

8	 0&�	��������	0����������
%������

���������	�������
���	��������

�	
����	�����	��1	�
���$
����������������	���
�
���������	
��	�
������
����������

�����������������������	
����
��	���
��
����������/	���
�������	��� ���� ��;������	������ ������	��
�

��� �

	����	������� ���	�	���	��
� ������ ���� �	�	��� ���/���
	���

	����������/
���
�������
� 	������
��������
�����
����������� 	���
��
� ��
��� ��� �&
��	��
� ��������	��
� ���
�
���	��
�� �	��� ���� ��;������	������
��
��
��� �������
��������������������	����	��	������
����	
������

�	
��
���	�

�
�&
����
���	��
�

���� ����� ���� ���
�
�� ���� �&
��	��� ��������� ���
�&
��	������	�	�������������

������������	�	��������

�����	�	��� �&
��	��
�� ���
�� ���
�
� ���� �
�������
�	

	�����
���	������

���	��� 	��
���� �
�
������
	�����
���� �����
�
���� �����	���
�
����� 1	������� -� ����� 	

������������	���	
���������
�����-�����	�����������
��
����
������ ������ '�� ���� �
������ ����	�	����� ���
	��� ��
����
�
���� ��	
� ����� ������� ��� ���� �&
��	��� ��
��

	�
���	��� ������ ����� ����� ���� ����
�	��� �����

	��
�
�����	���
�������
���	��
�

� ���������

	�
����
����

�����������

���������

����������

����

����������

�
��������

	��
�������

����������������

�����������

	���������
�������

������������������

��
�������

�
����

����
������

���������	
�����
	

������� ��� ����
���	���
����
� ����� �����	��� ����� ��
����
�	���
	�
���	���� ���� �
������ ���
	��� ��� ���� ����

�
���� �����	��� ����	���� ��������
� ����
������ ����
����� ���� �
���	��
� ���� �����

	��
�
	���� ���� �&
��	��
����������������	�	��������
�	����	

	���

Open Source ... Fritzson P., Aronsson P., Bunus P., Engelson V., Saldamli L., Johansson H., Karström A.

Modelica 2002, March 18−19, 2002 300 The Modelica Association

9	 ��������	������	���	���� ��
�� ������

�������������
�����	�
��	��������	��������������
��
��

	�� ���� ��������	��� ����
����� ��
�� 	���
�	��� ���
�����	��� ����
����� 	
�

����� �	�	���� 	���� ���� ��;��
����
?
��
���	��
�����	�

�� �����	��
�����	�

���������
��������
��
���	�	�
�����	����	���	

�
�

��
�
� ����� ����/	���� �&
	�������� �������� �	�������
�����
�����	��
� ��� ���� ��������

��� �
� �� ����� �	��
	����	������ ������	��
� ���
����� ���� ���� �����
����	��
����� �	��� 	����	������ ���� ���	�	���	��
� ���������
��������	������������;������	�����������������
�����	���
������
	������������	�������� �����
���� ���� 	�������	���
�����������.
�����
���	��
�����	�
� 	
��
���������	������
�
���������
���	�	���	�����������	���

'��
��
������������ ����� ����
�����	�
�
���	�	���	��
��������&
��	�����
�������
����

����
������	����	����

�����
�����	�
�
���	�	���	��
�������	�������������	��
����
���
��
	���� �����	��� �&
��	��� ��
��� �����
� ���
�����������
� 	�� ����

���
��
��� '�
����������	��� 	
� �
�����	��� ����
����

��� ���
���	��� �����	��
� �������
�	����������;���
�	��������������
�
����

���� 	�����
� �������
��
���	�	�
� ���� �
���	��
�����	��� 	���
�	��� ���� �&
��	���
���	��������

��
�	��
����
	�
���	���� ����
�	��� ��� �����	���	�� ������ ���
���	�	������
���	����
����
������������
�	��������

��,�
��� ���� �
�������� ����� �� �������
���	�	���	��� ��� ���
�����	��� �����	��
�����	�
�� �
�� 	������ ��� �������

�����
���	�	���	��� 	�� ���� �
�
���������
�����������	�
�
���	��� �����	��� 	
� 	����������� ��� ����� 	�� ���� -
��������	�������
���

91/	 ��	�'� $��	0����������	�

������	����	���������1

9
� ��� ��������� ���� �����	��� ������ B� ������ 	

����
������	�����&
��	��
�
-���
�9
��+��
���24
�:������
��������;�24
����94

-���
�<
��9��4
��+��
������4
�:������
����!������24
����<4

������

��	����&
��	��
���������
�������
?
<���������;�<���2
<���!����<���2

���� ��;������	������
��
��
��� 	
� ��
���� ��
�� ��	��� 	

���� ��� ���/� ���
�� �� �����
��� ��� �&
��	��
�� �
�� ���
���	����� ����
� 	�� ���� �&
��	��
�
�	��� �	��� �� �	��� ���
�
���	����	�	��

,���� ���� ����
������ ���
����� ���
� 	
� ����
���	��
����� ���� �����	���
�
���� ����� ��� ��� 	�������
�����
�����	��� ��� ���� ��

��	���
��� ��� �&
��	��
�� ��	

	�������� �����
�����	��� 	
� ����� �
������ ����
������ ��� -
������ 1��� �
���	��
�� ��������	��
�� ���� 	�������	����
�������������

	��
������-�������������������������	���
�	�������� ������
� ���� �&
��	��
�
������� ���	�	���	��

����
��

���������	�����������������	�������-������

91�	 �����	%��� �����������	���
����������	%��� �����

'������� ��
�
������� ���������
� 	�� �������	��������
����
����������	���������������
����������
	�������	���
����� ������ �	��� ���� ���������
�
�	��� ���	������ �

���������
� ����� ���� ��� �	���� �	�������� ���
�
� �
�	��
�&
��	���
��
�	����7
��	��
������
�
� ��	
� 	
�����
���,�
�	�������	��������������������
�������������
��
��
��
���
���������
����	���������������
����������������
�������
�&
��	��
���������
�����������
��������������

C���
	����� �������� ��� ��
��
��
���� ���������� 	

����� �� ���������� 	
�

��� 	�� ����
	��� ��� ��� ������
-��
	��������������	��������?

-���
�9		�2=�
����	�-���	�+��
�>����4
��+��
���>�4
�:������
����������4
��3�	��������>�
���
��������������/���;��4
������3�	4
����9		�2=�4

��	
��	�����	�����������������N�
����	�	��������
������
������	����&
��	��
?

��������
��������
�������

5�������� 	�� ��������������=� 	
����	�	��� ������0�����
����������	
�������������	����
�����	�������������������

�������&
��	��
��	�������	�������?

��������
��������
�������
�� ����$
��!�����"

9
�����
�����	��
���	�	���	���
���	�	�
�����
�����	�
�	�
����
� ��� ���� ���������� �&
��	��
�� ������	��� �����	���

���� �
���	��
��
�
���	�����
�
�����&
��	��
�� ��	
�����

������������
�
�����������������
������������������	���
�������	����	��������/��	����

	����������������
��������
�����������
���	���

9�������� ����� �����
��	�

�� �����	���	��� �	��
���������
� 	
� ���� ����	����

�� ��� ���������
� ���
��������
��������
�� '�� �������� �����	�
� ����� �� �������

��������
���������/
��	/��connect(a[N],c)���������
	
����������������������
������N�	
����������������������
�����������&
��	��
��������/�������	��������������	��

Fritzson P., Aronsson P., Bunus P., Engelson V., Saldamli L., Johansson H., Karström A. Open Source ...

The Modelica Association 301 Modelica 2002, March 18−19, 2002

��� ���� ���
�� ��� N�� =��� ����� ���� �
����� ��� �&
��	��

���� �������� �
�� ���� �&
��	��
� ����
����
� ���� ��
��������

:	 ���� ����	.���������	���
,�� ��	�$���
�������	�

0����������

���� 	����������	��� ��� ����	���
� ���� 	����������
� ���
������	�	��� ����
���
� 	
� �� �������� ���� ������ �����
�����

�� 	�� ����� ��� ������ ����������� ������	
�
� ���
���������� ����
� ����� ����� ���������� ����� �����
�
�����	���������	����������	���
�����	����������
�����
�������
���	�	���	��
����	
������
�������;������������
?
�� (�
�� ������ 	��
��������� ��� ����
���� �������	�
�

����������������	������������	��������������
���	��
�����

�� (�
�� 	�
���� ���
����
������ ��� ���������
	����������	��
�� ���� �	��� ������
���	�	���	��
� ���
����� ����	
�� ���� ��
	��� ��� ����� ����� �� ����	���
	����������	���	��
������������	�������
���

������������������������	�������
���� 	
�������	�����
��
��	������� ��
������� 	�� �� ������� ��������

��� �

7=1�� ���� ����
��
��
��� ��� ���� ���	���� ���	�	�
��

����
������� ��)����� ���� ��
	��� ��
��	���� ��� ��
����
�������������5������������� 	�� ����
� ��� ����
�����	�

��� �� ��������	��� ����
����� ��	��
� ���� ����
�

���	�����������

�����������
����� ���� ����
������
��	��
���������
����	�
��������������	�����	����������
����I����
J��	���
�����
��
��� ������������ ���� �������� 	
� ����
����� ��
����
�����	��
���������

�������������	��� ����
����
�����	�� ���	�	�	��

���� �	���� ��� ��
�������� ����� ��	����� 	�� H���	
�� ��	��
��	�
� ����	������������������
����	�
�

�
���	�	���	��
�����������
�����>�����
����������	
�	
��������������
���
=��
���� ����
���� 	
� 	�������������� ����� ������� ���� 	�� 	

����������/��

������������
���	�����
�
��������������C��
��� ���� ��
�� 	��������� ��&
	������
� ��� �� ����
���

���	�	���	��� 	
� ����� ���� �	�������� ����
���
	����������
�
��
��� ��� ����� ��� ����� ����
���	�	���	��
���� ��/�� 	����������	��
� ����� 	��������� ���

���	�	���	��� 	�� ����
���� ����� ��	
� 	���	�
� ����� ���

���	�	���	����

���������������
����	�
�

�

1��� ��	
� ���
��� ������	
�
� ���� ��	�	��� ������

���	�	���	��
� ��� ����
���
� ����� ����� 	�������� !A����
)86)"�� ���
�� ������	
�
� ������ ���� �� ��������	���

�����	����
��	��	������	��� �
� �� ���
�&
����� 	
� ������

����	�
�

� ���� ��
	��� ��� ���	���� C��� ��� ���� ��
�
�	�����

��� ������	
�
� ����
���	��	���
�����	�
� 	

������� =��
���� .�����	�
� !F�����)864"�� 9� ����
���
�����

����� =��
���� .�����	��
���	�	���	��� ����
���
������� :���� ���� :����	����� ����� ����
����� �	��� �
����	���� �������	��� ����� ���$�� !A�����

����)880"�� ��

����	�

��� ����� ���������� ��� AH�97�� ���� 	
�

��� ���
�����������
���	�	���	�����������	���	�����������
�
���
�����	������;����

:1/	 #� $����	.���������

,�	�	��� �� ����� ����	���� 	
� ���� ��
��� ��	
� ��/�

�
�����	�� ����	���� �������	��� ����� ����
���

���	�	���	��
� ����� 	�����
�	���� '�� �� ����
���

���	�	���	��� 	
� ��	����� 	�� �� ������� �������� ���� ���
	�������	��� ������� ��� �
	��� ���� ����	���� 	
� �������
���	������	��������	���
����
���������������,�	�	������
�������
�����	�
�����������
��������������������������

�����	�����������������	������������	����

'�� 1	�
��� *� ������� ���� �	�������� ���
�
� ��� ���
����	���	��� �����

� ����
������ �����
���	�	������� 	�

���
� ���� ����
���	��� �����

� ��� �������	��� ����
������
��	��� ����	��
�� ��� ������� ����
����
�� ���� �����	��

�
���� �	���� 9��� ���� ����
� ��� ���� ����	���� ���� ��

���	�	���	�������������������

	����	��������������	
�

��� �
� ��
����� ������������� *'��
��������� ���
'��������������
��
���	�	���	��
��9������
����
�� ������ 	

�� ����� ��� �������� ���� ������	
�� 	���� ��� ����
�����
����	�������
���

�

��������
�	
�����
���

��	���
�����

�������

��������

����
��������

��������
����������
�
���������
��

�
����
���������

���������
�����	�

�����������	
�

�	
�������

��
�
��	
�

�		��

�������

������

�������

�
�
�����	
�
������

���
���
����	
�

��	��
����

����
��������
���
����������
���

�
����
����

���
���

������� 	�� A��
�
� 	�� �������	��� �����	��� ����	���
���
��
� ����� �	�������� /	��
� ���
���	�	���	��
�� ���

�����	�
� ���
��� �������
� ��������	��� ��� ���� �����

	���
�	��� ����� ����/	��� ���� �����
	��� ��� ���

��
��
��
����

��	���	����
�������&
��	��
�������	���
����
�
���	��
�

;	 *������	�� ������	���)�-

,�� ����� ����	�

��� ����	����� ����� �� ����	���
�������	���
�
���� ������� :��� 	
�

��� ��� ����
��� ���
�����	��� ����
������ 	�� ���� �����
�
���� ���;����� ����� �
=��
���� .�����	�
� ����
����
���	�	���	���� ���
���������� ����
������ 	
� ����
���� 	�� 9=.'� -� �	��� �
���������������������������������	���������
�����
�

7����� ��� �	��� ��
����� �����	��� ��� ���� =��
���
.�����	�
� ������	
��� ���� ���� �����
����	��� :��

���	�	���	�������
�������������

	���=��
����.�����	�

	��������
���������

���������

Open Source ... Fritzson P., Aronsson P., Bunus P., Engelson V., Saldamli L., Johansson H., Karström A.

Modelica 2002, March 18−19, 2002 302 The Modelica Association

;1/	 *������	�� ������

9�=��
����.�����	�
�
���	�	���	������
	
�
�������
����
��� �
��
��
	�	���� ��� 	��������� �
��
� 	�� ������� ���	��� 9
�
��� ��
� ��
��
��
��� ���
	
�	��� ��� ���

�
� ������ �
���	������� �	��� ��������� ��� �� ���

��
����� ���� �	���� 9
���

��

����
� �� � ����
����	��
��+

��
���

�
���

9������

�
������� ���� �	����������������� ���� �������

�
������ ���� �	��� 	
� ����
����$���
��� ��� ������ ���
���
�&
������ ���� ���� ����	
�
� ����� ��� ��� �������� 9

����� �������� ��� ���� �
��
� ���	������ ������� 	
�
����
������������� �� �
���
���	��� ����� ���� ���	�	��� ��� ��,���
�����

	��� �	��� ��� %���
��� �����

	��� �	��
� �� ,���
��

���

,�����
���
��%��,����

��
���

"$)!���������
"$!�����")!������

;1�)�-

�����	���
�����	�
� 	
�
���	�	���

	��� ���� :��

���	�	���	��� ����
���� !A�����

���)880��)888"�� ���
:�������
����	
���
������=��
����.�����	�
������

�

����
��
� ����� ����
���
� �	/��.���!�	����� ���� ����)88)"
��� ������ ����
������ ���	��� ���� ��������� ���
��
����
�
���� :���
�
����� ����� �� �����	���
���	�	���	��
�� 	

����	���� ��� ��� :��� ����	���� !���$�"� ��� ����
��� �
����
������ ���� ���� ��
��	���� ����
����� ���� :��
����	������������
�������	�	����9=.'�-��������������	

�
�&
����������	�������������	�����-�����	���������
����
�	����������
�����������	�������
�����������:��
�������
� ��
�������

��� �������
��� ����	���
� ���� K����
A�
������������������������
���
�

;1�1/	 #�����$�������	
��+���	*������
�� ������	���)�-1

���� �����
��������� �������� =��
���� .�����	�
� ���
:���	
�������
���
	�
�����
����
�����

	��������������
���� ������	��� ������ =��
���� .�����	�
� �
��
�
���	�	�

���� ����
� ��� �����

	��
� �����	�	��� ���	�	��� ��������

����Boolean����
����
?

,�����
,�����,����

��
���

"$)!������
"$!�����")!������

���
��%��
���
��%������
��%�

��
���

"$)!������
"$!�����")!������

*�������"19�.H!������

���� �����
����	��� ������ :��� �
��
� ���� ���������� 	�� �
�����	��� ������� typeof�� ��	��� ���
� �����

	��
� ��
����
?

��������	�
����	

	���	��	�
��	�
		���
		����		�
��������	��	����	�	�
��������	��	����
								��������������������������������������
								�
����������������	��	����

		����		�
��������	��	���� ��	�	�
��������	��	���� ��

���

�������������	
��	��
���������������

������������ ������	�
���������������

��

;1�1�	 �	�� $��	�����$������	�� ������

9
� ��
	����� �������� ��� ���� :���
������� ���
���� �

����� �����

	��� ����
������ ��	��� I����
����
J� �
��������	���������

	�������������
��������������

	���
1	�
�����������

	�������������	
���������?

�����2���=�����>?�<=+��3�	��

�������������@�9AA��3�=���;�=��
�������������@��?B��3�=���;�=��

9�� �����

	��� 	
� �	����� �� �
������ ��

�� ��� ���� �����
�����

	��
�� ��� �� ����
��� ��� ���� ������ �����

	��
��9

���������������������

	����	
������
�������
��������
��

�?B)>?�<=+)�*�9AA)>?�<=+) *�>?�<=+)!***

����������
��	������������	���eval������eval������	��
������
� �����

	��
� ��� ���	�� ����
����� ���
�
��
�� ����
eval(x)=>y� �����
� ����
� 	��y� 	
� ���� ���
�� ��

��	��
�������������
��	��������

	�
�������C�
��
������-��C�
)>?�<=+)�**�����

��	�
����C�
)�*�������D��C�
)2*����2��D
��������	��
.���)���2�*����(�-
��������///////////////////////////
���������C�
)9AA)��2**����(�-

��	�
����C�
)�*�������D��C�
)2*����2��D
��������	��
.-�
)���2�*�����	��
��������///////////////////////////
���������C�
)�?B)��2**�����	��
���

���� �	�
�� �
��� 	
������	������	�������
� ����� ����
��� ��
����	
�
� ���� ���� �
��� 	
�������� '�� ��
�����
�����������
��	������
����
����	�������	��������������	��?

	�
��///////////////////
��������C�
)>?�<=+)�**�����

����
������ �
��� ����
� ���� ��� ����
����

�
� ��� ���
�����

	��
��,���������
���
��
�	
�I	��x�����
���
����x2�
y� ����
���
� ���y2�� ���� ����

�� ���x2� ����y2� 	
�sum�
����� ���� ��

��� ��� ����
��	��� ADD(x,y)� 	
�sum�J� ���
�����	��
�real_add� ����real_mul� ���� ������	���� 	�
:���

Fritzson P., Aronsson P., Bunus P., Engelson V., Saldamli L., Johansson H., Karström A. Open Source ...

The Modelica Association 303 Modelica 2002, March 18−19, 2002

,�������:���
���	�	���	���	
�����
������������	��
������ main� 	
� ����
����� ��� ���� ���� ������� '�� �
�
�������� ��
� �� main� �����	��� ����� ���/
� �	/�� ���
������	���� ��������������
���
	�������	��� �����
����
$4�������	��

	�
������-�����
��	�
����C�
)�?B)>?�<=+)�*�
�����������������9AA)>?�<=+) *�
��������������������>?�<=+)!****������D
��������	��
.(�	���)�*�����(�D
���������	���)
(*
��������//////////////////////
��������-���).*
���

����:�������
������
�
�������	�

�
	�	���	�	�
��	��
�
���	����� ��������	��� ����
���
� ���� ���	�
��������	�������
���
��,�	�����
���	�������I����	��J
���� ����	
�
� 	�� �� �
���� ��
	����� ��
��
�	��� �����

� 	

����	��� �
�� ��	��� ��	�
� ��� �	��� �� �
��� 	�� ���� �����	��
��	���������
� ���� ���
����
�� ���� 	�� 	�� ��	�
�� ��
	����
������������	
��	
�

�������	�����������

	����
��
�	��
�

'�� ����� ��� ���� �
��
� 	�� �� �����	��� 	
� ��

	���� ��
����������������	�����	�
���
��������	
���
��������

	�	�	��
��� 	�����
��� �� �
��� ����� ����	�	���� ��	�
�� ���

	��� ���
/�������fail�	�����������
����	������

��

������ ���� �� ���� ������
������	�� ����
��
� ��� :��
�����
��
������/��������������������'��������
�����	
����

���	�����
����	�����������	������
����
����
��������	��
����
� ����� 	�� ������
� �����	���� �
�� 	
� ����

���� '�� �
�����	�����
� ���� �	���������
	��� !��

��"� �����()�� 	�� ���
��� ��	����� ��������� �	��� ���� =>�
������� ���� main
�����	��� ������
���
� ��� �������� ��� ����� ��� ���
�
����
��
�

<	 0&�	,�� ��	�$���
�������	�

��������

����
���	�	���	���	
�
���������	�������
�����������
��
�
���
�������� �	��������
����
� ��� ���� ����
���	���� ���� ��
��/�� 	�� ����� ������������ ��	
�
���	��� �	��� ��	����
������
���� ��� ���� ��
�� 	��������� ����
� ��� ���

���	�	���	���� '�� ����� ����
���	�	���	��� �����	�
�
������
���

���� �	��
� ��� :���� �
�� 	��
��
��� ��� /���� 	���	��
���������:��������	
��������
���
����	����������������

������	��
�

���� ���� ������ �����	��� 	�� ����
�����	�
� 	
� ������
main������������
��
�������
?

	�
������-�����
��
��	�
���E�	(�	���	(��3������D
���������F�����
�'�	���)�*�������D
����������(���
�'�	���)��*������D
��������A9=���-����D
��������////////////////
��������-���)�3�*
���

<1/	 %������	���	�
������	�����'

���� �����	���Parser.parse� 	
� ���
����� ��	����� 	�� -�
���� ����
� ���� ���
��� ���������� ����� �� �������� ��� ���
9=��:� ���
��� ���������� ����� !9=��:�)886"�� ��	

���
��� �
	��
� ��� ��
������
������ ����� !9.�"� ����� ���

�
�����	����

	�������9.�����������
�	����:������
��
�������Absyn���������
	���
�����	
�����������������������

�����	����
��	��	�����
��	
������
�
������

��������
	��
�����������
������

<1�)�+������	�&�	��0

���� 9.�� ���
���� �����
����
� ��� ���� ���
�� ����� ���
/���
� ����
��
��
��� ��� ����
�
���� �	���� ��	
� ��
�
������
�	
���������
������	������
��������
���	���������������
�����
���	�����	�� ���� ����
���	����
��
�
��
��������
�� ��
����� ���� �� �
����� 1��� ��	
� ���
��� �� �����������
����
���	�����

� 	
� 	�����
������	��� ����
����
� ����9.�
	�������	�������	�����������������SCode��7�
	��
�
���
�	����
	���	�	���	��
� ����SCode�
��
��
����	����
� ����
����9.��	������������	�����
����
?
�� 9������	����
�������
��	����
�����������'������
�
���

���� 	�� ���� 9.��
������� ���	����
� 	�� �� ���

���	�	�	��� ���������������� ��� ������ �
� 	��Real�x,
y[17];�� � '�� �����F���� ��	
� 	
� �����
������ �
� ���

��������� ��������	��
�� �
� 	�� 	�� ���� ����� ��	����
Real�x;�Real�y[17];�

�� -��

� ��������	���
���	��
�� '�� �� �����	��� ���

��������	��� ���� �
��	��� ����������� �&
��	��� ���
�����	����
���	��
�������� 	���
���� 	�������
����
���� 	�� ���� ������� �	��� ��� 	���	�	�� �
��	��
���	��
�	�
��� '�� ����SCode� ���
��
���	��
� ���� ����������
�
����������
��	����������������
���	��
���������	���
	���� ����
���	���� ��	��� /���	��� ���� ������ ��� ���
�������
�� ���� 	�������	��� ���
�� ��	��� �������

����� 	�� �� ����������
���	��� 	
�
������ �	��� ���
��������	�
����

C����	������������
�����������������/���
����������
��� ��	
�
������ �	/�� ������	��� �����

	��� ����
� ���
��
���	�������
��7
���
������������
���������������	��
����
���������������������/���������	������
���������
����
� �	��� ��� ��
������ �
�	��� ��������	��� 	
� ��� ��� �
����������

��
�����������	�����'��	
���

	����������������
���

� ��������	��� ���� �	��� �
�� ����� ���� ����
� ��� ���
��������	�����
��������	���������

���
�����������������
�
�	
���
��
	����	��	
���

	����������	����
�������������

��	�����������	���	������������
	
���
��������������
��

��

<18	 ���
�������	���	�������������
�� ��� ��� ����
����� ���

�
� 	�� �� � ������ ����� ��� ��

	�
����	������ 	���� ����� ��;���
� ���� �������� ������	��
��� ���� ���

� ��������	���� ������ ���� ���� ���
�
� ��
	�
����	��	��?

�� ����
�����	��� ��� ����	��� �	���� ���
�� ��
	�
����	��	��� 	
�

�������������������������=������
��;���
� ���� �������� �
�	��� ��	
� ���
��� '�
����� ���

Open Source ... Fritzson P., Aronsson P., Bunus P., Engelson V., Saldamli L., Johansson H., Karström A.

Modelica 2002, March 18−19, 2002 304 The Modelica Association

�����	��	�������������
�����	���������������������
����
���3
	�
������ 	
� ����
�������� ��� �������	��
	����	������ ������	��
�� ���	�	���	��� ������	��
�
��������	���������	��
������

�� ���� �����	��� ��� ���� ����� ��;�����

����� ������
�������������� 	�� ���	����� ��;������	�����
����	�������� ��	
� ���� ��� ����� �	����� ��� ����	��
�	����������
���	���������	�����������	��
�
�����

�������	������	����������	���

�������������������� ���� ����
���	��� 	
� ������������������
����������������������	��� 	
� ����� ���� ��
�������� 	�� ���

�
�����	���	
���������������	�������
�����������&
��	��

	���������������������	������������	�
�

����������
�����
����
������������������

������������	�����������

�	
������������/	���������
���

� ���	�	�	���� ��������	��� ����

����������
� ���
�������	��� ���� �&
��	��
�� �
���	��
�� ���� �����	���
�� ��
�������	
����	
����������
����������
����/��������/�������
���

����������������������	���
��
� ���� ���	����
�������
���� ���

� ���	�	�	���� ��	
� ���
�	�
��
� ���� �����������
��	��� 	���
��
� ���� ���	����
� ���� ���

�
� ��������
����	�

���	������
����
������
������
���������

������	�

�������
������ ���� ���� �����
	���
����
�� ����� ������ ����
��� ���� �������� 	
� ���� �
������
��� ��� ���	�	��
� ��	��
���	��� ��	��
� �	/�� ���������� ���
�
� ��� ���������

����������
�
��-���
��
����
��(�����+��
�
���!4
����-���
�G��
��������	�-���	�+��
������4
������+��
��4
�����:������
������������;�(��)��-�*�H�
4
��������G��4

����G���3)�����#*4
�������4

'�� ���� �������� ������� ��������	��� ���� ������ M� ����

��������	��� 	�
�

����������� ��� ��	��� 	
� ��� �����Foo�
,�	��� ��������	��� f� ���� �
������ ���	�������� 	
� ���
����������	�����������	���	���
��
��������
�����c�����
�
������
���������	�	���	��
�	
�!p = 17"����	�������

����� ���� ���������� p� 	�� ���� ���������� f� �	��� ���)4
������������*�

������ ���� �����
�����	�� �
��
� ����� ��/�
� ����� ��
��	
�� �
�� ����� �� ���� ����
����� ������� ����� ���� ��
�

��������
	���	�	���������

�����������������
����
�

<19	 0&�	���
=�����	���
���
=��� ���)��������

���� �����	��� elab_class� ���������
� �� ���

�� '�� ��/�

�	��� ���
����
�� ���� ���	��������env�� ����
��� ��� ����
	�	���	��
�mod�� ��������	��pre���	��� 	
�

��� ����
	����
���������
�	&
������������������������	�����	������	���
��
�	�������������	�������������	���
��
�csets���������
���

� ���	�	�	��� c�� '�� ����
� �� ����
����� 	�� ���
���	�������� ������ ���� ���� ����
� 	�� ��	
� ���

� �	��� ��

����������������

�
��������	����������elab_class_in
��� �����
�� ��� ���� ���/�� 1	������ 	�� ��������
� �&
��	��

����������������	���
��
�������������	�����������	�����	

���

�� ���� I��

��J� ��� ���� �����	��� ���� ���� ���������	
�&
��	��
�����
���� 	�������	������
���������
� 	�� ���
���

��'��������
������� �
���	��������������
�����
��	����
���

��������

���	
���������	����
���	���

C��� ��� ���� ��
�� 	��������� �����	��
� 	

elab_element�� ��������������
��������������������

�
9�����������������	��������������

����	�	�	���������	����
��� ���
�������������	������� ��� ������
� ���

���7����� 	

���������������
���������������	������	�������������	��

	�
�������
�'.

�((��)=�C�������E	�3����F����
�����(���
����F
�((*���
)A9=�=
�-����
�(���F����
�����(��02��(�02��*��

	�
����������	
��������
����������
�
�'	���

	�����������������
��
��
����)�����.�
(��(I�
�.(����I���2(*�D

F���������������
��
��
������������
�(�.������)����������*��������D
-J�2��)
�.(����I��2(*�����2

///////////////////////////��
����	���

��������������
��
����
�� ���� !"�����	���	

����������#$���%

���

Fritzson P., Aronsson P., Bunus P., Engelson V., Saldamli L., Johansson H., Karström A. Open Source ...

The Modelica Association 305 Modelica 2002, March 18−19, 2002

<1:	 !��$��

���� �&
��	��
�� �
���	��
�� ���� ���	����
� ��
��� �
�	��
��������	��� ���� ���������� 	�� �� �	
�� ��� ��;���
� ��� ����
DAEcomp:
�����2���A9=
�-����K9+��3
=���F�-������+�3�;�K�	L���
����������������@�=M?90��>��3�=���;�=��
���������������������

9
������	����
������������
���	����	�������
���������
	��
��� ���� ����
������� �
���	��
� ���������

	��
� 	�� ��	
� �	
�
�����������������-������

>	 �	� ���	"���& ���
,�� ����� ����
����� ���� �
������ 	����������	��� ��� ���
�����
�
���������	�������	���������
�������������/
���
	
�	��� ���
���	��� ��
	������ ���	�	���	��� �������
���
	
�	��� ��� $0� ���	����
� ���� 0� ����	�	��
�� ���
���

���� ����
�	��� �	��� ��
� ��������� �����)22
����
�	��
� ��� �� .
�� >����.����
���	���)2�� ���
�����	���������������
	�����������	����	
����	������	�
9�����	��9��,����
����������������
�	����	����������
�����	��� ����� ��
� �� ������� ���)�0+�
������ ����
������	�����-� ����� ���� ����
���� �����	����� ��	
� 	
� �
����	�	����� ��

��� ����	���� ��� ���� �	��� ��� ��	�	��� ��	

���
������-
����� ����
�	��� ������������ ��� �
�	��� ���
	����������	���

?	 #����������
,����������������������	�
�����
	��������������
�
���
�����	��� ���	��������� ��� �� ������ ������� ��
��� ��� �
�����	��� ����	���� �
�����	������ ���������� ����� �
������� =��
���� .�����	�
�
���	�	���	��� ��� �����	���
��	
� �������
���	�	���	��� 	
� 	�������� ��� ������� �
����������
���	�	���	��� ���� ��
������ �
���
�
� ���� ���
�
�
��������	���	����������
�

9��	���������
���������������������	
������
�
���
���;���� 	
� ��� ����	��� ��� 	�������	��� ���� ���	�	���
����
���	����� ���	�������� ����

	��� �����	��� �
� �
�	��� ������
�������� ������ ��������	��� ����
���� ���
����
���	���������	���	��
�

'���������������������
����	����������������������
����
�
���������
������	���
	�
���	�������&
��	�����
��
�����
� 	�������	�������������	��� �����������������
���� �����	��� �����
� ��� ��

� �������	��� ����� ����� 	

�
��������������������������	���	����������	���

��
�
�(�������������������	���

	�
�������
�'.�
�-�����)=�C�������E	�3����F����
�����(���
����=
�-���*���
)A9=�=
�-����
�(���=�C��F����
�����(��02��(�K�	�
�(�*��
���
	�
��E	�3����	�3��.
	�3)�	��=���F+=G.�A=>0)����**�����C��D

�����B��J���
��J��.

�(()��C��* ���)

�

�((-��*�D����	�����
�����	���������
���������
��J��.-���3�
�����)-��(��*��--�D

���������-�	��)

�((-���--*����-���D ������ ���
��������	���
������
���������-�	��)-���-*����-��I�D

�����E	�3����	�3��.���)������	�*�����	�I�D�� �����	�����������
������
�'.

�(()��C�-��I��	�I�
(��(�

* ���� ����������������������
�������������)�����
(��(I��2�(�*�D

���������-��.�:�������-��I�����:�D��� %������������������	�
����	�-������	��������$�������
�����-�J�.'�������)��C����	��:�

*����		�����������������������-����������������+
�������������'�������D

�����=�C�������.3	�-�.C)��C������� �		�����������������	��
�������������������
����������=�C�G+9�=K9+)�����	��2�'������**
���������������CI�D

������
�'.-��.�:������)��C��	����-��I* ���
�������$������#�����������	
������������������D

�����
�(�.������)����������*������� �� .��
�������������$������������
�����//////////////////////////
������
�'.�
�-���)��C�-��(��	��
(��(�
������������������������F����F��E�>=>0)��3���
��	������	���-**
�������������)�������CI�
(��(I��)�����	��2*�*
���
���

Open Source ... Fritzson P., Aronsson P., Bunus P., Engelson V., Saldamli L., Johansson H., Karström A.

Modelica 2002, March 18−19, 2002 306 The Modelica Association

�$$����'	@	0&�	�� $��'
�������&

3��
�������C���
��������+��
�'�����4
��������������	��4
��������������	�:4
���������+��
���(�5�)'��*�(�5�)'��*�4
�	���
���
��������	��4
��������	�>4
�
��	��6-
�������'4
��>����(�5�)���*/�4
�������(�5�)���*/�4
��3�	�7������>�
���
����3�	�J��������
���
�������3�7N�������JN�:��6��

��7H��JH��������7H��JH��/
���H��JH��;��7H��:H��8���H��:H��4
�����������34
��������3�	4
������3�	4
��3�	�7������>�
���
�����3�7N����6��
��������7H��:H�������4
���������34
������3�	4
��3�	�J��������
���
�����3�JN�:��6��

���H��JH�������H��JH��8���H��:H��4
���������34
������3�	4
�����H��:H�������4
������C���4

3��
�����(�-�
���
��������+��
�-��	�����4
���������+��
���(�5�)-��	��*/��4
���������+��
�54
����������������	�:4
����������������	��4
�	���
���
��+��
���(�5�)-��	��*�(�5�)-��	��*�4
��������	��4
��������	�>4
�
��	��6-
��>����(�5�)���*/�4
�������(�5�)���*/�4
�������-��	4
������4�:���4
��16�
������):��)�H�*��	����)>H�**�
���
����:�����4
����16�
������):����)�H�*��	
���H��:H��N�*�
���
������:��:H�4
��������16�
�4
����������4
����16�
������)�����)>H�*��	
���H��:H����*�
���

����������H�4
��������16�
�4
����3�	�������H��>�
���
�������3����H��:H��������6��
���������3�)���H���H��8���H��:H��*�N
)���H���H��8���H��:H��*��6��

��������������4
�������������34
�����������34
��������3�	4
���������3�):�N��H�*�����)��N�>H�*��6��
�������������C���)����:*4
���������34
������16�
�4
��3�	����������
���
������������/�4
����3�	�7������>H��
���
�������3�)�����N��*�����))��7������
���*�����)��7����N�����**��6��

����������������7��H��4
�������
(��3�))��7����N��*��	�)��7�����
�**��6��

���������������4
�����������34
��������3�	4
������3�	4
��5���������H��4
����(�-�
���4

)�
�������

Abadi Martin and Cardelli Luca. A Theory of Objects.
Springer Verlag, ISBN 0-387-94775-2, 1996.

Elmqvist Hilding, Dag Brück, and Martin Otter, Dymola -
User’s Manual. Dynasim AB, Research Park Ideon, Lund,
Sweden, 1996

Kågedal, D., Fritzson, P. Generating a Modelica Compiler
from Natural Semantics Specifications. Summer Computer
Simulation Conference '98, Reno, Nevada, USA, July 19-22,
1998.

Modelica Home Page http://www.Modelica.org

Dymola Home Page: http://www.Dynasim.se

MathModelica Home Page: http://www.MathCore.com

Mikael Pettersson. Compiling Natural Semantics, Linköping
Studies in Science and Technology. Dissertation No. 413,
1995.

Mikael Pettersson. Compiling Natural Semantics. LNCS
1549, Springer-Verlag, 1999.

Miller Robin, Tofte Mads, Harper Robert. Commentary on
Standard ML. The MIT Press, 1991.

ANTLR home page: http://www.ANTLR.org/

Frank Pagan. Formal Specification of Programming Lan-
guages: A Panoramic Primer, Prentice-Hall, ISBN 0-13-
329052-2, 1981.

Gilles Kahn. Natural Semantics. In Proc. of the Symposium
on Theoretical Aspects on Computer Science, STACS'87,
LNCS 247, pp 22-39. Springer-Verlag, 1987.

Saldamli L., Fritzson P., Bachmann B. Extending Modelica for Partial Differential Equations

The Modelica Association 307 Modelica 2002, March 18−19, 2002

Extending Modelica for Partial Differential Equations

Levon Saldamli∗ , Peter Fritzson∗ and Bernhard Bachmann†

Abstract

Currently, Modelica only supports models con-
taining constants, time-dependent variables, and
time-derivatives of variables, i.e. ordinary differ-
ential and algebraic equations. In this article, we
present how the Modelica language can be ex-
tended to support object-oriented modeling with
partial differential equations (PDEs), in order to
solve initial and boundary value problems. The
techniques we present have fairly general applica-
bility to 1D, 2D or 3D domains, although we focus
mostly on 2D domains in this paper. We also de-
scribe the architecture of a prototype implemen-
tation where the PDE problem is translated and
passed to an external mesh generator and a PDE
solver for solution using the finite element method.
An example of a stationary heat conduction prob-
lem is included together with execution results.

1 Introduction

The modeling language Modelica [4, 5, 7, 10] is
currently used for modeling and simulation of sys-
tems with ordinary differential equations contain-
ing time-dependent variables and derivatives of
such variables with respect to time. It is desir-
able to also specify models where variables vary
with position in space and where partial differen-
tial equations (PDEs) occur. Therefore, there is a
need to extend Modelica to support such models.

A PDE problem is solved in order to find an
unknown, spatially distributed function u, that is
implicitly defined by a partial differential equa-
tion. For a unique solution boundary conditions
at the boundary of the geometric region of the
problem is needed, and also the initial conditions
if the problem is time-dependent. There can be

∗Department of Computer and Information Sci-
ence, Linköpings universitet, Linköping, Sweden.
{levsa,petfr}@ida.liu.se

†Fachbereich Mathematik und Technik, Fachhochschule
Bielefeld, Bielefeld, Germany. bernhard.bachmann@fh-
bielefeld.de

different boundary conditions for different parts
of the boundary, and the conditions can be known
values of the unknown function or its derivatives.
Initial conditions can consist of values of the un-
known function or its derivatives.

Modelica is an object-oriented language, sup-
porting inheritance and component-based model-
ing. Extensions to support PDEs should be done
with these concepts in mind in order for a PDE
problem to be specified in a convenient way sim-
ilar to other models written in Modelica. Previ-
ously, some basic extensions needed in Modelica
were presented [14]. The domains were described
by defining the limits of the space variables using
constants or expressions containing other space
variables in order to allow fairly general domains.
In this paper, we support a more convenient do-
main definition, using parametric expressions for
describing the boundary of the domain. We also
describe how a problem can be specified with the
PDE, the boundary conditions, the domain and
its boundary defined as components.

This paper is organized as follows: Section 2
contains an overview of related work, Section 3
presents the problem specification and new lan-
guage syntax, Section 4 describes the implementa-
tion environments, Section 5 illustrates an exam-
ple problem and its solution, and Section 6 con-
tains some conclusions and future work.

2 Related Work

There are different categories of packages for solv-
ing PDEs. Some of them are code libraries, where
the PDE is not separately specified but a numeri-
cal solver is written using a programming language
and components from these libraries in order to
solve the specific PDE problem. PETSc [2], Diff-
pack [3] and Overture [12] are some packages in
this category. Compose [17] is a similar package,
written as a framework built upon Overture, with
an object-oriented design that separates the equa-
tion definitions and numerical solver implemen-

Extending Modelica for Partial Differential Equations Saldamli L., Fritzson P., Bachmann B.

Modelica 2002, March 18−19, 2002 308 The Modelica Association

tation. Equations in Compose are defined using
the C++ classes in the framework or by adding
new classes to define new equations and numeri-
cal solvers.

There are also problem solving environments,
that contain integrated tools for the different steps
of the modeling and simulation process, such as
graphical tools for defining the domain, tools for
specifying or selecting a numerical solver among
several solvers, and tools for visualization of the
simulation results. PELLPACK [9] is such a
problem solving environment that contains sev-
eral PDE solvers and has a high level language for
the PDE problem definition. FEMLAB [6] which
is a package for MATLAB, is another simulation
tool, with graphical user interface where the user
can choose a model among many predefined PDE
models, modify its parameters, graphically define
the problem domain and assign boundary condi-
tions, simulate the model and visualize the results.

An environment that is more language oriented,
analogous to Modelica, is gPROMS [11]. This en-
vironment has a high level language for specify-
ing PDE models on rectangular domains, where
complex partial differential and algebraic equa-
tions and mixed systems of integral, partial and
ordinary differential and algebraic equations can
be solved.

The approach taken in our present work to ex-
tend Modelica with PDEs, called PDE-Modelica,
combines the usage of a high level language,
object-oriented and component-based modeling,
and the possibility to use different solvers and au-
tomatic solver generation for a given PDE prob-
lem.

3 Domain and PDE definition

In this section, we describe how to define the prob-
lem domain using lines and parametric curves.
Also, a hierarchical PDE model definition using
coefficient-based PDEs similar to FEMLAB’s co-
efficient form is described.

3.1 Domain Description

The domain of the PDE problem is D ⊂ Rn.
In this paper we consider the two-dimensional
case, n = 2. In most practical cases it is suffi-
cient to define the domain by a parametric curve
{(xs, ys) | s ∈ [sstart, send]} describing the bound-

ary of the region, which is a sufficiently general
way of stating the geometry of the domain. The
curve should be closed and non self-intersecting
for the parameter range specified. In the two-
dimensional case, the XY-plane is divided into two
regions by the curve, with the intended domain
being the region at the left side of the curve.

The boundary defined in this way is used to
generate a mesh for the numerical PDE solver. An
external mesh generator is used to generate the
mesh.

From the boundary definition, an external mesh
generator is called to generate a triangular mesh
which is passed to the numerical solver.

A domain class is defined by introducing a new
kind of restricted class in Modelica called do-
main, where the independent space variables to
be used are declared using the space keyword,
and the boundary is described in a special sec-
tion called boundary. The boundary section can
contain three different constructs that define the
boundary: lines(), curve() or composite(),
described in the following sections.

3.1.1 The lines() Boundary Construct

In case of single lines or a number of connected
lines, a special construct lines() is used, for ef-
ficiency reasons. A line segment is defined as fol-
lows:

domain Line2D "A line segment"

extends Cartesian2D;

parameter Real x0=0, y0=0, x1=1, y1=1;

boundary

lines({{x0,y0},{x1,y1}});

end Line2D;

The lines() construct contains an expression
which is an array of points, defining the starting
point, the intermediate points and the end point
of the connected lines (see Figure 1).

(x0, y0)

(x1, y1) (x2, y2) (xn−1, yn−1)

(xn, yn)

Figure 1: Connected lines that is described by the
construct lines({{x0,y0},{x1,y1},...,{xn,yn}})

Saldamli L., Fritzson P., Bachmann B. Extending Modelica for Partial Differential Equations

The Modelica Association 309 Modelica 2002, March 18−19, 2002

3.1.2 The curve() Boundary Construct

There are several alternative ways to specify the
parametric expression that defines the boundary
as a curve. Using the where...in... construct
which already has been used to specify domains
for expressions [14], the curve can be defined as
follows:

domain Cartesian2D "For all 2D-domains"

space Real x,y;

end Cartesian2D;

domain Circle2D "Circular with r=1"

extends Cartesian2D;

boundary

curve(cos(2*PI*u),

sin(2*PI*u)) where u in (0,1);

end Circle2D;

The boundary of this domain is defined by the
curve generated by varying the value of the tempo-
rary variable u from 0 to 1. The comma-separated
list of expressions in the curve()-construct are
used to calculate the Cartesian coordinates of the
points on the curve. In order for the curve to
be closed, the resulting points in the XY-plane at
u = 0 and u = 1 should have the same coordi-
nates. Other requirements might be needed for
the curve depending on the mesh generator used
by the numerical solution stage.

3.1.3 The composite() Boundary Con-
struct

In many cases, the boundary of the problem do-
main is difficult to define as a single parametric
curve, but is rather defined by a number of con-
nected lines and curves. Also, the boundary con-
ditions for the PDE problem are often different on
different parts of the boundary. Therefore, when
the boundary curve is specified, there must be a
way to refer to different parts of the curve when
assigning boundary conditions. One solution to
these problems is to have a boundary description
that consists of several components, each of which
are curves. The boundary components can be de-
clared in the declaration part of the domain de-
scription. For example, a rectangular boundary
can be defined using four line segments right,
top, bottom, and left (see Figure 2). These parts
of the boundary can be instantiated in the decla-
ration part of the domain class Rectangle2D as
follows:

domain Rectangle2D "A 6 by 4 rectangle"

extends Cartesian2D;

parameter Real cx=0, cy=0, w=3, h=2;

Line2D right(x0=cx+w, y0=cy-h,

x1=cx+w ,y1=cy+h);

Line2D top(x0=cx+w, y0=cy+h,

x1=cx-w, y1=cy+h);

Line2D left(x0=cx-w, y0=cy+h,

x1=cx-w, y1=cy-h);

Line2D bottom(x0=cx-w, y0=cy-h,

x1=cx+w, y1=cy-h);

boundary

composite(right, top, left, bottom);

end Rectangle2D;

The domain Rectangle2D can be seen in Fig-
ure 2. The composite operator is used to combine
several curve segments into a complete boundary.
The setting of the start and end points of the line
segments and the order of the arguments to the
composite operator must be consistent, and the
direction of the resulting curve must be correct in
order that the correct region is defined. Some of
these requirements can be automatically fulfilled
if the composite operator is allowed to translate
each given curve segment so that the starting point
of that curve matches the end point of the previ-
ous curve segment.

Although both Line2D and Rectangle2D are de-
fined as domains, they represent different kinds of
objects. The Line2D domain is not intended to be
used as a domain by itself, but rather as a bound-
ary component of another domain. This difference
could be expressed in the definition by for exam-
ple using the partial keyword in the definition of
Line2D:

partial domain Line2D

"Defines a part of a boundary"

...

Another alternative is to use a different keyword
than domain for classes that represent only parts
of a boundary.

left
cx,cy

right

top

bottom

w

h

Figure 2: A rectangular domain Rectangle2D, de-
fined using line segments. Note that the direction of
the lines must be consistent.

Extending Modelica for Partial Differential Equations Saldamli L., Fritzson P., Bachmann B.

Modelica 2002, March 18−19, 2002 310 The Modelica Association

3.2 Hierarchical Definition of PDEs
and Boundary Conditions

In order to simplify PDE model definition, a gen-
eral PDE model can be written as a base model
in PDE-Modelica with the coefficients as param-
eters. This model can either be instantiated di-
rectly with appropriate modifications to the pa-
rameters or used as a base class to define a more
specific PDE model with some parameters set
which subsequently can be instantiated and used
when needed. Similarly, boundary conditions can
be defined using base models and inheritance. A
coefficient-based PDE base model can be defined
as follows:

model PDE2D

space Real x,y;

Real u(x,y);

end PDE2D;

model PDECoeff2D

extends PDE2D;

parameter Real da = 0;

parameter Real c = 0;

parameter Real a = 0;

parameter Real f = 0;

equation

da*der(u) - div(c*grad(u)) + a*u = f;

end PDECoeff2D;

The variable u represents the unknown variable,
a function of time and the space variables. All pa-
rameters can be constants or functions of the space
variables. However, in this example, the coeffi-
cients da, c, a and f are restricted to be constants
only, for clarity. The der operator is an operator
in Modelica and defines the first time-derivative of
a variable. The div and grad operators can be ad-
ditional operators in PDE-Modelica corresponding
to the partial differential operators divergence
and gradient that are often used in mathemat-
ical literature. The equation above written with
mathematical notation follows:

da
∂u

∂t
−∇ · (c∇u) + au = f

Using PDECoeff2D as the base model, a simple,
steady-state heat transfer model can now be writ-
ten as:

model HeatTransfer

extends PDECoeff2D(c=1);

end HeatTransfer;

A Robin boundary condition, used in a heat
problem to describe a boundary that is neither a

perfect conductor nor a perfect insulator, can be
written by first writing a general Robin boundary
condition:

model Robin "Robin boundary condition"

extends PDE2D;

parameter Real c = 1;

parameter Real q = 1;

parameter Real g = 0;

equation

nder((c*grad(u))) + q*u = g;

end Robin;

In mathematical notation, this equation is writ-
ten as follows:

∂

∂n
(c∇u) + qu = g

The operator nder() is a special operator that
represents the derivative in the outward normal
direction with respect to the associated domain
boundary.

Other types of boundary conditions, e.g. Dirich-
let and Neumann conditions, describing a perfect
heat conductor and a perfect insulator, respec-
tively, can be defined by extending the Robin class
and setting the appropriate parameters to zero, as
follows:

model Neumann

extends Robin(q=0);

end Neumann;

model Dirichlet

extends Robin(c=0);

end Dirichlet;

For heat transfer problems, a more specific ver-
sion of the Robin boundary condition can be de-
fined by inheriting the Robin class and adding ap-
plication specific parameters and mapping them
to the general parameters:

model HeatRobin "For heat transfer"

extends Robin(c=k,

q=hh,

g = qh+hh*Tinf);

parameter Real k=1;

parameter Real qh=0;

parameter Real hh=1;

parameter Real Tinf=25;

end HeatRobin;

The corresponding mathematical equation with
these parameters is as follows:

∂

∂n
(k∇u) = qh + hh(Tinf − u)

where qh is the source term, hh is the heat transfer
coefficient and Tinf is the external temperature.

Saldamli L., Fritzson P., Bachmann B. Extending Modelica for Partial Differential Equations

The Modelica Association 311 Modelica 2002, March 18−19, 2002

3.3 Problem definition

Once the models for the PDE and the boundary
conditions are stated and the domain is defined,
the problem can be put together by instantiat-
ing the PDE model, the boundary conditions, and
the domain and associating the boundary condi-
tions with the boundary parts. In order to asso-
ciate boundary conditions and boundary elements,
an implicit variable bc (short for boundary condi-
tion) is introduced in the restricted class domain.
For each domain instance this variable is assigned
the desired boundary condition. Similarly, a PDE
is associated with a domain by instantiating the
PDE model and assigning the instance to the vari-
able eq (short for equation), also a builtin variable
in the restricted class domain. The complete prob-
lem statement is then:

model PDEModel

Neumann h_iso;

Dirichlet h_heated(g=50);

HeatRobin h_glass(hh=30000);

HeatTransfer ht;

Rectangle2D dom;

equation

dom.eq = ht;

dom.left.bc = h_glass;

dom.right.bc = h_heated;

dom.top.bc = h_iso;

dom.bottom.bc = h_iso;

end PDEModel;

Here, a Dirichlet condition with a constant value
of 50◦ for u is used to emulate a heat source on the
right side of the domain, Robin condition is used
for a non-isolating glass layer on the left side, and
Neumann condition is used for the isolated top
and bottom sides. The PDE model HeatTrans-
fer is instantiated as ht, and used in the interior
of the domain dom, which is an instance of the
Rectangle2D class.

4 Results

The PDE extensions discussed in Section 3 were
implemented in the prototype Modelica transla-
tor generated from a Natural Semantics specifica-
tion of Modelica (see Section 4.2). A heat transfer
example is solved in the following section in or-
der to demonstrate the PDE extensions and the
prototype. In this example, a stationary prob-
lem is solved, because the PDE solver currently
used with the prototype does not handle time-
dependent problems.

4.1 Example

A stationary heat conduction problem is consid-
ered. The problem is described by Poisson’s equa-
tion:

−∇ · (c∇u) = g

where c is the heat conductivity coefficient, and g
is the source term. In this example, c is set to 1
and g is set to 0.

rightleft

top

bottom1 bottom2 bottom3

Figure 3: The problem domain with its different
boundary sections.

The equation is solved on the domain shown
in Figure 3. The left side of the domain is defined
by a 90◦ arc, using an instance of a more gen-
eral version of the domain class Circle2D defined
in Section 3.1.2. The right side is defined by a Bez-
iér curve with six control points, as the instance
right of type Bezier2D defined below. The PDE-
Modelica code for defining Beziér curves using De
Casteljau’s Algorithm follows:

function bezier

constant Integer n=6;

input Real px[n];

input Real u;

output Real res;

Real qx[n];

algorithm

for i in 1:n loop

qx[i] := px[i];

end for;

for k in 1:n-1 loop

for i in 1:(n-k) loop

qx[i] := (1-u)*qx[i] + u*qx[i+1];

end for;

end for;

res := qx[1];

end bezier;

domain Bezier2D

constant Integer n=6;

parameter Real px[n];

parameter Real py[n];

space Real u;

Extending Modelica for Partial Differential Equations Saldamli L., Fritzson P., Bachmann B.

Modelica 2002, March 18−19, 2002 312 The Modelica Association

BoundaryCondition bc;

boundary

curve(bezier(px,u), bezier(py,u));

end Bezier2D;

The complete description of the domain for the
heat transfer example in PDE-Modelica is:

domain HeatExampleDomain

extends Domain2D;

Circle2D left(x0=-1, y0=-2, ra=4,

a=PI/2, b=PI/2);

Bezier2D right(px={1.0, 1.3, -4.0,

-4.0, 1.3, 1.0},

py={-2.0, 0.0, -3.0,

3.0, 0.0, 2.0});

Line2D top(x0=1, y0=2, x1=-1, y1=2);

Line2D bottom1(x0=-5, y0=-2,

x1=-3, y1=-2);

Line2D bottom2(x0=-3, y0=-2,

x1=-1, y1=-2);

Line2D bottom3(x0=-1, y0=-2,

x1=1, y1=-2);

boundary

composite(right, top, left,

bottom1, bottom2, bottom3);

end HeatExampledomain;

At the right border, the Robin boundary condi-
tion is used, in order to model heat flow through
the boundary that is proportional to the temper-
ature difference. The temperature outside the do-
main is set to 20◦. The middle part of the bottom
border is used as a heat source, with a Dirichlet
boundary condition u = 50. The other parts of
the bottom border as well as the left and the top
borders are perfectly insulated, using the homoge-
neous Neumann boundary conditions.

A plot of the solution can be seen in Figure 4.
This example was solved using the finite element
solver rheolef [15], and bamg [1] was used as the
mesh generator.

4.2 Implementation

We are working with two prototype environments
where the ideas described in Section 3 are being
tested. The prototype written in Mathematica
uses MathModelica [8] as the Modelica implemen-
tation and a numerical PDE solver generator [16]
for solving the PDEs. The different modules of
this environment can be seen in Figure 5. Here,
the models are written in a Mathematica style
Modelica syntax, and the domain analyzer gen-
erates domain information that is sent to an ex-
ternal mesh generator. The PDE analyzer col-
lects the PDEs and the boundary conditions and
calls the solver generator that generates a finite

Figure 4: A stationary heat transfer example. The
middle section of the bottom border is a heat source
with u = 50◦, the curved right border is non-
insulated with outside temperature 20◦, and the
other borders are insulated.

element solver in C++. The advantages of this
environment is the access to symbolic manipula-
tion in Mathematica, and the MathModelica input
format that is easy to extend in order to test new
language syntax extensions.

Mathematica

Parser

Solver
input
generator

PDE Analyzer

Domain analyzer

Mesh
Generator

Solver
Generator

Solver

Domain
info

Mesh

Equations

Mesh
importer

PDE-Modelica

PDE-Modelica

User input

External

Solver package

Figure 5: The PDE-Modelica prototype in the Math-
Modelica environment

The other prototype environment consists of
a Modelica parser, a compiler generated by the
RML [13] system from a Natural Semantics de-
scription of Modelica, an external mesh generator
and a PDE solver. The structure of this environ-

Saldamli L., Fritzson P., Bachmann B. Extending Modelica for Partial Differential Equations

The Modelica Association 313 Modelica 2002, March 18−19, 2002

ment can be seen in Figure 6. The compiler gen-
erates C++ code from the PDE-Modelica descrip-
tion. The resulting code generates the discretized
boundary at runtime, calls the mesh generator to
triangulate the domain and finally calls the finite
element solver.

PDE-Modelica Parser

Solver
parameter
generator

PDE Analyzer

Domain analyzer

Mesh
Generator

PDE Solver

Solver
Generator

Generated
Solver

Domain
info

Mesh

Equation
info

Wrapper code

User input Modeq

External Solver package

Figure 6: The PDE-Modelica prototype using the
Modelica translator generated from Natural Seman-
tics specification of Modelica in RML.

The current version of the prototype ignores the
equation parts of the PDE and boundary condi-
tion models and assumes a certain structure of
the PDE. A specific solver adapted to the prob-
lem is called automatically with the parameters
extracted from the models. This can be done be-
cause the base model approach is used when writ-
ing the PDE models, i.e. the solver needs only to
be associated with the base model, and parameters
of the base model are transferred to the solver.

5 Conclusions and Future Work

We have presented a design for specifying PDE
problem domains in Modelica by expressing the
boundary of the domain using lines and paramet-
ric curves. We have also shown a simple example
of hierarchically defined PDE model and boundary
conditions and how these can be used in a problem
specification together with a domain definition.

Our future work will consist of adding support

for the equation parts of the PDE and bound-
ary condition models, instead of having predefined
equations. Also, modeling with both PDE mod-
els and the current Modelica models with DAEs
and the interaction between these different kinds
of models needs to be considered. Support for
combination of domains using set operations such
as union, intersection, etc., and composition of
domains into bigger domains using connect state-
ments with different PDE models on each partial
domain is another possible future extension.

References

[1] BAMG home page. http://www-rocq.
inria.fr/gamma/cdrom/www/bamg/eng.
htm.

[2] Satish Balay, Kris Buschelman, William D.
Gropp, Dinesh Kaushik, Lois Curfman
McInnes, and Barry F. Smith. PETSc home
page. http://www.mcs.anl.gov/petsc/,
2001.

[3] Diffpack home page. http://www.diffpack.
com/.

[4] H. Elmqvist, S. E. Mattsson, and M. Otter.
A language for physical system modeling, vi-
sualization and interaction. In Proceedings
of the 1999 IEEE Symposium on Computer-
Aided Control System Design, Hawaii, Aug.
1999.

[5] H. Elmqvist and S.E. Mattsson. Modelica –
the next generation modeling language – an
international design effort. In Proceedings of
the First World Congress on System Simula-
tion, Singapore, Sept. 1–3 1997.

[6] FEMLAB home page. http://www.femlab.
com/.

[7] P. Fritzson and V. Engelson. Modelica—A
unified object-oriented language for system
modeling and simulation. In Eric Jul, editor,
ECOOP ’98—Object-Oriented Programming,
volume 1445 of Lecture Notes in Computer
Science, pages 67–90. Springer, 1998.

[8] P. Fritzson, J. Gunnarsson, and M. Jirstrand.
MathModelica - An Extensible Modeling
and Simulation Environment with Integrated
Graphics and Literate Programming. In Proc.

Extending Modelica for Partial Differential Equations Saldamli L., Fritzson P., Bachmann B.

Modelica 2002, March 18−19, 2002 314 The Modelica Association

of the 2nd International Modelica Confer-
ence, Munich, March 2002.

[9] E. N. Houstis, J. R. Rice, S. Weer-
awarana, A. C. Catlin, P. Papachiou, K.-
Y. Wang, and M. Gaitatzes. PELLPACK:
a problem-solving environment for PDE-
based applications on multicomputer plat-
forms. ACM Transactions on Mathematical
Software, 24(1):30–73, March 1998.

[10] Modelica Association. Modelica – A Unified
Object-Oriented Language for Physical Sys-
tems Modeling - Language Specification Ver-
sion 1.4, Dec 2000. http://www.modelica.
org.

[11] M. Oh. Modelling and Simulation of Com-
bined Lumped and Distributed Processes.
PhD thesis, University of London, 1995.

[12] Overture home page. http://www.llnl.
gov/CASC/Overture/.

[13] M. Pettersson. Compiling Natural Semantics.
volume 1549 of LNCS. Springer-Verlag, 1999.

[14] L. Saldamli and P. Fritzson. A Modelica-
based Language for Object-Oriented Model-
ing with Partial Differential Equations. In
A. Heemink, L. Dekker, H. de Swaan Arons,
I. Smith, and T. van Stijn, editors, Proc.
of the 4th International EUROSIM Congress,
Delft, The Netherlands, June 2001.

[15] Pierre Saramito and Nicolas Roquet. Rhe-
olef home page. http://www-lmc.imag.
fr/lmc-edp/Pierre.Saramito/rheolef/,
2002.

[16] K. Sheshadri and P. Fritzson. A General
Symbolic PDE-Solver Generator: Explicit
Schemes. Accepted for publication in Scien-
tific Programming, 2001.

[17] K. Åhlander. An Object-Oriented Framework
for PDE Solvers. PhD thesis, Uppsala Uni-
versity, 1999.

Franke R. Formulation of dynamic optimization problems using Modelica

The Modelica Association 315 Modelica 2002, March 18−19, 2002

Formulation of dynamic optimization problems using Modelica
and their efficient solution

Rüdiger Franke
ABB Corporate Research

Wallstadter Str. 59
68526 Ladenburg, Germany

E-Mail: Ruediger.Franke@de.abb.com

Abstract

Dynamic optimization problems often arise in ad-
vanced model based control. For example in model
based predictive control and in the estimation of pro-
cess parameters or not measured process signals, the
underlying problems can be treated with optimization.

A process model formulated in Modelica [10] can be
used as a core part in the formulation of dynamic op-
timization problems. This allows an efficient engi-
neering of advanced control applications as simulation
models are reused for optimization.

The paper discusses, how different types of dynamic
optimization problems can be formulated based on a
nonlinear dynamic system model. Furthermore, the
efficient numerical solution of dynamic optimization
problems as large-scale nonlinear programming prob-
lems is outlined. The treatment of state constraints is
emphasized in this context. Possibilities for obtain-
ing model sensitivities as required by an optimization
solver are discussed.

However, the class of models that can be used for op-
timization in this way is limited, compared to all mod-
els that can be formulated in Modelica and used for
initial-value simulation. Specific requirements by op-
timization solvers are discussed together with features
of the Modelica language supporting their considera-
tion in model formulations.

The optimal startup of a power plant serves as a prac-
tical example.

1 Introduction

Dynamic optimization problems occur if parameters
and control inputs of a dynamic system shall be in-

fluenced so that a cost criterion is minimized sub-
ject to constraints. They are playing an increasingly
important role in control engineering and in process
engineering. Typical applications involving dynamic
optimization are e.g. nonlinear model predictive con-
trol (NMPC), data reconciliation, and integrated de-
sign and control of technical processes.

Higher requirements on the efficiency of industrial
processes, together with the availability of new mod-
eling and solution technologies, are causing a trend
towards the treatment of dynamic optimization prob-
lems for rigorous physical models. Unfortunately a
substantial effort is generally needed to formulate an
optimization model fulfilling both: high model accu-
racy and high solution efficiency.

This paper discusses the use of Modelica to formu-
late dynamic system models for optimization. A sub-
stantial reduction of the effort for model building is
achieved by reusing available simulation models for
optimization and by exploiting features of Modelica
for application specific model adaptation. The solu-
tion of dynamic optimization problems applying large-
scale nonlinear programming is outlined and require-
ments of state-of-the-art optimization solvers on the
model are discussed.

2 Dynamic optimization problems

2.1 Nonlinear Dynamic System Model

Modelica allows the object oriented modeling of dy-
namic systems by differential and algebraic equations.
The object oriented Modelica model is typically trans-
lated to a mathematical system of differential and al-
gebraic equations prior to its treatment with numerical
solvers. Here it is assumed that the result of the model

Formulation of dynamic optimization problems using Modelica Franke R.

Modelica 2002, March 18−19, 2002 316 The Modelica Association

translation is a system of ordinary differential equa-
tions of the form

ẋ�t� � f�x�t��u�t��z�t��p� t�� (1)

f : IRnx � IRm� IRnz � IRnp �� IRnx

y�t� � g�x�t��u�t��z�t��p� t�� (2)

g : IRnx � IRm� IRnz � IRnp �� IRny

Model variables are internal continuous-time states
x � IRnx , control inputs u � IRm, disturbance inputs
z � IRnz , constant parameters p � IRnp , and model out-
puts y � IRny .

The model behavior is completely determined by the
system equations f and the output equations g, if initial
states x0 � x�t0�, external inputs u�t��z�t�� t � �t0� t f �,
and parameters p are given. The outputs y�t�� t � �t0� t f �
can then be obtained by solving the system of differ-
ential equations using initial-value simulation.

However, often some of the required information is not
explicitly known, but can be obtained by minimizing
a cost function. In many of those cases, a feasible so-
lution can be further specified by constraining model
variables. Optimization is a universal tool for treating
those inverse problems.

2.2 Estimation Problem

An example for an inverse problem is the estimation of
unknown parameters p and/or initial states x0 based on
measured inputs and outputs. The estimation problem
can be solved by minimizing a least squares criterion

nȳ

∑
i�1

�y�ti�� ȳ�ti��2 �min
x0�p

(3)

for the set of measurement data �ȳ�ti�� ti � �t0� t f �� i �
1� � � � �nȳ�.

2.3 Design Parameter Optimization Problem

Some model parameters might be free or given within
useful ranges, instead of with fixed values. Optimiza-
tion can be used to determine values for those un-
known parameters that minimize a criterion F�p� :
IRnp �� IR1

F�p��min
p

(4)

subject to parameter bounds pmin 	 p 	 pmax and re-
quired system outputs, e.g. y�t�
 ymin�t�� t � �t0� t f �.

2.4 Optimal Control Problem

The control inputs u�t�� t � �t0� t f � might be free to be
chosen so that a criterion

F0�t f �x�t f �� �

� t f

t0
f0�t�x�t��u�t��dt � min

x0�u�t�
� (5)

F0 : IR� IRnx �� IR�

f0 : IR� IRnx � IRnu �� IR�

is minimized subject to constraints on model inputs
umin�t�	 u�t�	 umax�t� and outputs ymin�t�	 y�t� 	
ymax�t�� t � �t0� t f �.

2.5 Discrete-Time Optimal Control Problem

In order to use a digital computer to solve dynamic op-
timization problems, continuous-time functions have
to be discretized. Here multistage control parameter-
ization is applied to formulate dynamic optimization
problems as discrete-time optimal control problems.

The time horizon �t0� t f � is divided into K stages with
t0 � t0 � t1 � �� � � tK � t f . The controls u�t� are de-
scribed in each interval �tk� tk�1�� k � 0� � � � �K � 1 as
function of the discrete-time input variables uk � IRm.
The unknown parameters p are converted to state vari-
ables with the state equation ṗ � 0 and with unknown
initial values p0 � p�t0�. They are described together
with the continuous-time model states x�t� with the
discrete-time state variables xk � IRn

�n � nx �np. The
state equation (1) is solved for the stage k with the ini-
tial values xk and the controls uk using a numerical
integration formula.

This results in the multistage optimization problem:

FK�xK� � ∑
k

f k
0 �x

k
�uk� � min

uk
�x0

� (6)

FK : IRn �� IR1
� f k

0 : IRn� IRm �� IR1

with respect to the discrete-time system equations

xk�1 � fk�xk
�uk�� (7)

fk : IRn� IRm �� IRn

and the additional constraints

ck
min 	 ck�xk

�uk� 	 ck
max�

cK
min 	 cK�xK� 	 cK

max� (8)

ck : IRn� IRm �� IRmk �cK : IRn �� IRmK �

Franke R. Formulation of dynamic optimization problems using Modelica

The Modelica Association 317 Modelica 2002, March 18−19, 2002

Note that initial conditions of the system model are
formulated as general constraints (8) as well. Dis-
cretization formulae, known parameter values, and
predetermined disturbances are included into the
discrete-time functions FK , f k

0 , fk, ck, and cK . The
discrete-time functions are assumed to be two times
continuously differentiable with respect to their vari-
ables.

2.6 Large-Scale Nonlinear Programming
Problem

Discrete-time optimal control problems can be treated
as structured large-scale nonlinear optimization prob-
lems. This has the main advantage that recently devel-
oped methods for large-scale nonlinear optimization
can be applied to their efficient solution [11, 4].

The discrete-time control and state variables for all
stages k are collected to one large vector of optimiza-
tion variables

v�

�
������������

x0

u0

x1

u1

...
xK�1

uK�1

xK

�
������������

� (9)

One specific feature of the optimization approach dis-
cussed here is that the discrete-time state variables at
all stages are treated as optimization variables as well,
even though they are determined by initial conditions
and the control parameters. This leads to a signifi-
cant increase of the size of the optimization problem.
However, the consideration of states as constrained
optimization variables generally improves robustness
and efficiency of the solution. For instance trajectory
constraints can be formulated directly on the discrete-
time state variables. Furthermore the separation of the
overall problem into multiple stages often leads to a
reduction of the required number of nonlinear itera-
tions. The computational overhead is relatively low if
the number of state variables nx is not too high, com-
pared to the number of control variables nu and and if
the sparse multistage structure of the large-scale non-
linear optimization problem is exploited appropriately.

3 Solving nonlinear dynamic system
models for optimization

Sequential Quadratic Programming (SQP) is gener-
ally considered as the most efficient numerical method
available nowadays to solve nonlinear optimization
problems [12]. This quasi Newton method treats non-
linear optimization problems by solving a sequence
of local linear-quadratic approximations. The La-
grangian of the optimization problem is approximated
quadratically, typically by applying a numerical up-
date formula. Constraints are approximated linearly.

The differential equations (1) used to model a dynamic
system together with the integration formulae deter-
mine the equality constraints (7) of the discrete-time
optimal control problem. Accordingly the initial value
problem

ẋ�t� � f�x�t��u�uk
� t��z�t��p�xk�� t�� (10)

t � �tk
� tk�1�� x�tk� � Ik�xk��

has to be solved for each stage k � 0� � � � �K � 1
in each nonlinear optimization iteration to evalu-
ate the discrete-time system functions fk�xk

�uk��k �
0� � � � �K�1.

Furthermore the discrete-time sensitivities

dfk�xk
�uk�

d�xk
�uk�

(11)

are needed to obtain local linear approximations of the
nonlinear system model. Often it turns out that the de-
termination of these sensitivities is the most time con-
suming part when solving dynamic optimization prob-
lems.

A straightforward approach for obtaining the sensitiv-
ities is to numerically differentiate the system model
together with the integration formula. This is nor-
mally done by performing multiple initial value simu-
lations for perturbed control variables uk and discrete-
time states xk (e.g. when using Matlab optimization
routines together with a Simulink model). However,
major drawbacks of this approach are low numerical
efficiency and accuracy.

More robust and efficient results can be obtained when
solving continuous-time sensitivity equations together
with the differential model equations. In approach
discussed here the continuous-time sensitivities are
needed with respect to the optimization variables

q �

�
xk

uk

�
� (12)

Formulation of dynamic optimization problems using Modelica Franke R.

Modelica 2002, March 18−19, 2002 318 The Modelica Association

The required sensitivities are

si�t� �
dx�t�
dqi

� i � 1� � � � �n�m� (13)

They are defined by the sensitivity equations

ṡi�t� �
∂f

∂x�t�
si�t��

∂f
∂qi

� t � �tk
� tk�1� (14)

with the initial conditions

si�t
k� �

dIk�xk�

dqi
� (15)

See e.g. [9] for an extension of the famous DASSL
integration algorithm with sensitivities.

The remaining task is to provide the partial deriva-
tives of the model equations (10) as required by the
sensitivity equations (14). They can be obtained with
the help of algorithmic, or automatic, differentiation
of the model equations [6]. Alternatively the model
equations can also be differentiated numerically. This
leads to a comparable simpler implementation at the
cost of less accuracy and robustness. Good experi-
ences have been made with both: application of algo-
rithmic differentiation using ADOL-C and numerical
differentiation of a model implemented as Simulink S-
function. It turns out that numeric differentiation of
the model equations alone gives more robust results
than differentiating the model together with the inte-
gration formula numerically. This is especially true
for a variable step size integration algorithm that takes
different steps in subsequent runs when differentiating
model equations and integration formula together nu-
merically.

As the simulation code is generated by a model trans-
lation tool from a Modelica specification, one would
wish for the future that a Modelica translator like Dy-
mola generates required sensitivity equations together
with the model equations. This would considerably
simplify the treatment of dynamic optimization prob-
lems.

4 Requirements on dynamic system
models used for optimization

Especially the exploitation of model sensitivities and
the treatment as multistage problem are important for

an efficient solution of dynamic optimization prob-
lems. However, both techniques do also imply require-
ments on the optimized model.

The main advantage of the exploitation of sensitivi-
ties is that the superior performance of state-of-the-
art nonlinear optimization algorithms can be utilized.
This is especially important for problems with a high
number of unknown parameters, e.g. to describe a
complex control trajectory. However, the model must
be smooth with respect to the optimization variables.
This means that the values of model variables or their
derivatives may not jump (e.g. caused by a state event
or by discontinuous functions like absolute value, re-
spectively). From the point of view of optimization,
state events have to be formulated as integer vari-
ables. This leads to mixed integer nonlinear optimiza-
tion problems that require a significantly higher solu-
tion effort than smooth nonlinear optimization prob-
lems. Fortunately in many cases discrete events can
be circumvented, e.g. a diode can be modeled ideally
utilizing a state event or approximately with a smooth
non-linear function. Furthermore it might be sufficient
to formulate an optimization problem for a restricted
range of the validity of the overall model by intro-
ducing constraints on optimization variables. For in-
stance a flow model expressing flow reversal with a
state event might be restricted to only exhibit flow into
one direction when used in a dynamic optimization.

It is important to note that the model must not be
smooth with respect to time. This means that time
events, or more generally speaking a sequence of
events with fixed switching structure, can easily be in-
corporated into the dynamic optimization problem. In
fact mixed integer nonlinear optimization solvers of-
ten exploit this feature and treat a problem with state
events on two levels: integer variables are modified
on an upper level, while for each set of fixed integer
variables the resulting nonlinear optimization problem
with fixed switching structure is solved on a lower
level.

Besides the exploitation of sensitivities, the treatment
as multistage problem offers following advantages:

� improved treatment of state trajectory constraints,
because sampled values of the state variables are
optimization variables,

� non-linearities do only occur within stages in-
volving only discrete-time variables at specific
discrete time points (often leading to a reduction
of non-linear iterations),

Franke R. Formulation of dynamic optimization problems using Modelica

The Modelica Association 319 Modelica 2002, March 18−19, 2002

� the time consuming sensitivity analysis can be
performed in parallel for all stages because the
initial states for each stage are optimization vari-
ables.

The price that has to be paid for these features is that
not only sensitivities with respect to the free param-
eters are required, but also with respect to the initial
states of each stage. That is why the number of uncon-
strained state variables should not be too high, com-
pared to the number of optimized control inputs or
model parameters, as otherwise the expensive calcula-
tion of sensitivities for these states does not pay off.
Fortunately this practical requirement of low model
complexity is not specific to dynamic optimization, but
is generally known from control applications. If for
instance the dynamic optimization shall be performed
on-line starting at a transient initial state, the availabil-
ity of measurement data for estimating the initial state
often restricts the allowed model complexity too.

5 Modelica features supporting the
formulation of optimization models

One mathematical model can hardly fulfill all require-
ments that are caused by different applications. That
is why it is considered important that a modeling lan-
guage supports a flexible model management allowing
to build different mathematical models describing the
same dynamic system depending on requirements by
specific applications.

5.1 Separation of model interface and model
implementation

A well known object-oriented technique is to separate
interface definition and implementation. This tech-
nique is also well supported by the object oriented
modeling language Modelica. An interface can be de-
fined as partial model:

partial model ShellModel
// interface definitions

end ShellModel;

Different implementations can be based on the same
interface, e.g. an ideal model with exact switching be-
havior:

model IdealModel
extends ShellModel;
// implementation using
// state events

end IdealModel;

and alternatively a smooth model:

model SmoothModel
extends ShellModel;
// alternative
// implementation using
// smooth non-linear function

end SmoothModel;

Further implementations can for instance provide
models of different complexity, e.g. introducing dif-
ferent numbers of state variables.

Modelica supports the redeclaration of submodels.
Exploiting this features, a system model defined for
one application, say a real-time simulation, can be
adapted to fulfill the requirements of an other appli-
cation, say a dynamic optimization.

5.2 Model containing multiple implementa-
tions

Alternatively to defining different models for different
formulations, one model can also provide multiple im-
plementations. One possibility is to use the Modelica
built-in operator analysisType():

model UniversalModel
// interface definitions

equation
if analysisType() == "dynamic"

// implementation using
// state events

else if analysisType() == "linear"
// implementation using
// smooth non-linear function

end;
end UniversalModel;

The model translation tool picks out the appropriate
implementation depending on the analysis type. Anal-
ysis type linear means that the continuous part of the
model shall be transformed in a linear system. This
implies that the model should be formulated in an ap-
propriate way allowing linearization at given operating
points.

Formulation of dynamic optimization problems using Modelica Franke R.

Modelica 2002, March 18−19, 2002 320 The Modelica Association

Furnace

Pump Drum Superheater 1

Condense Water

Spray Water

Superheater 2 Pipe Valve

Header 1 Header 2

Figure 1: Flowsheet of a boiler model describing the generation of superheated steam.

5.3 Attributes of predefined types

The predefined Modelica type Real defines several
attributes that are important for the formulation of op-
timization models. These are:

nominal The nominal attribute should be used to
scale optimization variables (control inputs, un-
known parameters, model states).

stateSelect This attribute is useful to guide the
model translator to select specific states that will
become optimization variables.

Furthermore the attributes min and max could be uti-
lized to formulate bounds on model variables and con-
straints. However, it should be noted that Modelica is
not intended to be an optimization modeling language.
The primary intention of the attributes min and max is
to restrict the range a model is valid for, not to define
constraints like operational bounds.

Generally Modelica should not be seen as a modeling
language to define a whole optimization problem, in-
cluding optimization criterion and constraints. Instead
Modelica is considered a powerful language to define
the dynamic system model in a dynamic optimization
problem.

6 Example

The optimal startup of a boiler for the generation of su-
perheated steam in a coal fired power plant is discussed
as example. The optimal control problem is to obtain
a new operating point as fast and efficient as possible
considering constraints on the thermal stress on thick
walled parts, see [8]. Main new challenges, compared
to approaches known so far, e.g. [7], are to formulate
a nonlinear dynamic process model that is capable to
accurately predict the behaviour over a wide range of
operation, including cold start, to be open for flexible
adaptation of the model to specific power plants, and
to solve the optimal control problem considering con-
straints on multiple thermal stresses that may become
active in different situations.

The process model is formulated in the object-oriented
modeling language Modelica. This allows the flexible
composition of a process model from sub-models for
typical components. Figure 1 shows an example flow-
sheet. Submodels are a feedwater pump, an evapora-
tor, two superheaters, a long pipe, and a high pressure
bypass valve. Further submodels cover the furnace.
The phenomenon of condense water is modeled in a
separate submodel that is attached to the first super-
heater. A spray water inlet is placed between the two

Franke R. Formulation of dynamic optimization problems using Modelica

The Modelica Association 321 Modelica 2002, March 18−19, 2002

superheaters. Thick walled parts are outlet headers of
the superheaters and the boiler drum. The model com-
ponents are based on the ThermoFluid model library
[15]. The ThermoFluid library implements, besides
others, the IAPWS Industrial Formulation IF 97 stan-
dard for the thermodynamic properties of water and
steam, enabling accurate and efficient models. The
reuse of this model library is considered crucial for an
effortable model development concentrating on appli-
cation specific phenomena.

The implementation of water and steam properties in
the ThermoFluid library is accomplished by partial
derivatives allowing the flexible selection of state vari-
ables, see also the model development in [1]. In the
example discussed here, mainly temperatures are se-
lected as state variables, besides pressures and mass
flow rates. This simplifies the treatment of constraints
on thermal stresses.

Controlled inputs are the fuel flow rate, the amount of
spray water, and the position of the outlet valve. Model
outputs are pressure, temperature and mass flow rate
of generated steam as well as three observed thermal
stresses.

The Dymola tool is applied to generate a mathemat-
ical system of differential and algebraic equations
as required for an efficient numerical solution. Af-
ter collecting all submodels from the used model li-
braries, the overall differential-algebraic equation sys-
tem (DAE) contains 636 variables and equations. This
DAE is converted to a system of ordinary differential
equations (ODE) with 11 dynamic state variables and
is compiled to a Simulink S-function.

Note that the dynamic optimization method discussed
here requires the mathematical model in the same form
as simulation solvers do. This means that no optimiza-
tion specific extensions are required to the Dymola
model translator. The S-function is directly used to
treat dynamic optimization problems, in our case the
estimation of model parameters and the optimal boiler
startup. Sensitivities are obtained by numerical differ-
entiation of the model.

The optimal boiler startup problem is formulated for
60 time intervals. The control trajectories are param-
eterized piecewise linear. The resulting large-scale
nonlinear optimization problem has 1034 optimization
variables, 854 equality constraints, and 1212 inequal-
ity constraints. Its solution with the HQP solver takes
about 3 minutes on a PC with Pentium III 850 MHz
processor.

Figure 2 shows optimization results. The optimization
solver has to obtain three trajectories for the controlled
inputs so that the optimization criterion is minimized
subject to the constraints on thermal stresses and the
required new operating point. It can be seen that
first the constraints on thermal stress of superheater 2
(dTSH2) and drum (dTD) are active. Later on, when
the condense water has been evaporated, the thermal
stress of superheater 1 (dTSH1) is becoming active be-
tween 750 s and 1900 s. Generally the constraints are
limiting the amount of fuel (qm�F) that can be fed into
the boiler. Starting from 1500 s, spray water (qm�AW)
is utilized to reduce the thermal stress on superheater
2. The thermal stress of the drum is becoming active
again. The high pressure bypass valve (YHPB) is pri-
marily used to control the steam flow rate (qm�Steam),
but it influences other process variables like steam
pressure (pSteam) and steam temperatures (TSteam) as
well. The required new operating point is reached af-
ter about 2500 s.

Such an optimization can be used as core routine of
a nonlinear model based controller (NMPC). In this
way startup cost savings of about 10% can be reached,
compared to a traditional control strategy.

7 Conclusions

The general principle of Modelica of separating
the model specification from the numerical solution
method allows the reuse of simulation models for opti-
mization. Furthermore, the object-oriented features of
the Modelica language and the availability of model
libraries greatly simplify the development of rigorous
physical models for complex dynamic systems.

Nonlinear dynamic optimization problems can be
treated efficiently as discrete-time optimal control
problems and solved numerically by applying large-
scale nonlinear optimization methods, see also [3].
This is especially true for problems with state con-
straints. The HQP dynamic optimization solver has
been integrated with the Dymola modeling and simu-
lation software using Matlab and Simulink as integra-
tion platform [13, 14, 2, 5].

The optimal startup of a power plant is discussed as
example. The system model is formulated based on the
ThermoFluid model library [15]. The reuse of model
libraries is considered crucial for an effortable model
development concentrating on specific phenomena of
an application.

Formulation of dynamic optimization problems using Modelica Franke R.

Modelica 2002, March 18−19, 2002 322 The Modelica Association

The example demonstrates the main strengths of
model based predictive control: the treatment of multi-
input multi-output problems and the consideration of
state constraints. For reasons of efficiency, it is impor-
tant to carefully select state variables during the mod-
eling process. The treatment of state variables as opti-
mization variables simplifies the consideration of state
trajectory constraints and allows a more robust and ef-
ficient solution of the dynamic optimization problem,
even though the problem size increases.

For the future it appears desirable that a model trans-
lation tool generates required sensitivity equations in
addition to the model differential equations. Model
libraries might provide alternative sub-models for spe-
cific phenomena, e.g. description of sudden changes
with discrete events or with an approximate non-linear
function. These sub-models could then be exchanged
with each other depending on the intended application
and requirements by the solution method.

References

[1] K.J. Åström and R.D. Bell. Drum-boiler dynam-
ics. Automatica, 36:363–378, 2000.

[2] Dynasim AB. Dymola: Dynamic Modeling Lab-
oratory. http://www.dynasim.se.

[3] R. Franke. Integrated dynamic modeling and op-
timization of systems with seasonal heat storage,
volume 394 of Fortschritt-Berichte VDI, Reihe 6
(in German). VDI-Verlag, Düsseldorf, 1998.

[4] R. Franke and E. Arnold. Applying new numer-
ical algorithms to the solution of discrete-time
optimal control problems. In K. Warwick and
M. Kárný, editors, Computer-Intensive Methods
in Control and Signal Processing: The Curse of
Dimensionality, pages 105–118. Birkhäuser Ver-
lag, Basel, 1997.

[5] R. Franke, E. Arnold, and H. Linke. HQP: a
solver for nonlinearly constrained large-scale op-
timization. http://hqp.sourceforge.net.

[6] A. Griewank. Evaluating Derivatives: Princi-
ples and Techniques of Algorithmic Differentia-
tion, volume 19 of Frontiers in Applied Mathe-
matics. SIAM, Philadelphia, 1992.

[7] P. Kallappa, Michael S. Holmes, and Asok
Ray. Life-extending control of fossil fuel power
plants. Automatica, 33(6):1101–1118, 1997.

[8] Klaus Krüger, Manfred Rode, and Rüdiger
Franke. Optimal control for fast boiler start-up
based on a nonlinear model and considering the
thermal stress on thick-walled components. In
Proceedings of the IEEE Conference on Control
Applications. Mexico City, September 2001.

[9] T. Maly and L.R. Petzold. Numerical meth-
ods and software for sensitivity analysis of
differential-algebraic systems. Applied Numer-
ical Mathematics, 20:57–79, 1996.

[10] Modelica Association. Modelica: Mod-
eling of Complex Physical Systems.
http://www.modelica.org.

[11] Walter Murray. Sequential quadratic pro-
gramming methods for large-scale problems.
Computational Optimization and Applications,
7(1):127–142, 1997.

[12] P. Spellucci. Numerische Verfahren der nicht-
linearen Optimierung. Birkhäuser Verlag, Basel,
1993.

[13] The MathWorks, Inc. MATLAB:
the language of technical computing.
http://www.mathworks.com.

[14] The MathWorks, Inc. Simulink: for
model-based and system level design.
http://www.mathworks.com.

[15] Hubertus Tummescheit, Jonas Eborn, and
Falko Jens Wagner. Development of a Model-
ica base library for modeling of thermo-hydraulic
systems. In Proceedings of the 1st Modelica
Workshop 2000. Lund, Sweden, 2000.

Franke R. Formulation of dynamic optimization problems using Modelica

The Modelica Association 323 Modelica 2002, March 18−19, 2002

Figure 2: Results for the optimal boiler startup problem. The upper plots show the controlled inputs fuel
flow rate qm�F�%, flow rate of spray water qm�AW��kg�s�, and position of high pressure bypass valve YHPB.
Below process variables characterizing the generated steam are plotted: qm�Steam/kg/s, pSteam/MPa, Tm�Steam�

ÆC.
Furthermore three thermal stresses dT /K are shown.

Modelica 2002, March 18−19, 2002 324 The Modelica Association

Sjöberg J., Fyhr F., Grönstedt T. Estimating parameters in physical models using MathModelica

The Modelica Association 325 Modelica 2002, March 18−19, 2002

Estimating parameters in physical models using MathModelica�

Jonas Sjöberg, Fredrik Fyhr and Tomas Grönstedt
Department of Machine- and Vehicle Systems

Chalmers University of Technology
412 96 Gothenburg, Sweden

Phone +46-31-772 1855, Fax: +46-31-772 3690
Email: jonas.sjoberg@me.chalmers.se

Abstract

This paper describes a program which extends Math-
Modelica so that model parameters can be estimated
using measured data. Given initial values of the
parameters, the parameter estimates are iteratively
changed so that the sum of squared errors of the dif-
ference between the model output and the data is mini-
mized. In each iteration an extended differential equa-
tion has to be simulated. The developed program im-
ports the Modelica model into Mathematica and de-
rives a symbolic expression for this extended differen-
tial equation. The extended model i converted to Mod-
elica format and MathModelica is used to simulate it
efficiently.

1 Introduction

A mathematical model of a plant can be based on well-
known physical laws. These physical laws often con-
tains parameters which numerical values might not be
exactly known. There might be, for example, spring
constants, masses, resistances and other basic parame-
ters. The program described here has been developed
to estimate such parameters using measured signals
from the system.
Estimating models of dynamic systems is called sys-
tem identification. It is a well established engineering
research field. Introductory books are, for examples,
[5, 3], and more advanced ones [4, 6]. These books,
and available software tools, deal with either linear
models or discrete time models. For many real world
problems there is a need of nonlinear continuous-time
models.
There are many reasons to estimate parameters in
models built on physical principles. Some examples

�Financial support from Volvo Aero Corporation AB is grate-
fully acknowledged.

follows.

� Some parameters are maybe only approximately
known.

� The change of the parameters in the estimation
can be used as a way to validate the original
model.

� The system might need to be re-tuned after age
and wear.

� An online version of the program could be used
for monitoring and failure detection of plants in
continuous use.

The current program builds on MathModelica. The
rational for this is that when the user has obtained a
model for simulation, no extra effort is needed to es-
timate its parameters. This is in opposite to most ex-
isting identification tools of today where you have to
transform the model into their special format. It is also
a question of flexibility, thanks to the great generality
of Modelica you can specify almost any type of model.
This can either by done by using the Modelica syntax
in a Mathematica notebook or by using the graphical
user interface, Figure 1, where you build a model by
combining sub models from different libraries.
The following example illustrates the idea of the pro-
gram.
Example: Consider the electric circuit in Figure 2. It
is easy to build this model with the model editor. The
only non-standard part is the resistor which is nonlin-
ear and described by

uR � R1i�R2i5

where uR is the voltage, i the current, and R1 and R2

are parameters. There are also parameters describing
the inductance, L and the capacitor, C.

Estimating parameters in physical models using MathModelica Sjöberg J., Fyhr F., Grönstedt T.

Modelica 2002, March 18−19, 2002 326 The Modelica Association

Figure 1: MathModelica model building editor.

v�t�

C

R1, R2

L

Figure 2: A nonlinear circuit with unknown parame-
ters C, L, and R1 and R2. Voltage over the resistor is
described by R1i�R2i5

Data was obtained by simulating the model with “true”
parameter values and with a step voltage of 10 Volt at
t � 0. The obtained current is displayed in Figure 3.
The sampled data values used in the parameter estima-
tion are indicated with dots. The model was initialized

2 4 6 8 10 12 14
t

0.5

1

1.5

Inductor1i�t�

Figure 3: Current through the inductor of the circuit in
Figure (2). The marked values are data samples used
to estimate the parameters.

with parameter values different from the ones used to
obtain the data, as indicated in Table 1. From the ini-
tialization the parameters where iteratively improved
using the developed program. In Figure 4 the simu-
lated current is shown after each iteration. As seen in
the figure, the simulated values coincide with the data
after some 6-7 iterations.

Parameter True value Initial estimates
R1 0.5 2
R2 1 2
C 0.5 2
L 1 2

Table 1: True parameters used to obtain the data and
initial parameter values used in the optimization.

�

The rest of the paper is organized in the following way.
Section 2 gives the mathematical description of the
considered system identification problem. How this
theory is solved by the program is described in Sec-
tion 3. Another example is given in Section 4 which is
followed by a discussion on possibilities and problems
with the current approach in Section 5. The paper is
then concluded in Section 6.

Sjöberg J., Fyhr F., Grönstedt T. Estimating parameters in physical models using MathModelica

The Modelica Association 327 Modelica 2002, March 18−19, 2002

2 4 6 8 10 12

0.5

1

1.5

2

2.5

Figure 4: Simulated current after consecutive parame-
ter estimate updates.

2 The equations describing the calcu-
lations

Assume that we are interested of a specific system and
consider a model of it, described by a differential equa-
tion, DAE or ODE

f �ẋ�t��x�t��u�t�� � � 0 (1)

ŷ�t� � � h�x�t�� � (2)

where x�t� are the states of the model, u�t� is the input
signal, y�t� is the output signal. The differential equa-
tion is then specified by the functions f and h which
also depend on the parameters which are stored in a
parameter vector .
Assume further that a data set of N samples has been
collected from the system, �y�t��u�t��N

t�1. The goal
is then to tune so that the simulated output ŷ�t� re-
sembles y�t� when the model is simulated with the in-
put �u�t��N

t�1. This is obtained by introducing a crite-
rion of fit. It can be almost any arbitrary differential
function, but to keep things easy we choose the mean
squared error

VN� � �
1
N

N

t�1

�y�t�� ŷ�t� ��2 (3)

Then the estimate is defined as

ˆ � arg minVN� � (4)

It is generally not possible to find a closed form ex-
pression for ˆ . Instead, starting with an initial param-
eter guess ˆ�0� the estimate is iteratively computed by

a gradient based algorithm

ˆ�i�1� � ˆ �i��µR�1 dVN� �

d

����
�ˆ �i�

(5)

where R is a positive definite matrix approximating
the Hessian, and µ is a step length to assure descent
steps. Different standard minimization algorithms, for
example Gauss-Newton, Levenberg-Marquardt and
steepest-descent, are covered by (5) and they differ on
the choice of R. See, eg, [1, 2].
A key part in the iterative minimization (5) is the com-
putation of the derivative of the criterion. It becomes

dVN� �

d
��

2
N

N

t�1

�y�t�� ŷ�t� ��
dŷ�t� �

d
(6)

This leads us to the derivative of the model output

dŷ�t� �

d
�

h�x�t�� �
�

h�x�t�� �

x�t�
dx�t�

d
(7)

which cannot be obtained without the signal

x̃�t� �
dx�t�

d
(8)

To obtain this signal we have to take the derivative of
the original state space equation in (1). This gives us

f �ẋ�t��x�t��u�t�� �

ẋ�t�
dẋ�t�

d
�

f �ẋ�t��x�t��u�t�� �

x�t�
dx�t�

d
�

f �ẋ�t��x�t��u�t�� �
�

f �ẋ�t��x�t��u�t�� �

ẋ�t�
˙̃x�t��

f �ẋ�t��x�t��u�t�� �

x�t�
x̃�t��

f �ẋ�t��x�t��u�t�� �
� 0 (9)

which is a new differential equation. Since it contains
x�t� it is coupled with the original differential equation
(1) describing the model.
By introducing

z�t� �

�
x�t�
x̃�t�

�
(10)

the two coupled differential equations (1) and (9) can
be described as

F�ż�t��z�t��u�t�� � � 0 (11)

where the definition of F follows from (1) and (9).
Hence, to perform the iterative minimization (5) the
differential equation (11) has to be simulated in each
iteration using the current value of .

Estimating parameters in physical models using MathModelica Sjöberg J., Fyhr F., Grönstedt T.

Modelica 2002, March 18−19, 2002 328 The Modelica Association

3 The program

The different parts of the Mathematica program can
now be described in more detail:

1. Given a Modelica model, describing (1), with ini-
tial parameter values and data from the true sys-
tem.

2. A subset of the parameters are selected for esti-
mation.

3. The extended differential equation (11) is sym-
bolically computed from the original model (1)
and transformed into Modelica standard.

4. The extended differential equation (11) is simu-
lated with the current parameter values.

5. The selected parameters are updated (5).

6. Until convergence, go to 4.

The main part of the program is the derivation of the
extended model. The other steps consists of interface
issues or well-known algorithms which have to be in-
cluded into the program.

4 Example

A first example was given already in the introduction.
Here follows a second one where we have a different
type of nonlinear resistor. The system is described in
Figure 5. The input to the system is the voltage at
the voltage source and the output is the current. The

v�t�

C

R, d

L

Figure 5: Nonlinear circuit with a parameterized dead
zone.

resistor is described by an unknown resistance, R, and
a dead zone, d, see Figure 6.
Estimation data was obtained by selecting a set of
“true” parameters, given in Table 2 and simulating the
model with a step input of 5 Volt. Figure 7 depicts the

v
R

id

Figure 6: Description of the dead zone parameteriza-
tion.

voltage over the resistor and one can clearly see the
cut-off due to the dead zone.

10 20 30 40

-0.5

0.5

1

1.5

Figure 7: Simulation of the true system, the voltage
over the resistor versus time.

The model was initialized with parameter values as in-
dicated in Table 2. The simulation of the initial model
together with the estimation data are depicted in Fig-
ure 8.

Parameter True value Initial value Final value
R 0.5 0.7 0.503
d 0.4 0.35 0.402
C 0.8 1.1 0.805
L 1 1.1 0.993

Table 2: Parameter values for the circuit with a dead
zone in the resistance.

The result of the tuning is illustrated in Figure 9 where
the simulated current is depicted after each iteration
together with the estimation data. Table 2 gives the
final parameter values. From the figure it is clear that

Sjöberg J., Fyhr F., Grönstedt T. Estimating parameters in physical models using MathModelica

The Modelica Association 329 Modelica 2002, March 18−19, 2002

10 20 30 40
t

-0.5

0.5

1

1.5

Inductor1i�t�

Figure 8: Simulation of the model with the initial pa-
rameters together with estimation data.

10 20 30 40

-3

-2

-1

1

2

3

4

Figure 9: Simulated current after consecutive parame-
ter estimate updates.

the parameters converge within some 10 iterations.

5 Discussion

Although the program is far from ready the following
functionality is supported, or can easily be supported
by making smaller changes.

� Data can be sampled at irregular sampling in-
stances. Different signals can be sampled indi-
vidually.

� Systems described by DAE can be handled in the
same (automatic) way as ODE systems. The ex-
ample in the introduction was actually a DAE ex-
ample.

� Discontinuous (but piecewise smooth) differen-
tial equations can be handled, at least a formal
result can be obtained.

� Multiple input multiple output systems are han-
dled.

� Criterion of fit can be changed.

There are also potential problems.

� The gradient search can only guarantee conver-
gence to a local minimum. Hence, a good ini-
tial parameter guess is necessary to obtain con-
vergence to the global minimum.

� The order of the extended differential equation is
often high, it becomes the number of parameters
times the number of states in the original differ-
ential equation. This gives a high computational
burden which might limit the applicability of the
program.

� Stability problems may occur. Depending on the
parameter values the differential equations might
be stable or unstable. In the general case, where
the model is nonlinear, it is not possible to moni-
tor stability.

6 Conclusions

A Mathematica program has been developed which
extends MathModelica so that parameters can be es-
timated using measured data. The program builds on
the following principles.

Estimating parameters in physical models using MathModelica Sjöberg J., Fyhr F., Grönstedt T.

Modelica 2002, March 18−19, 2002 330 The Modelica Association

� An existing modeling tool, the MathModelica
graphical user interface, is used to describe the
model.

� Mathematica is used to create the to the model
specific extended differential equation which
needs to be simulated in the estimation process.

� Existing, efficient numerical differential equation
solver is used to simulate the extended differen-
tial equation.

So far only preliminary studies have been carried out.
More experience is needed and the program has to be
developed further before it becomes as easy to use, as
it is supposed to be.

References

[1] J.E. Dennis and R.B. Schnabel. Numerical Meth-
ods for Unconstrained Optimization and Nonlin-
ear Equations. Prentice-Hall, Englewood Cliffs,
New Jersey, 1983.

[2] R. Fletcher. Practical Methods of Optimization.
John Wiley & Sons, 1987.

[3] R. Johansson. System Modeling & Identification.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
07632, 1993.

[4] L. Ljung. System Identification: Theory for the
User. Prentice-Hall, Englewood Cliffs, NJ, 2nd
edition, 1999.

[5] L. Ljung and T. Glad. Modeling of Dynamic Sys-
tems. Prentice Hall, Englewood Cliffs, N.J., 1994.

[6] T. Söderström and P. Stoica. System Identifica-
tion. Prentice-Hall International, Hemel Hemp-
stead, Hertfordshire, 1989.

Aronsson P., Fritzson P. Multiprocessor Scheduling of Simulation Code From Modelica Models

The Modelica Association 331 Modelica 2002, March 18−19, 2002

Multiprocessor Scheduling of Simulation Code
From Modelica Models

Peter Aronsson, Peter Fritzson
PELAB, The Programming Environment lab

Department of Computer and Information Science
Linköping University

SE-581 83 Linköping, Sweden
{petar,petfr}@ida.liu.se

Abstract

Modern object oriented modeling techniques, such as
the Modelica modeling language, are increasing the
capability to model and simulate systems of large size
and complexity. Simulation of such large and complex
systems is computationally very expensive. The use of
parallel computers for simulation of Modelica models
is one approach of handling simulation of such large
and complex systems within reasonable time limits.
This paper presents an automatic parallelization tool
that translates the sequential simulation code gener-
ated from a Modelica compiler, Dymola, into a par-
allel version that can be executed on a parallel com-
puter. The paper also presents several scheduling and
clustering techniques used by the tool to partition the
simulation code onto several processors. One of these
techniques, called FTDT-Full Task Duplication Tech-
nique, gives a measured speedup of 2.5 on an 8 pro-
cessor PC-cluster. However, future work includes de-
veloping better scheduling and clustering algorithms
to further improve the results.

1 Summary

Object oriented equation based modeling languages
such as Modelica enable simulation of large complex
systems. However, with growing complexity of mod-
eled systems, the need for parallelization becomes in-
creasingly important in order to keep simulation time
within reasonable limits.

The first step in a Modelica compilation results in
a system of differential and algebraic equations. The
Modelica compiler typically performs optimizations
on this system of equations to reduce its size. Other
optimizations on the equation system are also per-
formed to for instance reduce the index of the system

to make it easier to solve numerically, and break al-
gebraic loops to enable generation of more efficient
code. Finally, sequential C code is generated from
the optimized set of equations, containing assignment
statements with arithmetic expressions, function calls,
and subsystems of equations that are solved using a
variety of solution techniques. This simulation code is
then combined with a numerical solver to simulate the
model.

This paper presents an automatic parallelization
method and tool that builds a task graph from the opti-
mized sequential code produced by the Dymola com-
mercial Modelica compiler. Earlier work indicated
that the task graph should be built at the expression
level, resulting in a large fine grained task graph. The
reason for building the task graph at the lowest level
is to reveal all possible parallelism in the task graph.
The fine granularity of the task graph means that the
communication costs between tasks in the graph are
typically much larger than the execution costs of the
tasks. Hence, the scheduling algorithms need to take
this into consideration to be able to produce an effi-
cient parallel schedule of the task graph.

Several scheduling algorithms have been studied
and implemented for this problem, like the TDS al-
gorithm, which is a task duplication based scheduling
algorithm. We have also investigated clustering algo-
rithms which have the goal of clustering nodes for bet-
ter computation/communication tradeoff. However the
standard algorithms found in the literature gave poor
result due to the special properties of the tasks graphs
generated from the optimized equations converted to
C-code emitted by the Dymola Modelica compiler.

There are some scheduling algorithms, specially de-
signed for targeting simulation code, like for instance
the algorithm presented in [21]. However, that algo-
rithm is not suitable for our purposes since it is mainly

Multiprocessor Scheduling of Simulation Code From Modelica Models Aronsson P., Fritzson P.

Modelica 2002, March 18−19, 2002 332 The Modelica Association

designed for coarse grained task graphs and can not
handle fine grained task graphs well. The reason for
obtaining good speedup in that case is that the used
architecture had a reasonable fast communication net-
work compared to the slow processor speed. However,
this relation between communication speed and pro-
cessor speed is not valid today, and is in fact degrading
in the future, since the processor speed is increasing
much faster than the communication speed.

Yet another approach, where task duplication is al-
ways used, FTDT - Full Task Duplication Technique,
shows speedup results for some examples, including
a thermofluid pipe model which gives a speedup of
about 2.5 on 8 processors running on a PC-cluster.

Future work include designing and developing bet-
ter clustering and scheduling algorithms well suited
for the simulation code generated from optimized sys-
tems of equations.

2 Introduction

Modelica is an acausal, object-oriented, equation
based modeling language for modeling and simulation
of large and complex multi-domain systems [14, 8].
Modelica was designed by an international team of
researchers, whose joint effort has resulted in a gen-
eral language for design of models of physical multi-
domain systems. Modelica has influences from a num-
ber of earlier object oriented modeling languages, for
instance Dymola [7] and ObjectMath [9].

A Modelica compiler flattens the object oriented
structure of the model into a system of differential al-
gebraic equations (DAE) which during simulation is
solved using a standard DAE solver. This code is often
very time consuming to execute, and there is a great
need for parallel execution, especially for demanding
applications like hardware-in-the-loop simulation.

The flat set of equations produced by a Modelica
compiler is typically sparse, and there is a large oppor-
tunity for optimization. A simulation tool with sup-
port for the Modelica language would typically per-
form optimizations on the equation set to reduce the
number of equations. One such tool is Dymola [6],
another is MathModelica [13].

The problem presented in this paper is to parallelize
the calculation of the states (the state variables and
their derivatives) in each time step of the solver. The
code for this calculation consists of assignments of nu-
merical expressions, e.g. addition or multiplication op-
erations, to different variables. But it can also contain
function calls, for instance to solve an equation system

or to compute sin(x) for a value x, which are com-
putationally more heavy tasks. The Dymola simula-
tion tool produces this kind of code. Hence we can use
Dymola as a front end for our automatic parallelization
tool.

To parallelize the simulation we first build a task
graph, G = (V,E) where each task v ∈ V corresponds
to a simple binary operation, or a function call. A data
dependency edge (e ∈ E) is present between two task
nodes v1,v2 iff v2 uses the result from v1. This is repre-
sented in the task graph by the edge e = (v1,v2). Each
task is assigned an execution cost which corresponds
to a normalized execution time of the task, and each
edge is assigned a communication cost corresponding
to a normalized communication time between the tasks
if they execute on different processors. Figure 1 illus-
trates how a task graph can be represented graphically.
Each node is divided by a horizontal line. Above the
line a unique task label/number is given and below the
line is the execution cost of the task. Near each edge is
the communication cost for the edge given. The goal
of a scheduling or clustering algorithm is to minimize
the execution time of the parallel program. This of-
ten means that the communication between processors
must be kept low, since interprocessor communication
is very expensive. When two tasks execute on the same
processor, the communication cost between them is re-
duced to zero.

2 3

4 5 6

7 8

1

1 2

1 2 2

1 1

2
5

5 5

10 5

5

10

10

Figure 1: Task graph with communication and execu-
tion costs.

Scheduling and partitioning of task graphs of the
kind described above have been studied thoroughly
in the past three decades. There exist a plethora of
different scheduling and partitioning algorithms in the
literature for different kinds of task graphs, consider-
ing different aspects of the scheduling problem. The

Aronsson P., Fritzson P. Multiprocessor Scheduling of Simulation Code From Modelica Models

The Modelica Association 333 Modelica 2002, March 18−19, 2002

general problem of scheduling task graphs for a multi-
processor system has been proven to be NP com-
plete [15].

The rest of the paper is organized as follows: Sec-
tion 3 gives a short summary of related work. Section
4 presents our contribution to parallelizing simulation
code. In section 5 we give some results of our con-
tribution, followed by a discussion and future work in
section 6.

3 Related Work

A large number of scheduling and partitioning algo-
rithms have been presented in the literature. Some
of them use list scheduling techniques and heuris-
tics [3, 11, 5, 2, 10, 22]. A list scheduler keeps a list
of tasks that are ready to be scheduled, i.e. all its pre-
decessors have already been scheduled. In each step it
selects one of the tasks in the list, by some heuristic,
and assigns it to a suitable processor, and updates the
list.

Another technique is called critical path schedul-
ing [17]. The critical path of a task graph (DAG) is the
path having the largest sum of communication and ex-
ecution cost. The algorithm calculates the critical path,
extracts it from the task graph and assign it to a proces-
sor. After this operation, a new critical path is found in
the remaining task graph, which is then scheduled to
the next processor, and so on. One property of critical
path scheduling algorithms is that the number of avail-
able processors is assumed to be unbounded, because
of the nature of the algorithm.

Yet another approach to scheduling of task graphs is
to first apply a task clustering algorithm and thereafter
schedule the clusters for a fixed number of processors.
A task clustering algorithm results in a cluster partition
of the task graph. A cluster is a set of nodes designated
to execute on the same processor. Thus, the communi-
cation costs for edges between nodes belonging to the
same cluster are reduced to zero. A low complexity
task clustering algorithm is the DSC algorithm [19]. It
has a complexity of O(n · log(n)).

An alternative approach to task clustering is to ap-
ply task merging algorithms [12]. The difference be-
tween a task clustering algorithm and a task merging
algorithm is that in the task clustering case, tasks are
not merged, i.e. the communication of data is still per-
formed for each individual task in the cluster. But for
the task merging case, the tasks are merged such that
the new task resulting from the merge receives all its
data before the computational work of the task, and

sends all the resulting data to other tasks after the com-
putational work has been performed.

Due to the merging property of a task merging algo-
rithm, the resulting task graph will have a higher gran-
ularity value, i.e. the communication to computation
ratio will increase. Thus, after a task merging algo-
rithm has been applied any standard scheduling algo-
rithm that works better for coarse grained task graphs
can successfully be applied.

An orthogonal feature in scheduling algorithms is
task duplication. Task duplication scheduling algo-
rithms rely on task duplication as a mean of reducing
communication cost. However, the decision if a task
should be duplicated or not introduces additional com-
plexity to the algorithm, pushing the complexity up in
the range O(n3) to O(n4) for task graphs with n nodes.

4 Scheduling of Simulation Code

An overview of the automatic parallelization tool pre-
sented in this paper is given in Figure 2. The figure
illustrates both how the sequential executable and the
parallel executable that are built.

Model
(.mo)

sequential
C code

C compiler

Modelica
Compiler

Parallelizer

C compiler

sequential
executable

parallel
executable

Solver
lib

Parallel
C code

MPI
lib

Figure 2: An overview of the parallelization tool and
its environment.

Simulation code generated from Modelica mostly
consists of a large number of assignments of expres-
sions with arithmetic operations to variables. Some of
the variables are needed by the DAE solver to calculate
the next state, hence they must be sent to the processor
running the solver. Other variables are merely tempo-
rary variables whose value can be discarded after the
final use.

The simulation code is parsed, and a fine grained
task graph is built, see the structure of the tool in Fig-
ure 3. The generated graph, which has the properties

Multiprocessor Scheduling of Simulation Code From Modelica Models Aronsson P., Fritzson P.

Modelica 2002, March 18−19, 2002 334 The Modelica Association

of a DAG (Directed Acyclic Graph), can be very large.
A typical application (e.g. a thermo-fluid model of a
pipe, discretized to 100 pieces), with an integration
time of around 10 milli seconds, has a task graph with
30000 nodes. The size of each node can also vary a
lot. For instance, when the simulation code originates
from a DAE, certain nodes represent an equation sys-
tem that have to be solved in each iteration if they can
not be solved statically at compile time. These equa-
tion systems can be linear or non-linear. In the linear
case, any standard equation solver could be used, even
parallel solvers. In the non-linear case, fixed point iter-
ation is used. In both cases, the solving of each equa-
tion system is represented as a single node in the task
graph. Such a node can have a large execution time in
comparison to other nodes (like an addition or a mul-
tiplication of two scalar floating point values).

Parser

Task Graph
Builder

Scheduler

Code
Generator

Symbol
Table

Debug &
Statistics

Figure 3: The internal architecture of the paralleliza-
tion tool.

The task graph generated directly from the simula-
tion code is not suitable for scheduling to multipro-
cessors. There are several reasons for this, the ma-
jor reason is that the task graph is too fine grained
for applying a standard scheduling algorithm. Many
scheduling algorithms are designed for coarse grained
task graphs. The granularity of a task graph is the re-
lation between the communication cost between tasks
and the execution cost of the tasks. There are sev-
eral scheduling algorithms that can handle fine grained
task graphs as well as coarse grained task graphs. One
such category of algorithms is non-linear clustering al-
gorithms [19, 20]. These algorithms consider putting
siblings1 into the same cluster to reduce communica-
tion cost. A problem with some of these algorithms is
that the complexity is too high for the large task graphs
generated by our tool.

1A sibling s, to a task n is defined as a node where n and s has
a common predecessor.

A second problem with the task graphs generated
is that in order to keep the task graph small, the im-
plementation does not allow a task to contain several
operations. For instance, a task can not contain both a
multiplication and a function call. The simulation code
can also contain Modelica when statements, which are
equivalent to a special form of if statements without
else branch. These need to be considered as one
task, since if the condition of the when statement is
true, all statements included in the when statement
should be executed. An alternative would be to repli-
cate the guard for each statement in the when state-
ment. This is however not implemented yet, since usu-
ally the when statements are small in size and the need
of splitting them up is low.

To solve the problems above, a second task graph is
built, with references into the original task graph. The
implementation of the second task graph makes it pos-
sible to cluster tasks into larger ones, thus increasing
the granularity of the task graph. The first task graph is
kept, since it is needed later for generating code. The
two task graphs are illustrated in Figure 4.

Figure 4: The two task graphs built from the simula-
tion code.

The second level task graph can also be used to clus-
ter tasks together using a task clustering or task merg-
ing algorithm. An algorithm for merging task similar
to the algorithm found in [16] has been implemented
in our tool, except that our algorithm deals with re-
moving cycles. The algorithm constructs a cluster in-
crementally, starting with a single node n, taken from
a list l of all nodes sorted by level in descending order.

The algorithms first examine the children of the
node n. When all children have been clustered, the
algorithm continues searching for a node that has a
child (not in the cluster) with in-degree one and in-

Aronsson P., Fritzson P. Multiprocessor Scheduling of Simulation Code From Modelica Models

The Modelica Association 335 Modelica 2002, March 18−19, 2002

cludes them as well, see figure 5. The next choice of
including nodes is the set of parent nodes to the node
n. After that, siblings to n are chosen, followed by an
arbitrary node in the list of nodes.

a

Figure 5: Node a with in-degree one is included in the
cluster

To prevent the algorithm from producing cycles in
the clustered task graph, a function that detects cycles
is called, which includes all nodes forming a cycle
from a cluster. Such a cycle is illustrated in Figure
6. The figure shows that by clustering nodes a and
b together and not including c in the same task, the
resulting task graph will be cyclic, thus removing the
property of a DAG making it impossible to schedule.

When a cycle is detected several approaches can be
taken. Either the complete cycle is added to the clus-
ter, which can in the worst case make a cluster too
large. Another alternative is to remove the node from
the cluster causing the cycle, and begin a new cluster.
This on the other hand might cause some clusters to be
too small.

a

b
c

Figure 6: A cluster that forms a cycle in the resulting
task graph.

Once the coarse grained task graph is built we can
use standard scheduling algorithms found in the liter-
ature. In our implementation we have used a schedul-

ing algorithm called TDS [1], which is a critical path
scheduling algorithm with task duplication. For coarse
grained graphs it produces the optimal solution. How-
ever, the number of processors needed by the algo-
rithm is not fixed. Thus, to use the algorithm in prac-
tice a phase following the TDS algorithm has to be in-
troduced. This phase limits the number of processors
by merging task lists of different processors.

Finally, a simple method called Full Task Duplica-
tion Technique (FTDT) is implemented in the paral-
lelization tool. It collects clusters by collecting all par-
ents for each exit node (i.e. a node without any suc-
cessor) into clusters. These clusters are then merged
in a load balancing manner until the number of clus-
ters match the required number of processors. This
method is only useful if the task granularity (commu-
nication to execution time ratio) is very high, i.e. the
average cost of communication is much larger than the
average cost of execution in the task graph. However,
since it applies full duplication it represents an upper
limit on the possible speedup for task graph with very
high communication costs and can thus be useful in
some specific cases.

5 Results

The first results without the pre-clustering (or task
merging) phase implemented showed that the TDS al-
gorithm did not work well on fine grained tasks, even
with an unlimited number of processors. Most exam-
ples did not produce speedups at all. The major reason
was that the early implementation did not optimize the
sending of messages between tasks, by sending and re-
ceiving larger chunks of data. In practice, each scalar
produced its own MPI send and receive call.

But also the limitations of the TDS algorithm on fine
grained task graphs (i.e. task graphs with high commu-
nication costs) had an effect on the result. The TDS al-
gorithm is a linear critical path scheduling algorithm,
i.e. it never schedules two siblings onto the same pro-
cessor. This means that the TDS algorithm exploits all
available parallelism, even if the communication cost
is very high. Thus it does not work well on graphs with
high granularity.

When using the modified task merging algorithm
described above, the results were also not showing a
speedup > 1. The main reason for not giving good re-
sults in this case was that the task merging algorithm
did not succeed in both merging the tasks to increase
the granularity and still reveal enough parallelism in
the task graph such that speedup > 1 could be ob-

Multiprocessor Scheduling of Simulation Code From Modelica Models Aronsson P., Fritzson P.

Modelica 2002, March 18−19, 2002 336 The Modelica Association

tained. Thus, the resulting task graph contained too
many dependencies such that the only possible parti-
tion was a sequential partition for one processor.

The Full Task Duplication Technique did however
produce reasonable results. Figure 7 gives computed
speedup values from the task graphs generated from
the simulation code for a thermofluid pipe model with
three different discretization values. Figure 8 gives
the measured speedup results for the same models
when the parallelized simulation code is executed on
a parallel PC-cluster with a SCI communication net-
work [18].

Figure 9 presents computed speedup values from
the task graph for the robot example (the r3 robot)
found in the Modelica Standard Library.

6 Discussion and Future Work

It is clear that the simulation code emitted from com-
pilers of equation based simulation languages can be
highly optimized and very irregular code. Hence, this
code is not trivial to parallelize. The scheduling al-
gorithms found in the literature are not suitable for
fine grained task graphs of the magnitude produced by
our tool. Therefore, a pre-clustering phase is needed.
Also, the increasingly gap between processor speed
and communication speed will demand better cluster-
ing and task merging algorithms in order to provide
good speedup results in the future.

Due to the large task graphs, caused by the large
simulation code files, the clustering algorithm must be
of low complexity but still use for instance task dupli-
cation to reduce communication cost.

The results could be further improved by applying
task duplication to the pre-cluster algorithm. Since
each task can be very small, extensive task duplica-
tion could be used to reduce the communication in the
clustered task graph. However, the demand for a low
complexity algorithm does not allow an advanced task
duplication scheme. Future work is to investigate what
kind of task duplication could be considered in the pre-
clustering phase. Clearly, it could improve the results
significantly.

The results from the robot example did not produce
good speedup. However, when using mixed mode
and inline integration the amount of parallelism in the
task graph increased. Therefore, future work includes
a deeper investigation on larger models both using
mixed mode and inline integration and without those
optimizations. Future work also includes an investiga-
tion on the effects of different optimizations performed

1 2 4 8 16
Proc

2

4

6

8

Speedup

c=100

c=1000

c=5000

(a) Thermofluid pipe with 50 discretization points.

1 2 4 8 16
Proc

2

4

6

8

Speedup

c=100

c=1000

c=5000

(b) Thermofluid pipe with 100 discretization points.

1 2 4 8 16
Proc

2

4

6

8

10
Speedup

c=100

c=1000

c=5000

(c) Thermofluid pipe with 150 discretization points.

Figure 7: Computed speedup figures for different com-
munication costs c using the FTD method on the Ther-
mofluid pipe.

on the system of equations regarding the amount of
parallelism in the simulation code.

Future work on the scheduling and clustering prob-
lem for fine grained task graphs is also needed.
Perhaps a more accurate parallel machine model is
needed, like for instance the Logp parallel program-
ming model [4].This would make the model more ac-
curate, giving better estimates of the gained speedup.
However, such an extension of the computational
model would also increase the complexity of the
scheduling and clustering algorithms.

Aronsson P., Fritzson P. Multiprocessor Scheduling of Simulation Code From Modelica Models

The Modelica Association 337 Modelica 2002, March 18−19, 2002

1 2 4 8 16
Proc

0.25

0.5

0.75

1

1.25

1.5

1.75

2
Speedup

(a) Thermofluid pipe with 50 discretization points.

1 2 4 8 16
Proc

0.5

1

1.5

2

2.5

3
Speedup

(b) Thermofluid pipe with 100 discretization points.

1 2 4 8 16
Proc

0.5

1

1.5

2

2.5

3
Speedup

(c) Thermofluid pipe with 150 discretization points.

Figure 8: Measured speedup figures when executing
on a PC-cluster with SCI network interface using the
FTD method on Thermofluid pipe.

7 Acknowledgments

This has been supported by the Modelica Tools project
in the Complex Systems framework supported by
NUTEK (Swedish Board for Technical Development),
and the EU-IST project RealSim.

1 2
Proc

0.25
0.5
0.75

1
1.25
1.5
1.75

2
Speedup

c=10

c=100

c=1000

(a) Mechanical robot model

1 2 4 9
Proc

0.25
0.5
0.75

1
1.25
1.5
1.75

2
Speedup

c=10

c=100

c=1000

(b) Mechanical robot model with mixed mode and inline
integration

Figure 9: Computed speedup figures for different com-
munication costs, c, using the FTD method on the
robot example.

References

[1] S. Darbha, D. P. Agrawal. Optimal Scheduling
Algorithm for Distributed-Memory Machines.
IEEE Transactions on Parallel and Distributed
Systems, vol. 9(no. 1):87–94, January 1998.

[2] Andrei Radulescu, A. J.C. van Gemund.
FLB:Fast Load Balancing for Distributed-
Memory Machines. Technical report, Faculty
of Information Technology and Systems, Delft
University of Technology, 1999.

[3] C. Hanen, A. Munier. An approximation algo-
rithm for scheduling dependent tasks on m pro-
cessors with small communication delays. Tech-
nical report, Laboratoire Informatique Theorique
Et Programmation, Institut Blaise Pascal, Uni-
versite P.et M. Curie, 1999.

[4] David E. Culler, Richard M. Karp, David A. Pat-
terson, Abhijit Sahay, Klaus E. Schauser, Eunice
Santos, Ramesh Subramonian, and Thorsten von
Eicken. Logp: Towards a realistic model of par-

Multiprocessor Scheduling of Simulation Code From Modelica Models Aronsson P., Fritzson P.

Modelica 2002, March 18−19, 2002 338 The Modelica Association

allel computation. In Principles Practice of Par-
allel Programming, pages 1–12, 1993.

[5] C.Y. Lee, J.J. Hwang, Y.C. Chow, F.D Anger.
Multiprocessor Scheduling with Interprocessor
Communication Delays. Operations Research
Letters, vol.7(no. 3), 1988.

[6] Dymola, http://www.dynasim.se.

[7] H. Elmqvist. A Structured Model Language for
Large Continuous Systems. PhD thesis, Depart-
ment of Automatic Control, Lund Institute of
Technology, Lund, Sweden, 1978.

[8] P. Fritzson, V. Engelson. Modelica - A Unified
Object-Oriented Language for System Modeling
and Simulation. In Proceedings of the 12th Eu-
ropean conference on Object-Oriented Program-
ming, LNCS. Springer Verlag, 1998.

[9] P. Fritzson, L. Viklund, J. Herber, and D. Fritz-
son. High-level mathematical modeling and pro-
gramming. IEEE Software, vol. 12(no. 4):77–87,
July 1995.

[10] G. Sih and E. Lee. A Compile-Time Schedul-
ing Heuristic for Interconnection-Constrained
Heterogeneous Processor Architectures. IEEE
Transactions on Parallel and Distributed Sys-
tems, vol. 4(no. 2), 1993.

[11] J.J. Hwang, Y.C. Chow, F.D. Anger, C.Y. Lee.
Scheduling Precedence Graphs in Systems with
Interprocessor Communication Times. Journal
on Computing, vol. 18(vol. 2), 1989.

[12] M. Ayed, J-L Gaudiot. An efficient heuristic for
code partitioning. Parallel Computing, 26:399–
426, 2000.

[13] MathModelica, http://www.mathcore.com.

[14] The Modelica Language,
http://www.modelica.org.

[15] R.L. Graham, L.E. Lawler, J.K. Lenstra and A.H.
Kan. Optimization an Approximation in Deter-
ministic Sequencing and Scheduling: A Survey.
Annals of Discrete Mathematics, pages 287–326,
1979.

[16] S. Chingchit, M. Kumar, L.N. Bhuyan. A flex-
ible Clustering and Scheduling Scheme for Effi-
cient Parallel Computation. In Proceedings, Par-
allel and Distributed Processing, pages 500–505.

IEEE Computer, 1999. 12-16 April, San Juan,
Puerto Rico.

[17] S. Darbha, D. P. Agrawal. Optimal Scheduling
Algorithm for Distributed-Memory Machines.
Transactions on Parallel and Distributed Sys-
tems, vol. 9(no. 1), 1998.

[18] Scali - Scalable Linux Systems,
http://www.scali.com.

[19] T. Yang, A. Gerasoulis. DSC: Scheduling Par-
allel Tasks on an Unbounded Number of Proces-
sors. Transactions on Parallel and Distributed
Systems, vol. 5(no. 9), 1994.

[20] V. Sarkar. Partitioning and Scheduling Parallel
Programs for Multiprocessors. MIT Press, Cam-
bridge, MA, 1989.

[21] B. E. Wells. A Hard Real-Time Static Task
Allocation Methodology for Highly-Constrained
Message-Passing Environments. The Interna-
tional Journal of Computers and Their Applica-
tions, II(3), December 1995.

[22] Wu, M. Y. and Gajski, D. D. Hypertool: A
Programming Aid for Message-Passing Systems.
Transactions on Parallel and Distributed Sys-
tems, vol. 1(no. 3), 1990.

